

PII: S0031-9422(97)00878-9

FLAVONOIDS FROM PYROLA ELLIPTICA

Chantal Bergeron, Andrew Marston, Sandor Antus†, Robert Gauthier‡ and Kurt Hostettmann*

Institut de Pharmacognosie et Phytochimie, Université de Lausanne, B.E.P., CH-1015 Lausanne, Switzerland; † Department of Organic Chemistry, Lajos Kossuth University, P.O. Box 20, H-4010 Debrecen, Hungary; † Herbier Louis-Marie, Université Laval, Cité Universitaire, G1K 7P4, Québec, Canada

(Received 22 July 1997)

Key Word Index—*Pyrola elliptica*; Pyrolaceae; dihydroflavonols; flavonoids; phenols; iridoid; dihydrorhamnetin 3-*O*-arabinoside.

Abstract—A new flavonoid, dihydrorhamnetin 3-O- β -D-arabinopyranoside, was isolated from *Pyrola elliptica*, together with quercetin 3-O- β -D-glucopyranoside, quercetin 3-O- α -L-arabinofuranoside, quercetin 3-O- β -D-galactopyranoside, taxifolin 3-O- β -D-arabinopyranoside, taxifolin 3-O- β -D-xylopyranoside, homoarbutin, isohomoarbutin and monotropein. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

As a part of our phytochemical investigation of species used by North American Indians [1, 2], we have investigated *Pyrola elliptica* Nutt. This small herbaceous plant grows in dry woods and is recognisable by its basal rosette of leaves and the fragrance of its flowers [3]. The Mohegan Indians used decoctions of *P. elliptica* as a gargle to cure sores or cankers in the mouth [4]. To our knowledge, this species has never been studied phytochemically. However, phenols, phenolic acids, quinones, flavonoids, an iridoid, tannins and terpenoids have been found in the genus *Pyrola* [5–9]. We report here the isolation and structure elucidation of a novel flavonoid along with six known flavonoids, two phenols and an iridoid.

RESULTS AND DISCUSSION

The ground whole plant of *P. elliptica* was extracted successively with dichloromethane and methanol. The methanol extract was filtered on Sephadex LH-20 gel and further fractionated on silica gel to give compounds 1–10. Analysis by HPLC-UV allowed the identification of the principal classes of compounds from their UV spectra [10]: dihydroflavonols (1–3), flavonols (4–7), phenols (8, 9) and an iridoid (10).

Compounds 2–9 were identified as taxifolin 3-O- β -D-arabinopyranoside (2), taxifolin 3-O- β -D-xylopyranoside (3), quercetin 3-O- β -D-glucopyranoside

(4), quercetin $3-O-\alpha$ -L-arabinofuranoside (5), quercetin $3-O-\beta$ -D-galactopyranoside (6), rhamnetin $3-O-\beta$ -D-galactopyranoside (7), homoarbutin (8), isohomoarbutin (9) by comparison of their ¹H and ¹³C NMR data with reported data [11, 12].

The UV spectrum of compound 10 gave a maximum at 240 nm, typical for an iridoid. However, the ¹H and ¹³C NMR chemical shifts of 10 differed from literature data of monotropein at carbons 3, 4, 5 and 11 (Table 1). This compound was therefore obtained as a salt and required passage over ion exchange resin to give the free acid. The corresponding NMR spectral data were then identical with literature values (Table 1) [13].

The UV spectrum of 1 showed a maximum at 292 nm and a shoulder at 330 nm which was typical for flavonones and dihydroflavonols [10]. The thermospray mass spectrum gave a pseudomolecular ion at m/z 451 ([M+H]⁺). Loss of 132 amu suggested the presence of a pentosyl moiety. In the ¹³C NMR and DEPT spectra, signals indicative of 8 quaternary carbons, 11 CH, 1 CH2 and 1 CH3 were present, consistent with a molecular formula of C₂₁H₂₂O₁₁. The chemical shifts of the C-2 (81.3 ppm) and C-3 (75.2 ppm) carbon atoms, were characteristic of dihydroflavonols. The substitution of the A ring was determined by the use of UV shift reagents as well as from the ¹H NMR data. The 5-OH was identified by the bathochromic shift (23 nm) observed after addition of AlCl₃/HCl to a methanolic solution of 1. In the ¹H NMR spectrum, two doublets at δ 6.09 and 6.08 with a coupling constant of 2.2 Hz, typical of two meta coupled protons, were assigned to H-8 and H-6 respec-

^{*}Author to whom correspondence should be addressed.

234

OH OGIC HOH2C OH OGIC

tively. The signals at δ 145.9 and 145.2 ppm in the ¹³C NMR spectrum were indicative of two oxygenated protons in *ortho* positions on ring B. Comparison of ¹³C NMR data (Table 2) of 1 with taxifolin 3-O-arabinoside (2) showed that 1 and 2 were similar except for the presence of a methyl group in 1. The

position of the methyl group was determined by comparison of ¹³C NMR data of these two compounds. A downfield shift (1.1 ppm) of carbon 10 and upfield

Table 1. Comparison of 13 C NMR spectral data of compound 10 and monotropein before and after ion exchange on Amberlyst 15 (50 MHz in D_2O , δ ppm)

C	10	After ion exchange	Monotropein*
1	94.7	95.2	95.2
3	147.3	152.5	152.4
4	116.2	111.1	111.0
5	39.2	37.9	37.9
6	138.8	138.1	138.0
7	132.1	132.8	132.8
8	85.8	85.7	85.6
9	45.0	44.9	44.8
10	67.5	67.3	67.4
11	175.6	171.3	171.3
1′	98.9	99.1	99.1
2'	73.5	73.5	73.5
3′	76.4	76.5	76.5
4′	70.4	70.4	70.4
5′	77.1	77.2	77.1
6′	61.5	61.6	61.5

Table 2. 13 C NMR spectral data of compounds 1 and 2 (50 MHz in DMSO- d_6 O, δ ppm)

C	1	2
C-2	81.2	81.0
C-3	75.1	74.9
C-4	194.0	193.1
C-5	163.0	163.3
C-6	94.7	96.0
C-7	167.8	167.7
C-8	93.8	95.2
C-9	161.8	161.9
C-10	101.8***	100.8
C-1'	126.4	126.6
C-2'	115.3**	114.5
C-3′	145.8*	145.8*
C-4′	145.1*	145.1*
C-5'	114.5**	115.4
C-6′	118.6	118.6
C-1"	100.5***	100.3
C-2"	71.5	71.5
C-3"	69.8	69.8
C-4"	65.1	65.0
C-5"	62.3	62.0
OMe	55.9	

^{*, **, ***} Signals interchangeable.

Table 3. CD data for compounds 1-3.

Compound	λ nm ($\Delta \epsilon$)
1	337 (+1.81), 295 (-6.29), 251 (+1.03), 223
2	(+3.95), 210 (-2.52) 340 (+0.76), 298 (-2.92), 255 (+0.80), 231
3	(+2.24), 214 (-0.76) 338 (+2.09), 295 (-6.34), 253 (+0.87), 223 (+3.69), 210 (-4.20)

shifts of carbons 6 (1.2 ppm) and 8 (1.3 ppm) suggested a methylation of the C-7 hydroxyl moiety. Irradiation of the methoxyl group signal at 3.79 ppm in the 1 H NMR spectrum gave a NOE effect on protons 6 and 8 which confirmed the hypothesis of a 7-methoxylated carbon. The sugar was identified from 13 C NMR data as an arabinopyranoside [14]. The coupling constant (3.4 Hz) of the anomeric proton at δ 3.98 in the 1 H NMR spectrum indicated that it was a β -arabinopyranose [15]. The sugar was positioned on carbon 3, as this carbon was upfield shifted by 4 ppm as compared with the aglycone. Thus 1 is dihydrorhamnetin 3-O- β -D-arabinopyranoside.

The CD data of 1–3 are shown in Table 3. Each compound showed five Cotton effects in the order (+), (-), (+), (+), (-) from 360–205 nm, typical for 3-hydroxyflavonones of 2R,3R configuration [16]. The band at longest wavelength (337–340 nm) has been unequivocally assigned as the $n\rightarrow\pi^*$ transition of the acetophenone chromophore of 1–3, and according to Snatzke's helicity rule [17], their heterocyclic ring must adopt a half-chair conformation. Since the 3,4-dihydroxyphenyl group at C-2 and the glycosyl moiety at C-3 were oriented equatorially, the 2R,3R absolute configuration was deduced for 1–3.

Chemotaxonomic significance

While dihydroflavonols have not been reported before in the genus Pyrola, many flavonols have already been isolated. Rhamnetin 3-O-arabinoside and rhamnetin 3-O-glucoside have been isolated from P. virens and P. chlorantha [18] but this is the first time, however, that rhamnetin-3-O-glactoside has been found in Pyrola. Quercetin 3-O-glucoside is known in P. virens, P. chlorantha, P.morrisonensis, P. decorata [18, 19] and P. asarifolia [20]. Quercetin 3-O-galactoside has been obtained from P. morrisonensis, P. incarnata [19] and P. asarifolia [20]. Additional flavonols have been identified in P. asarifolia [20] and P. picta [21]. Homoarbutin has been isolated from P. alpina, P. incarnata, P. nephrophylla and P. rotundifolia, and isohomoarbutin from P. incarnata, P. nephrophylla and P. rotundifolia [22-25]. Monotropein has been reported to occur in all investigated species (P. media, P. renifolia, P. incarnata, P. japonica, P. nephrophylla, P. alpina and P. secunda) [26, 27].

EXPERIMENTAL

General

TLC: Silica gel 60F₂₅₄ (Merck), detection UV (254, 366 nm) and Godin reagent. HPLC: Hewlett Packard 1050. UV: Shimadzu UV-106A spectrophotometer. CD: Jobin-Yvon Dichrograph-VI in CH₃CN (conc. 0.76–0.94 mmol 1⁻¹; cell length 0.05 cm) at 20°C. ¹H and ¹³C NMR: Varian VXR 200 at 200.06 and 50.03 MHz, respectively, in DMSO-d₆, D₂O; TMS as int. standard for ¹H and ¹³C; multiplicities of ¹³C were obtained by DEPT experiments. FAB-MS and TSP-MS: Finnigan MAT-TSQ-700 triple stage quadrupole instrument. [α]_D: Perkin-Elmer-241 polarimeter.

Plant material

The roots of *P. elliptica* were collected in Saint-Nicolas, Québec (Canada), in October 1995. A voucher specimen is deposited at the Herbier Louis-Marie, Laval University, Québec, Canada.

Extraction and isolation

The dried whole plant (280 g) was ground and extracted at room temp. successively with dichloromethane (1.51) and MeOH (1.51) to yield 5.6 g of dichloromethane and 26.5 g of methanol extract.

The methanol extract (15 g) was fractionated by Sephadex LH-20 gel filtration (MeOH-H₂O, 1:1) into 17 fractions (I-XVII). Silica gel CC of fractions II(CHCl₃-MeOH-H₂O; 9:12:8, using lower phase), V (EtOAc-petrol ether; 1:1), VIII (CHCl3-MeOH-H₂O; 9:12:8, lower phase), IX (CHCl₃-MeOH-H₂O; 65:35:5), XI (CHCl₃-MeOH-H₂O; 9:12:8, lower phase), XIV (CHCl₃-MeOH-H₂O; 65:35:5), XVI (CHCl₃-MeOH-H₂O; 9:12:8, lower phase), and XVII (CHCl₃-MeOH-H₂O; 65:35:5) gave 10 (100 mg), 8 and 9 (20 mg), 1 (138 mg), 2 (38 mg), 3 (30 mg) and 7 (38 mg), 6(54 mg), 5(54 mg) and 4(5 mg), respectively. Compound 10 was treated by ion exchange chromatography on Amberlyst 15 (Fluka). The purity of the compounds was checked by HPLC on a Nucleosil RP-18 column (7 μ m; 250×4 mm i.d., Macherey-Nagel; MeCN- H_2O ; 0:100 \rightarrow 40:60 +0.05% TFA in 30 min.).

(2*R*,3*R*)-Dihydrorhamnetin 3-O-β-D-arabinopyranoside (1). C₂₁H₂₂O₁₁. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 207 (4.19), 292 (4.48), 330 (sh.); + NaOMe: 210, 291, 348; + NaOAc: 220, 294, 340 (sh.); + AcOHa/H₃BO₃: 220, 293, 340 (sh.); + AlCl₃: 209, 316, 387; + AlCl₃/HCl: 206, 223, 314, 387; TSP-MS (+ ve ion mode) *m/z*: 451 [M+H]⁺, 319 [M+H-132]⁺, 301 [M+H-132-H₂O]⁺; [α]_D -11.7° (MeOH, ε 1.5); ¹H NMR (200 MHz, DMSO-*d*₆): δ 6.85-6.72 (3H, *m*, H-2′, 5′, 6′), 6.09 (1H, *d*, *J* = 2.2 Hz, H-8), 6.08 (1H, *d*, *J* = 2.2 Hz, H-6), 5.39 (1H, *d*, *J* = 8.3 Hz, H-2), 4.71 (1H, *d*, *J* = 8.3 Hz, H-3), 3.98 (1H, *d*, *J* = 3.4 Hz, H-1″), 3.79 (3H, s, OMe), 3.69-3.07 (5H, *m*, H-2″-5″);

¹³C NMR (50 MHz, DMSO-*d*₆): δ 194.1 (C-4), 167.9 (C-7), 163.1 (C-5), 161.9 (C-9), 145.9 (C-3'*), 145.2 (C-4'*), 126.5 (C-1'), 118.8 (C-6'), 115.4 (C-2'**), 114.6 (C-5'**), 101.9 (C-10), 100.6 (C-1"), 94.8 (C-6), 93.9 (C-8), 81.3 (C-2), 75.2 (C-3), 71.6 (C-2"), 69.9 (C-3"), 65.2 (C-4"), 62.4 (C-5"), 55.9 (OMe).

*, ** assignments interchangeable

Monotropein (10). C₁₆H₂₂O₁₁. FAB-MS (Glycerol, +ve ion mode) m/z: 413 [M+Na]⁺; [α]_D -26.0° (H₂O, c 1.10); ¹H NMR (200 MHz, DMSO- d_6 ; salt form): δ 7.12 (1H, d, J = 1.2 Hz, H-3), 6.25 (1H, dd, J = 5.7, 2.7 Hz, H-6), 5.71 (1H, dd, J = 1.7, 5.7 Hz, H-7), 5.60 (1H, d, J = 1.9 Hz, H-1), 3.98-3.27 (9H, m, H-1'-6', 5, 10), 2.70 (1H, dd, J = 8.7, 2.1 Hz, H-9); ¹H NMR (200 MHz, D₂O; free acid) δ 7.40 (1H, s, H-3), 6.21 (1H, dd, J = 5.6, 2.5 Hz, H-6), 5.67 (1H, d, J = 5.8 Hz, H-7), 5.60 (1H, d, J = 1.7 Hz, H-1), 4.14-3.18 (9H, m, H-1'-6', 5, 10), 2.67 (1H, d, J = 10.5 Hz, H-9); ¹³C NMR (50 MHz, D₂O): Table 1.

Acknowledgements—This work was supported by a grant from the Swiss National Science Foundation and the Ministry of Education of Hungary (Grant no. FKFP0460/1997). C.B. was the recipient of scholarships from the Laval University (Québec, Canada).

REFERENCES

- Bergeron, C., Marston, A., Gauthier, R. and Hostettmann, K., International Journal of Pharmacognosy, 1996, 34, 233.
- 2. Bergeron, C., Marston, A., Gauthier, R. and Hostettmann, K., *Phytochemistry*, 1997, 44, 633.
- Marie-Victorin, F., Flore Laurentienne. Les Presses de L'Université de Montréal, Montréal, 1964.
- 4. Speck, F. G., Proc. XIXth Int. Congr. Americanists, 1917, p. 303.
- Kagawa, K., Tokura, K., Uchida, K., Kakushi, H., Shike, T. and Nakai, H., Chemical and Pharmaceutical Bulletin, 1992, 40, 2083.
- 6. Inouye, H. and Kanaya, Y., Journal of the Pharmaceutical Society of Japan, 1958, 78, 301.
- 7. Inouye, H., Arai, T., Yaoi, Y. and Ogawa, M.,

- Chemical and Pharmaceutical Bulletin, 1964, 12, 255
- 8. Yazaki, K., Shida, S. and Okuda, M., *Phytochemistry*, 1989, **28**, 607.
- 9. Kosuge, T., Yokota, M., Sugiyama, K., Mure, T., Yamazawa, H. and Yamamoto, T., Chemical and Pharmaceutical Bulletin, 1985, 33, 5355.
- Markham, K. R., Techniques of Flavonoid Identification. Academic Press, London, 1982.
- Markham, K. R., Chari, V. M. and Mabry, T. J., in *The Flavonoids: Advances in Research*, ed. J.B. Harborne and T. J. Mabry. Chapman and Hall, London, 1982, p. 19.
- 12. Pretsch, E., Clerc, T., Seibl, J. and Simon, W., Tabellen zur Strukturaufklärung organischer Verbindungen mit Spektroskopischen Methoden. Springer-Verlag, Berlin, 1990.
- 13. Davini, E., Esposito, C., Iavarone, C. and Trogolo, C., *Phytochemistry*, 1981, **20**, 1583.
- 14. Sakushima, A. and Nishibe, S., *Phytochemistry*, 1988, 27, 948.
- Markham, K. R., in *Methods in Plant Biochemistry*, ed. J. B. Harborne. Academic Press, London, 1989, p. 197.
- 16. Gaffield, W., Tetrahedron, 1970, 26, 4093.
- 17. Snatzke, G., Tetrahedron, 1965, 21, 493.
- Averett, J. E. and Bohm, B. A., *Phytochemistry*, 1986, 25, 1995.
- 19. Huang, S., Peng, C. and Lee, H. C., Botanical Bulletin of the Academia Sinica, 1987, 28, 283.
- 20. Haber, E., Systematic Botany, 1983, 8, 277.
- 21. Haber, E., Systematic Botany, 1987, 12, 324.
- 22. Inouye, H., Pharmaceutical Bulletin, 1956, 4, 281.
- 23. Thieme, H., Pharmazie, 1970, 25, 129.
- Walewska, E., Herba Polonica, 1971, 17, 242 (CA 76:158253).
- Wang, X., Zhang, J., Cao, A., Ma, G., Li, H. and Yang, B., *Zhongcaoyao*, 1988, 19, 8 (CA 108:183689).
- Inouye, H. and Arai, T., Chemical and Pharmaceutical Bulletin, 1964, 12, 533.
- 27. Burnett, A. R. and Thomson, R. H., Journal of the Chemical Society (C), 1968, 857.