

PII: S0031-9422(98)00162-9

TRITERPENOIDAL SAPONINS FROM BAPTISIA AUSTRALIS*

MANABU UDAYAMA, JUNEI KINJOT and TOSHIHIRO NOHARA

Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan

(Received 12 January 1998)

Key Word Index—*Baptisia australis*; Leguminosae; saponin; triterpene; sophoradiol; baptisiasaponin I.

Abstract—Extraction of the roots of *Baptisia australis* afforded a new triterpenoid saponin, baptisiasaponin I together with kaikasaponin III. The structure of baptisiasaponin I was elucidated as $3-O-\alpha-L$ -rhamnopyranosyl- $(1\rightarrow 2)-\beta$ -D-xylopyranosyl- $(1\rightarrow 2)-\beta$ -D-glucuronopyranosyl sophoradiol on the basis of its spectral data and chemical degradation. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

Baptisia australis (L.) R. Br. is called Blue Wild Indigo in English. Some flavonoids and alkaloids were identified from this plant [1]. However, there are no reports on the saponins of Baptisia spp.[1]. As a part of our study on leguminous plants, we investigated the saponins of B. australis. We now report the isolation and structural determination of a new saponin along with kaikasaponin III.

RESULTS AND DISCUSSION

A methanolic extract of the dried roots of *B. australis* afforded compounds 1 (0.026%) and 2 (0.024%) after various chromatographic purification. Compound 2 was identified as kaikasaponin III [2, 3] by comparison with various data.

Compound 1, baptisiasaponin I showed a peak due to $[M-H]^-$ at m/z 925 in the negative FAB-mass spectrum. Acid hydrolysis of 1 gave sophoradiol (1a), glucuronic acid, xylose and rhamnose. The absolute configurations of sugars were determined to be D-form (glucuronic acid, xylose) and L-form (rhamnose), according to the procedure developed by Hara *et al.*[4]. In the ¹³C NMR spectrum of 1, signals due to a sugar moiety were identical with those of astragaloside VIII [5, 6]. Since the signals ascribable to the aglycone were superimposable on those of 2, the structure of 1 was deduced to be 3-O- α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -

 β -D-xylopyranosyl- $(1\rightarrow 2)$ - β -D-glucuronopyranosyl sophoradiol.

Although some saponins of soyasapogenol B [5, 6], complogenin [7], wistariasapogenols A and B [6, 8] contained the same oligosaccharide chain as 1, baptisiasaponin I is the first example of sophoradiol glycoside having the oligosaccharide.

EXPERIMENTAL

General

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were recorded in C_5D_5N . TMS was used as internal standard. FAB-MS (negative ion mode) was measured with glycerol matrix. CC were performed with Sephadex LH-20 (Pharmacia) and Bondapak C_{18} (Waters). HPLC was carried out on a system of a pump: CCPM (Tosoh), UV detector: UV-970 (JASCO) and a column heater: U-620 (Sugai). The preparative HPLC conditions were as follows: column, Nova-Pak HR C_{18} (6 μmm, 25 × 100 mm) with Radial-Pak 40 × 10 module (Waters/Millipore), solvent, $CH_3CN-H_2O-TFA(30→50:70→50:0.05)$ (v/v).

Plant material

The roots of *B. australis* were collected in the Medicinal Garden of our faculty. A voucher specimen has been deposited in the Medicinal Garden, Faculty of Pharmaceutical Sciences, Kumamoto University.

Extraction and isolation

The dried aerial parts of B. australis (42 g) was percolated with MeOH. The MeOH extract (17 g) was

^{*}Part 60 in a series of studies on the constituents of the leguminous plants.

[†]Author to whom correspondence should be addressed. Phone: +81-96-371-4382; Fax: +81-96-362-7799; E-mail: kinjojun@gpo.kumamoto-u.ac.jp

chromatographed on a Sephadex LH-20 column using MeOH to yield a crude saponin fraction. The combination of Bondapak C_{18} chromatography [H₂O-MeOH = $1:1 \rightarrow H_2$ O-MeOH = 0:1] and preparative HPLC for the crude saponin fraction afforded compounds 1 (11 mg) and 2 (10 mg).

Baptisiasaponin I (1)

A white amorphous powder. [α]₂₈²⁸ – 6.5° (pyridine, c 0.52). FAB-MS m/z: 895 [M-H]⁻, 749 [M-H-rha]⁻, 617[M-H-rha-xyl]⁻. ¹H NMR: δ 0.88, 1.00, 1.01, 1.10, 1.24, 1.28, 1.29, 1.34 (each 3H, s, Me-23 ~ 30), 1.80 (3H, d, d) = 6.1 Hz, rha H₃-6), 5.33 (1H, s, H-12), 5.67 (1H, d), d) = 7.3 Hz, xyl H-1). ¹³C NMR: δ 38.9, 26.4, 89.4, 39.8, 55.9, 18.6, 33.3, 40.7, 47.8, 36.9, 23.9, 122.6, 144.9, 42.5, 26.6, 28.8, 38.1, 45.5, 46.8, 30.9, 42.1, 75.6, 28.7, 15.8, 16.7, 17.2, 25.7, 21.1, 33.1, 28.3 (C-1 ~ 30), 105.4, 78.5, 76.9, 73.7, 78.4, 174.1 (glc A C-1 ~ 6), 102.8, 79.1, 78.4, 71.5, 66.7 (xyl C-1 ~ 5), 102.1, 72.3, 72.4, 74.2, 69.5, 19.0 (rha C-1 ~ 6).

Acid hydrolysis of 1

A small amount of 1 was dissolved in 2 n HCl/H₂O (2 ml) and heated at 90°C for 2 hr. After addition of CHCl₃, the organic layer was to be sophoradiol, by TLC. R_f S: 0.43 [CHCl₃-MeOH (19:1)], 0.53 [n-hexane-acetone (2:1)]. The aq. layer was neutralized with 2 n KOH/H₂O. The sugar mixture was subjected to TLC analysis [TLC, Kieselgel 60 F₂₅₄ (Merck Art 5554), CHCl₃-MeOH -H₂O=6:4:1, R_f S: 0.11 (glucuronic acid), 0.40 (xylose), 0.48 (rhamnose).

D, L Determination of sugars of 1

A small amount of 1 was methylated with ethereal CH₂N₂. To a soln of the methylated sample of 1 was added NaBH₄, and the mixture was kept at room temp. for 30 min. The reaction mixture was worked

up with MCI gel CHP 20P. The MeOH eluate was evaporated and heated in 2 N HCl/H₂O at 90°C for 3 hr. The hydrolysate was subjected to MCI gel CHP 20P and Amberlite IRA-400 to give a sugar fraction. This fraction was dissolved in pyridine (0.1 ml), then the soln was added to a pyridine soln(0.2 ml) of Lcysteine methyl ester hydrochloride (0.1 mol/l) and warmed at 60°C for 2 hr. The solvent was evaporated under N₂ stream and dried in vacuo. The remaining was trimethylsilylated methylsilylimidazole (0.1 ml) at 60°C for 1 hr. After addition of n-hexane and H₂O, the n-hexane layer was taken out and checked by GC. The retention times (R_t) of the peaks were 14.2 min (D-glucose), 7.3 min (D-xylose) and 8.8 min (L-rhamnose).

Kaikasaponin III (2)

A white amorphous powder, $[\alpha]^{25}_{D} - 8.3^{\circ}$ (pyridine, c 0.48). FAB-MS m/z: 925 [M-H]⁻, 779 [M-H-rha]⁻, 617 [M-H-rha-xyl]⁻. HPLC, conditions see ref.[9], (R_i : 32.4 min) and TLC, Kieselgel 60 F₂₅₄ (Merck Art 5554), CHCl₃-MeOH-H₂O (6:4:1), R_i : 0.47; n-BuOH-AcOH-H₂O (4:1:5, upper), R_i : 0.37].

REFERENCES

- Bisby, F. A., Buckingham, J. and Harborne, J. B., eds. *Phytochemical dictionary of the Leguminosae*. Chapman & Hall, London, 1994, p. 109–118.
- Kitagawa, I., Taniyama, T., Hong, W. W., Hori, K. and Yoshikawa, M., Yakugaku Zasshi, 1988, 108, 538.
- Kinjo, J., Takeshita, T., Abe, Y., Terada, Y., Yamashita, H., Yamasaki, M., Takeuchi, K., Murakami, K., Tomimatsu, T. and Nohara, T., Chem. Pharm. Bull., 1988, 36, 1174.
- Hara, S., Okabe, H. and Mihashi, K., Chem. Pharm. Bull., 1987, 35, 501.

- Kitagawa, I., Wang, H. K. and Yoshikawa, M., Chem. Pharm. Bull., 1983, 31, 716.
- 6. Kinjo, J., Fujishima, Y., Saino, K., Tian, R.-H. and Nohara, T., Chem. Pharm. Bull., 1995, 43, 636.
- 7. Cui, B., Inoue, J., Takeshita, T., Kinjo, J. and Nohara, T., Chem. Pharm. Bull., 1992, 40, 3330.
- Konoshima, T., Kozuka, M., Haruna, M., Ito, K., Kimura, T. and Tokuda, H., Chem. Pharm. Bull., 1989, 37, 2731.
- Kinjo, J., Kishida, F., Watanabe, K., Hashimoto, F. and Nohara, T., Chem. Pharm. Bull., 1994, 42, 1874