

PII: S0031-9422(98)00150-2

A SECO-CYCLOARTANE FROM ILLICIUM VERUM

Lai-King Sy and Geoffrey D. Brown*

Chemistry Department, The University of Hong Kong, Pokfulam Road, Hong Kong

(Received 3 November 1997)

Key Word Index—Illicium verum; Illiciaceae; seco-cycloartane; chemotaxonomy; 2D-NMR.

Abstract—The dichloromethane extract of the leaves of *Illicium verum* yielded the ring A-cleaved *seco*-cycloartane: 3,4-seco-(24Z)-cycloart-4(28),24-diene-3,26-dioic acid, 26-methyl ester, which is the 26-methyl ester of nigranoic acid. The structure of the new compound was deduced by 2D-NMR spectroscopy, which demonstrated conclusively that it is isomeric with the 3-methyl ester of nigranoic acid recently reported from *Illicium dunnianum*. © 1998 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

Illicium verum Hook f. (Chinese star anise) is an evergreen tree indigenous to southern China, which is used by local people as a stimulant and carminative [1]. It is easily confused with the extremely posionous *I. anisatum*, which is found in the same geographical region and which produces morphologically similar fruits [2]. Previous chemical investigations of *I. verum* have yielded 4-ethoxyphenol, anisyl ketone [3], the phenylpropanoid, anisoxide [4] and the sesquiterpenes, veranisatins A and B [5].

RESULTS AND DISCUSSION

Extraction of the aerial parts of *I. verum* yielded the novel seco-cycloartanedioic acid 26-methyl ester (1). HREIMS established the formula of 1 as C₃₁H₄₈O₄. 2D-NMR experiments, HSQC (Table 1) and HMBC (Fig. 1), were used to confirm the seco-cycloartane skeleton of 1, and in particular demonstrated conclusively that the methyl ester was located at the 26position rather than the 3-position. Full NMR assignments were confirmed by the 1H-1H COSY spectra (not shown). The Z stereochemistry at the double bond was deduced by observation of a strong correlation between H-27 ($\delta_{\rm H}$ 1.90) and H-24 ($\delta_{\rm H}$ 5.93) in NOESY spectra. The extract also contained the known cycloartane, schizandronic acid (2) [6]. 3,4seco-Cycloartanes such as 1 would seem to be biogenetically derived from 3-keto-cycloartanes such as 2 by oxidative cleavage at the 3,4-bond.

Compound 3, the isomeric 3-methyl ester of 1, has recently been reported as a constituent of *I. dunnianum*

*Author to whom correspondence should be addressed

[7]. Both the parent compound, nigranoic acid (4), and the 3,26-dimethyl ester of nigranoic acid (5) are known from Schisandra nigra [8] and Tillandsia usneoides respectively [9]. This is the second reported occurrence of cycloartanes and seco-cycloartanes from the genus Illicium, and supports the suggestion made previously that the extremely rare 3,4-seco-cycloartane class of triterpenes [10] be regarded as a chemotoxonomic marker for the Illiciales family. The previous report was from I. dunnianum; both species are members of the section Cymbostemon (Spach) A. C. Sm.

EXPERIMENTAL

General

NMR: Bruker DRX 500 and TMS with CDCl₃ as solvent and TMS as int. standard. HSQC and HMBC experiments were recorded with 2048 data points in F_2 and 128 data points in F_3 . EIMS: 70 ev; FTIR: CHCl₃; TLC; compounds located using *p*-anisaldehyde; HPLC: PREP-SIL 20 mm × 25 cm column, flow rate 8 ml/min.

Leaf tissue of *I. verum* (1.2 Kg) was obtained from the South China Botanical Garden (accession 850117; material originally collected in Guangxi province by the Guangxi Institute of Botany); a voucher specimen (Hao Gang 103) has been deposited in the herbarium of the University of Hong Kong (KHU). The sample was ground to a fine powder under liq. N₂ and immediately extracted with CH₂Cl₂. The organic extract was then dried and evapd. under red. pres. to yield a dark green oil (26.5 g; 2.2% w/w) which was separated chromatographically. 1 (46.4 mg) by CC (EtOAchexane, 1:1) followed by HPLC (R_i 13.1 mins in EtOAc-hexane-AcOH, 18:81.5:0.5); 2 (21.4 mg) by

Table 1	NMR	assignments	for compound	d 1 (CDCL)
Table 1.	LIVIVII	assignments	TOT COMPOUNT	

Assignment	$\delta_{ m C}$	$\delta_{ m H}$	Assignment	$\delta_{ m C}$	$\delta_{ extsf{H}}$
1	28.9	2.07, 1.38	16	28.1	1.92, 1.29
2	31.1	2.54, 2.29	17	52.2	1.59
3	178.1		18	18.1	0.96
4	149.4	_	19	30.0	0.73, 0.41
5	45.9	2.43	20	36.0	1.41
6	27.8	1.51, 1.08	21	18.0	0.89
7	25.0	1.31, 1.10	22	35.9	1.53, 1.13
8	47.7	1.57	23	26.7	2.50, 2.38
9	21.5		24	144.0	5.93
10	27.0		25	126.5	_
11	27.0	2.10, 1.26	26	168.6	
12	33.0	1.65, 1.65	27	20.7	1.90
13	45.2		28	111.6	4.82, 4.74
14	49.0		29	19.8	1.69
15	35.6	1.28, 1.28	30	19.8	0.93
			26-OMe	51.2	3.74

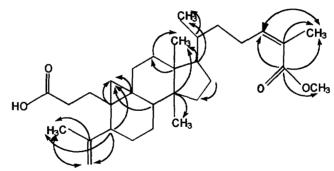


Fig. 1. HMBC correlations for 1 (arrows represent correlations from ¹³C to ¹H).

2

 $1 R_1 = H; R_2 = Me$

 $3 R_1 = Me; R_2 = H$

4 $R_1 = H$; $R_2 = H$

 $5 R_1 = Me; R_2 = Me$

CC (EtOAc-hexane, 1:1) followed by HPLC (R, 12.6 mins in EtOAc-hexane-AcOH, 18:81.5:0.5).

3,4-seco-(24Z)-cycloart-4(28),24-diene-3,26-dioic acid, 26-methyl ester (1)

Acknowledgements—We would like to thank Dr. Richard Saunders of the Department of Ecology and Biodiversity for identifying the sample of *I. verum* and Dr. Hao Gang for collecting the sample. This research

was funded by a CRCG grant for research into the chemotaxonomy of the Illiciales.

REFERENCES

- 1. Claus, E. P. and Tyler, V. E., Pharmacognosy, 5th Ed., Lea and Febiger, Philadelphia, 1965.
- 2. Small, E., Econ. Bot., 1996, 50, 337.
- 3. Tardy, E., Bull. Soc. Chim. Fr., 1990, 1902.
- 4. Jackson, R. W. and Short, W. F., *J. Chem. Soc.*, 1937, 513.
- Okuyama, E., Nakamura, T. and Yamazaki, M., Chem. Pharm. Bull., 1993, 41, 1670.
- Takahashi, K. and Takani, M., Chem. Pharm. Bull., 1975, 23, 538.
- Sy, L.-K., Saunders, R. M. K. and Brown, G. D., Phytochemistry, 1997, 44, 1099.
- Kikuchi, M. and Yoshikoshi, A., Chem. Lett., 1972, 725.
- 9. Cabrera, G. M., Gallo, M. and Seldes, A. M., *Phytochemistry*, 1995, **39**, 665.
- 10. Dictionary of Natural Products on CD-ROM Version 7.1 Chapman and Hall, London, 1997.