

PII: S0031-9422(98)00122-8

TWO CHROMENES FROM EVODIA LEPTA

Guo-Lin Li and Da-Yuan Zhu

State Key Laboratory of Drug Research of Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 200031 People's Republic of China

(Received 5 January 1998)

Key Word Index—Evodia lepta; Rutaceae; chromenes; leptonol; methylleptol A; alloevodione.

Abstract—Two new chromenes named, leptonol and methylleptol A, along with four known compounds, alloevodione, 7, 4-dihydroxy-3, 5, 3'-trimethoxyflavone, 3, 7-dimethylkaempferol and clovandiol, have been isolated from *Evodia lepta*. Their structures were elucidated by spectroscopic analysis and chemical techniques. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

Our previous study has resulted in the isolation and structural elucidation of three new compounds (leptol A, ethylleptol A and leptene A) and two known compounds (isoevodionol and evodione) [1] from the traditional Chinese herb, *Evodia lepta*. As a part of our continuing research into the same material, we now wish to report the isolation and structural elucidation of two new chromenes, leptonol (1) and methylleptol A (2), and one known chromene, alloevodione (3).

RESULTS AND DISCUSSION

Leptonol (1) was obtained as an orange oil. Its 'H NMR spectrum was very similar to that of evodione, except that the hydroxyl signal (δ 13.57) in compound 1 was substituted by that of methoxyl group. Because methylation of 1 using (CH₃)₂SO₄-K₂CO₃-acetone [2] gave evodione (1a), the acetyl group in 1 was assigned to position 6. A chelated phenolic hydroxyl signal at δ 13.57 in its ¹H NMR spectrum and a chelated carbonyl group absorption at 1640 cm⁻¹ in its IR spectrum, demonstrated that the hydroxyl group was at position 5 or 7. Acetylation of 1 using acetic anhydride-pyridine afforded **1b**. The upfield shift of H-4 ($\Delta \delta = 0.42$) in the ¹H NMR spectrum after acetylation of 1 indicated that the hydroxyl group was at position 5, according to the rules of Arnone [3]. Thus, leptonol (1) was determined as 5-hydroxyl-6-acetyl-7,8-dimethoxy-2,2-dimethyl-2H-[1]-benzopyran.

Methylleptol A (2) was colourless oil. Its ¹H NMR spectrum showed the presence of a methoxyl group at δ 3.18 (3H, s); other signals were similar to those of leptol A, a chromene from the same material [1]. The EI mass spectrum of this compound indicated the [m] ⁻ at m/z 308, which was 14 mu more than that of

leptol A. The IR spectrum demonstrated that this compound had no hydroxyl group. From the above results, we could infer methylleptol A was the product of methylation of leptol A. Methylation of leptol A using methanol-formic acid method gave methylleptol A, and this confirmed the above inference. Thus, the structure of methylleptol A (2) was elucidated as 6-(1'-methoxyethyl)-5,7,8-trimethoxy-2,2-dimethyl-2H-[1]-benzopyran.

Alloevodione (3) was isolated as pale yellow oil. Its ¹H NMR spectrum was almost identical to that of evodione (1a) [1], except for small chemical shift difference. They also had the same [m] and main fragment ions peaks in their EI mass spectra [1]. These data suggested that they had the same skeleton and substituted groups, but they were not the same because they had different TLCRf values. (silica gel, petrol-EtOAc, 12:1). The difference in their structure was the position of the acetyl group. We cannot identify compound 3 as alloevodione, which is a known natural product from E. ellevana [4], without further study, because the 'H NMR spectrum of compound 3 was different from that of alloevodione given in the literature [5]. Reduction of 3 using NaBH₄-MeOH method gave compound 3a. In the HMBC spectrum of compound 3a, H-4 was correlated with the carbons at δ 149.5 and 147.4, respectively, and the proton of one methoxyl group at δ 3.82 was also correlated with the carbon at δ 149.5. This suggested that the carbon at δ 149.5 should be assigned to C-5 and the carbon at δ 147.4 should be assigned to C-9. Because H-1' was correlated with the carbons at δ 147.4 (C-9), δ 152.5 and δ 123.4, C-1' should be attached to C-8. The carbon at δ 152.5 should be assigned to C-7, and the carbon at δ 123.4 to C-8. Because compound 3a was the product of reduction of compound 3, the acetyl group in compound 3a should be placed at

position 8. From above results, compound 3 was identified as 5, 6, 7-trimethoxy-8-acetyl-2, 2-dimethyl-2H[1]-benzopyran, a known compound from *E. ellerya*.

OCH₃

leptol A

Compounds **4**, **5**, and **6** were identified as 7, 4′-dihydroxy-3, 5, 3′-trimethoxyflavone [6], 3, 7-dimethylkaempferol [7] and clovandiol [8], respectively, by comparison of their spectral data with those of the corresponding compounds reported in the literature.

EXPERIMENTAL

OCH₃

OCH₃

4

OCH₃

OH

General

EIMS: 70 eV, direct inlet. ^{1}H NMR: 400 MHz, CDCl₃ and CD₃COCD₃. ^{13}C NMR: 100 MHz, CDCl₃ and CD₃COCD₃. Chemical shifts are given in δ and were referred in CDCl₃ to the residual CHCl₃ (δ 7.24 for ^{1}H , 77.0 for ^{13}C) and in CD₃COCD₃ to the residual Me₂CO (δ 2.05 for ^{1}H , 29.8 for ^{13}C).

Plant material

Aerial parts of *E. lepta* (Spreng) Merr. were collected from Hainan province, P. R. China, in July, 1992. A voucher sample (910042) is deposited in the Herbarium of Shanghai Institute of Materia Medica. Chinese Academy of Sciences. A specimen was authenticated by Dr Xiao-qiang Ma, Department of Phytochemistry, Shanghai Institute of Materia Medica. Chinese Academy of Sciences.

Extraction and isolation

Dried and powdered aerial parts (10 kg) were extracted ×2 with 95% EtOH at room temp. over 2 weeks. The combined extracts were evapd to dryness under red. pres. (35°) and the residue obtained (250 g) was subjected to CC over silica gel, eluting with petrol-EtOAc (10:1) to give an orange oil (80 g), and then eluting with CHCl₃ to give a dark gum (65 g). Part of this oil (20 g) was fractionated by silica gel CC eluting with a petrol-EtOAc gradient. The frs obtained were repeatedly chromatographed by silica gel CC using a petrol-EtOAc mix. and finally purified by silica gel CC using petrol-EtOAc (12:1) to give 1 (534 mg), petrol-EtOAc (15:1) to give 3 (108 mg) and petrol-Me₂CO (20:1) to give **2** (50 mg). The CHCl₃ part (65 g) was fractionated by silica gel CC eluting with a CH₂Cl₂-EtOAc gradient. Compounds 4 (10 mg) and 5 (15 mg) were isolated from frs. 4 by silica gel CC eluting with CH₂Cl₂-EtOAc (6:1). Compound 4 was purified by Sephadex LH-20 CC using CHCl₃-MeOH (10:1) as eluant. Fr. 5 was subjected to repeated CC over silica gel eluting with CH₂Cl₂-Me₂CO (5:1) to give compound 6 (5 mg).

Leptonol (1)

C₁₅H₁₈O₅. Yellow oil. λ MeOH_{max} nm (log ϵ): 208 (4.17), 263 (4.47), 311 (4.01), 354 (3.58). IR vfilm_{max} cm ⁻¹: 2970, 2930, 1640, 1600, 1378, 1364, 1200, 1055. ¹H NMR (CDCl₃): δ 13.57 (1H, s, OH-5), 6.65 (1H, d, J=10.1 Hz, H-4), 5.49 (1H, d, J=10.1 Hz, H-3), 3.97 (3H, s, OCH₃), 3.76 (3H, s, OCH₃), 2.61 (3H, s, COCH₃), 1.47 (6H, s, gem-dimethyl). ¹³C NMR (CDCl₃): δ 203.5 (C=O), 156.4, 155.6, 153.8, 134.1, 126.6 (C-3), 116.0 (C-4), 108.2, 105.9, 78.3 (C-2), 61.1 (OCH₃), 61.1 (OCH₃), 32.0 (COCH₃), 28.3 (CH₃-2). EIMS m/z (rel. int.): 278 [M]⁺(21), 263 (100), 233 (7).

Acetyleptonol (1b)

 $C_{17}H_{20}O_6$. Pale yellow oil. ¹H NMR (CDCl₃): δ 6.23 (1H, d, J = 9.9 Hz, H-4), 5.60 (1H, d, J = 9.9 Hz, H-3), 3.92 (3H, s, - OCH₃), 3.84 (3H, s, - OCH₃), 2.46 (3H, s, - COCH₃). 2.24 (3H, s, - OCOCH₃), 1.46 (6H, s, gem-dimethyl). EIMS m/z (rel. int.): 320 [M]⁻ (17), 278 (53), 263 (100), 235 (25).

Methylleptol A (2)

 $C_{17}H_{24}O_5$. Colourless oil. [α]²⁶_D = +0.089° (CH₃COCH₃; c 0.450). IR vfilm_{max} cm⁻¹: 2980, 2930, 1740, 1635, 1593, 1471, 1375, 1360, 1194, 1136, 1053, 978. ¹H NMR (CD₃COCD₃): δ 6.54 (1H, d, J=9.8 Hz, H-4), 5.73 (1H, d, J=9.8 Hz, H-3), 4.71 (1H, q, J=6.7 Hz, H-1'), 3.81 (6H, s, 2 × - OCH₃), 3.69 (3H, s, - OCH₃), 3.18 (3H, s, H-1"), 1.52 (3H, d, J=6.7 Hz, H-2'). 1.47 (3H, s, CH₃-2), 1.44 (3H, s, CH₃-2). EIMS m/z (rel. int.): 308 [M]⁺ (16), 293 [M-CH₃]⁺ (100), 276 (15), 263 (30), 261 (71), 245 (15), 231 (30).

Alloevodione (3)

C₁₆H₂₀O₅. Pale yellow oil. λ MeOH_{max} nm (log ϵ): 220 (4.34), 254 (4.13), 321 (3.52). IR ν film_{max} cm⁻¹: 2970, 2940, 1702, 590, 1458, 1387, 1362, 1292, 1050. ¹H NMR (CDCl₃): δ 6.51 (1H, d, J = 10.0 Hz, H-4), 5.54 (1H, d, J = 10.0 Hz, H-3), 3.87 (3H, s, - OCH₃), 3.85 (3H, s, - OCH₃), 3.80 (3H, s, - OCH₃), 2.47 (3H, s, CH₃CO-7), 1.39 (6H, s, gem-dimethyl). ¹³C NMR (CDCl₃): δ 200.7 (C=O), 150.6, 150.3, 145.8 (C-9), 139.8, 129.2 (C-3), 121.1 (C-7), 116.4 (C-4), 111.3 (C-10), 76.6 (C-2), 62.1 (-OCH₃), 61.4 (- OCH₃), 61.1 (- OCH₃), 32.5 (- COCH₃), 27.8 (CH₃-2). EIMS m/z (rel. int.): 292 [M]⁺ (31), 277 [M-CH₃] (100), 247 (29).

Compound 3a

 $C_{16}H_{22}O_5$. Pale yellow oil. IR vfilm_{max} cm⁻¹: 3558, 2974, 2930, 1639, 1595, 1466, 1417, 1344, 1281, 1132, 1034, 997. ¹H NMR (CD₃COCD₃): δ 6.53 (1H, d, J=10.0 Hz, H-4), 5.67 (1H, d, J=10.0 Hz, H-3), 5.06 (1H, q, J=6.7 Hz, H-1'), 3.86 (3H, s, -OCH₃), 3.82 (3H, s, -OCH₃), 3.77 (3H, s, -OCH₃), 1.45 (3H, d, J=6.7 Hz, H-2'), 1.41 (6H, s, gem-dimethyl). ¹³C NMR (CD₃COCD₃): δ 152.5 (C-7), 149.5 (C-5), 147.4 (C-9), 141.2 (C-6), 130.3 (C-3), 123.4 (C-8), 117.8 (C-4), 112.5 (C-10), 77.4 (C-2), 64.4 (C-1'), 62.1 (-OCH₃), 62.0 (-OCH₃), 61.4 (-OCH₃), 28.2 (CH₃-2), 27.94 (CH₃-2), 25.0 (C-2'). EIMS m/z (re. int.): 294 [M]⁺ (17), 279 [M-CH₃]⁺ (100), 261 (12), 231 (8).

Methylation of 1 to give evodione

Compound 1 (20 mg) in dry Me₂CO (1 ml) was refluxed with Me₂SO₄ (50 μ l) in the presence of dry K₂CO₃ (120 mg) for 4 hr, then filtered, inorganic salts washed out with hot Me₂CO and combined, filtered and conc. The residue was subjected to CC eluting with petrol-EtOAc (10:1) to give evodione (3) (15 mg), yield 70%. IR, MS and ¹H NMR data identical to natural product.

Synthesis of 2 from leptol A

Leptol A (30 mg) was dissolved in MeOH (3 ml) and HCO₂H (0.5 ml) added to the soln. The mixt, was

stirred continuously for 5 hr at room temp., neutralized with satd NaHCO₃ soln, extracted with Et₂O, the organic layer washed with brine and dried (Na₂SO₄). Removal of solvent gave a residue which was subjected to CC using petrol-EtOAc (8:1) to furnish 2 (28 mg), yield 89%.

Reduction of alloevodione (3) to give compound 3a

Alloevodione (30 mg) was dissolved in 4 ml of MeOH and NaBH₄ (340 mg) added to this soln in ten batches at room temp. The mixt, was stirred continuously for 5 hr at room temp, after addition of NaBH₄ was complete. MeOH was then removed and the residue dissolved in EtoAc (15 ml) and H₂O. The EtoAc layer was separated and concd; the residue after silica gel CC eluting with petrol-EtOAc (10:1) gave compound 3a (23 mg), yield 76%.

REFERENCES

- Li, G. L., Zeng, J. F., Song, C. Q. and Zhu, D. Y., Phytochemistry, 1997, 44, 1175.
- 2. Ahluwalia, V. K., Arora, K. K. and Manchanda, S., *Indian Journal of Chemistry*, 1982, **21B**, 1093.
- 3. Arnone, A. and Cardillo, G., Tetrahedron Letters, 1967, 43, 4201.
- 4. Kirby, K. D. and Sutherland, M. D., Australian Journal of Chemistry, 1956, 9, 411.
- 5. Ahluwalia, V. K. and Jain, A., Goyal, M., *Indian Journal of Chemistry*, 1984, 23B, 166.
- Monache, G. D., Rosa, M. C. D., Scurria, R., et al. Phytochemistry, 1991, 30, 1849.
- 7. Wang, Y., Hamburger, M., Gueho, J., et al. Phytochemistry, 1989, 28, 2323.
- 8. Delgado, G., Cárdenas, H., Peláez, G., et al. Journal of Natural Products, 1984, 47, 1042.