PII: S0031-9422(97)01025-X

FLAVONOL GLYCOSIDES FROM LYSIMACHIA CONGESTIFLORA

JIAN GUO,* DONG-LEI YU, LIZHEN XU. MIN ZHUT and SHI-LIN YANG

Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College.

Beijing, China 100094; † Department of Pharmacy, The University of Chinese Hong Kong, Shatin, New
Territories. Hong Kong

(Received in revised form 16 October 1997)

Key Word Index—Lysimachia congestiflora; Primulaceae; flavonol glycoside; larycitrin 3-O- α -arabinofuranoside; syringetin 3-O- α -rhamnopyranosyl(1 \rightarrow 5)- α -arabinofuranoside.

Abstract—Two new flavonol glycosides, larycitrin 3-O- α -arabinofuranoside and syringetin 3-O- α -rhamnopyranosyl($1 \rightarrow 5$)- α -arabinofuranoside, together with syringetin and six known flavonol glycosides, kaempferol 3-O- α -arabinofuranoside, myricetin 3-rhamnoside and 3-O-arabinofuranoside, syringetin 3-O- α -arabinofuranoside and 3-rhamnoside were isolated from the whole plant of *Lysimachia congestiflora*. All structures were established on the basis of UV, MS and NMR spectral analyses. © 1998 Published by Elsevier Science Ltd. All rights reserved

INTRODUCTION

Glycosides of kaempferol, quercetin, myricetin and syringetin have been isolated previously from Lysimachia species [1–9]. Lysimachia congestiflora Hemsl. is an important medicinal herb in China [10]. In the present study of its chemical constituents, one flavonol aglycone and eight flavonol glycosides, including two new compounds (1 and 2) have been isolated and characterized.

RESULTS AND DISCUSSION

The concentrated ethanolic extract of the air-dried whole plant of *L. congestiflora* was eluted successively with chloroform, ethyl acetate, acetone and methanol under reflux in a Soxhlet. One flavonol and eight flavonol glycosides (1–9) were isolated from the acetone fraction. The known flavonol glycosides: kaempferol 3-*O*- α -arabinofuranoside (3). myricetin 3-rhamnoside (4) and 3-*O*- α -arabinofuranoside (5). syringetin 3-*O*-arabinofuranoside (6) [11] and 3-rhamnoside (7) [12], and larycitrin 3-rhamnoside (8) [12], and free syringetin (9) [11] were characterized by standard procedures. Among them, 3, 6, 7 and 8 are reported for the first time in the genus *Lysimachia*.

Compound 1, gave positive Mg-HCl and Molish tests. The FAB mass gave a quasi-molecular ion $[M+H]^+$ at m/z 465. in good agreement with the molecular formula $C_{21}H_{20}O_{12}$. UV, EI-MS and 3H

$$R_1$$
 R_2

1 H H

2 Me α -L-rhamnopyranosyl

NMR spectral analyses indicated that the aglycone of 1 was larycitrin, the 3'-methyl ether or myricetin. In the NOESY experiment, the methoxyl group (δ 3.85) gave an NOE interaction with H-2' (δ 7.31), further supporting the presence of larycitrin. The FAB mass spectrum of 1 exhibited a quasi-molecular ion [M+H]" at m/z 465 and [M+H-132]" at m/z 333, suggesting the presence of a pentose sugar. Acid hydrolysis of 1 yielded arabinose. The ¹³C NMR of 1 in DMSO- d_{δ} also confirmed that 1 was a glycoside of larycitrin. The only significant difference was an

^{*} Author to whom correspondence should be addressed.

1446 J. Guo et al.

Table 1. ¹H NMR Chemical shifts for compounds 1 and 2 (400 MHz, DMSO-d₈, TMS as internal standard)

Position	1	2		
H-6	6.21 (d, 2.0 Hz)	6.22 (d, 2.0 Hz)		
H-8	6.43 (d, 2.0 Hz)	6.50 (d, 2.0 Hz)		
H-2'	7.31 (d, 1.9 Hz)	7.34(s)		
H-6'	7.17 (d, 1.9 Hz)	7.34(s)		
OCH ₃	3.85(s)	$3.86 (s, OCH_3 \times 2)$		
H-1" (ara.)	5.61 (d, J = 0.9 Hz)	5.58 (d, 0.8 Hz)		
H-1" (rha.)	,	4.39 (d, 1.1 Hz)		

upfield shift of 2.6 ppm for the C-3 (δ 133.4). This shift was analogous to that reported for flavonols in which the 3-hydroxyl group was glycosylated [13, 14]. The UV shifts on the addition of sodium methoxide and aluminum chloride also indicated that the position of linkage between the sugar and aglycone was at C-3. In addition, ¹³C NMR data for the sugar were in accord with those for methyl- α -L-arabino-furanoside, reported in the literature [15]. Thus, 1 was identified as larycitrin 3-O- α -arabinofuranoside, a new flavonol glycoside.

Compound **2**. gave positive Mg–HCl and Molish tests. The FAB-MS gave a quasi-molecular ion $[M+H]^+$ at m/z 625, corresponding with the molecular formula $C_{28}H_{32}O_{16}$. UV, EI-MS and NMR analyses indicated that the aglycone of **2** was 5,7,4'-tri-hydroxy-3',5'-dimethyoxylflavonol, namely syringetin. The FAB-MS exhibited a quasi-molecular ion $[M+H]^+$ at m/z 625 and other significant peaks at m/z 479 $[M+H-146]^+$ and 347 $[M+H-146-132]^+$, corresponding to the successive loss of one

deoxyhexosyl and one pentosyl moiety. Acid hydrolysis of 2 yielded rhamnose and arabinose. The ¹³C NMR of 2 in DMSO-d₆ also confirmed that it was a glycoside of syringetin, the only significant differences were an upfield shift of 2.7 ppm for C-3 and a downfield shift of 10 ppm for C-2, indicating that the position of linkage between the sugar and aglycone was at C-3. The ¹³C NMR spectrum also showed that 2 had rhamnose and arabinose in its structure, the significant differences were an upfield shift of 1.5 ppm for C-4 and a downfield shift of 2.7 ppm for C-5 of arabinose (Table 1) compared with data for methylα-1.-arabinofuranoside reported in the literature [15], suggesting that the arabinose was the inner sugar and the rhamnose was attached to C-5 of the arabinose. Therefore, the structure of 2 was identified as syringetin 3-O-α-rhamnopyranosyl(1 \rightarrow 5)-α-arabinofuranoside, another new flavonol glycoside.

EXPERIMENTAL

General

Mps are uncorr. ¹H and ¹³C NMR spectra were measured at 400 and 100 MHz, respectively, in DMSO- d_6 using TMS as int. standard. Chemical shifts are expressed in δ values.

Plant material

Lysimachia congestiflora Hemsl. was obtained from Jiang Kou, Guizhou province, China in 1990, and identified by Associate Professor Baolin Guo of this institute. A voucher specimen has been deposited in

Table 2. ³C NMR Chemical shifts for compounds 1, 2 and 9 (100 MHz, DMSO- d_6 , TMS as internal standard)

position	1	2	9	Position	1	2
2	156.4	156.4	146.4	ara. C-1"	107.7	107.8
3	133.4	133.3	136.0	C-2"	82.5	82.7
4	177.7	177.6	175.8	C-3"	76.9	77.3
5	161.3	161.2	160.0	C-4"	85.6	83.3
6	98.6	98.7	98.2	C-5"	60.4	65.2
7	164.2	164.2	163.9	rha. C-1"		99.8
8	93.6	94.0	93.7	C-2"		70.2
9	156.9	157.1	156.1	C-3"		70.5
10	103.9	104.0	103.0	C-4"		71.8
1'	119.8	119.7	120.8	C-5"		68.3
2'	109.5	106.6	105.8	C-6"		17.7
31	147.8	147.5	147.7			
4'	137.4	138.6	138.1			
5′	145.7	147.5	147.7			
6′	105.6	106.6	105.8			
OCH:	55.8	56.0	56.2			

the Herbarium of the Institute of Medicinal Plant Development.

Extract and isolation

Dried whole plants of *L. congestiftora* (18 kg) were extracted with EtOH and the concd extract eluted with CHCl₃, EtOAc, Me₂CO and MeOH, respectively under reflux in a Soxhlet. The Me₂CO fraction (100 g) was subjected to CC on polyamide, using CHCl₃. MeOH as eluant, and then subjected to CC on sephadex LH-20, using MeOH as eluant, yielding 1 (31 mg), 2 (40 mg), 3 (17 mg), 4 (105 mg), 5 (34 mg), 6 (25 mg), 7 (150 mg), 8 (606 mg), 9 (30 mg).

Larycitrin 3-O-α-arabinofuranoside (2). Recrystallization (MeOH–H₂O) gave a pale yellow amorphous powder, mp 178–180°. Compound 1 gave a pale red colour in the Mg–HCl test. UV $\lambda_{\rm max}^{\rm MeOH}$: 250, 300 (sh), 354; +MeONa 266. 314, 400; +AlCl₃ 270, 300, 430; +AlCl₃ +HCl 270, 300, 360. 396; +NaOAc 266. 320 (sh), 386; +H₃BO₃ 260, 300, 378 nm. El-MS m/z (%): 332 (100), 317 (5), 303 (10), 261 (5), 167 (2), 153 (12), 69 (10), 44 (5). FAB-MS m.z (%): 465 [M+1]⁺, 333 [M+1–167 (2), 153 (12), 69 (10), 44(5). FAB-MS m/z (%): 465 [M+1]⁺, 332 [M-132]⁺, 317 [M+1–132–15]⁻. ¹C NMR see Tables 1 and 2.

Syringetin 3-O-α-rhamnopyranosyl($1 \rightarrow 5$)-α-arabinofuranoside (2). Recrystallization of **2** (MeOH–H₂O) gave a pale yellow amorphous powder, mp 284–286°. It gave a pale red colour with Mg-HCl. UV $\lambda_{\text{max}}^{\text{MeOH}}$: 252, 262, 300, 254; + NaOMe 266, 325, 420; + AlCl₃ 266, 310 (sh), 360 (sh), 405; + AlCl₃+HCl 266, 310, 360, 405; + NaOAc, 274, 320, 390; + H₃BO₃ 266. 354. EI-MS m/z (%): 346 (100), 317 (5), 287 (2), 216 (5), 181 (2), 153 (10), 136 (5), 60 (15). FAB-MS

m/z (%): 625 [M+1]⁺, 479 [M+1-146]⁺, 347 [M+1-146-132]⁺, 346 [M-146-132]⁺. For ¹H NMR and ¹³C NMR see Table 1 and Table 2.

Acknowledgments—We thank Mr Lu Mu-Jian (Analytical center, Peking University) for NMR spectra.

REFERENCES

- Prum, N., Pichon, P. and Raynaud, J., *Plant. Med. Phytother.*, 1972, 6, 267.
- 2. Mendez, J., Experientia, 1970, 26, 108.
- 3. Popov, V. 1., Tr. Leningrad. Khim.-Farm. Inst., 1976, **21**, 221.
- Yasukawa, K. and Takido, M., Yakugaku Zasshi, 1986, 106, 939.
- Yasukawa, K. and Takido, M., *Phytochemistry*, 1987, 26, 1224.
- Yasukawa, K. and Takido, M., Phytochemistry, 1988, 27, 3017.
- Liande, S. and Furun, Y., Zhongyao Tongbao, 1988, 13, 671.
- Yasukawa, K. and Takido, M., Plant. Med., 1993, 59, 578.
- Yasukawa, K. and Takido, M. *Phytochemistry*, 1989, 28, 2215.
- Guo, B. L., Xiao, P. G., Yang, S. L., World Phytomedicines (China), 1995, 10, 159.
- 11. Harborne, J. B., Boardley, M. and Linder, H. P., *Phytochemistry*, 1985. **24**, 273.
- Hoffmann-Bohn, K., Lotter, H., Seligmann, O. and Wagner, H., Planta Medica, 1992, 158, 544.
- 13. Markham, K. R., Tetrahedron, 1978, 34, 1389.
- Wagner, H., Chari, V. M. and Sonnenbichler, J., Tetrahedron, 1976, 21, 1799.
- 15. Yu, D. Q. and Yang, J. S., The Manual of Analytical Chemistry—The Analysis of NMR Spectroscopy.