PII: S0031-9422(97)00880-7

FOUR ISOFLAVONES FROM THE STEM BARK OF ERYTHRINA SACLEUXII

ABIY YENESEW, JACOB O. MIDIWO,* MATTHIAS HEYDENREICH† and MARTIN G. PETER†

Department of Chemistry, University of Nairobi, P.O. Box 30197, Nairobi, Kenya; † Institut für Organische Chemie und Strukturanalytik, Universität Potsdam, Am Neuen Palais 10, D-14469 Potsdam, Germany

(Received 3 September 1997)

Key Word Index—*Erythrina sacleuxii*; Leguminosae; stem bark; isoflavones; 7-demethylrobustigenin; 3'-(3-methylbut-2-enyl)biochanin A; 5'-(3-methylbut-2-enyl)pratensein; 5'-formylpratensein.

Abstract—From the stem bark of *Erythrina sacleuxii* four new isoflavones were isolated and characterized as 5,7-dihydroxy-2',4',5'-trimethoxyisoflavone (trivial name, 7-demethylrobustigenin), 5,7-dihydroxy-4'-methoxy-3'-(3-methylbut-2-enyl)isoflavone [3'-(3-methylbut-2-enyl)biochanin A], 5,7,3'-trihydroxy-4'-methoxy-5'-(3-methylbut-2-enyl)isoflavone [5'-(3-methylbut-2-enyl)pratensein] and 5,7,3'-trihydroxy-4'-methoxy-5'-formylisoflavone (5'-formylpratensein). The structures were determined on the basis of spectroscopic evidence. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

Erythrina sacleuxii Hua (Leguminosae) is a tree 9–24 m tall, which is found in Kenya and Tanzania, and is not known elsewhere [1]. There is no prior phytochemical information on this plant; however, the genus Erythrina is known to contain C-prenylated flavanones, isoflavones, isoflavanones and pterocarpans [2, 3]. From the CHCl₃ extract of the stem bark of E. sacleuxii, four new isoflavones were isolated, and the characterization of these compounds is presented here.

RESULTS AND DISCUSSION

HRMS analysis of 1 showed a molecular ion peak at m/z 344.0896 corresponding to the formula $C_{18}H_{16}O_7$. From the 1H (δ 8.07 for H-2) and ^{13}C (δ 155.7 for C-2) NMR and UV spectra, it was evident that this is an isoflavone. The presence of two hydroxyl and three methoxyl substituents were deduced from the 1H (Table 1) and ^{13}C NMR (Table 2) spectra. The presence of a chelated hydroxyl group at δ 13.04 and two meta coupled aromatic protons at δ 6.29 (H-6) and 6.42 (H-8), and also the fragment ion at m/z 153, resulting from retro-Diels-Alder cleavage of the Cring [4], are consistent with the placement of the two

Table 1. ¹H NMR data for isoflavones isolated from E. sacluexii (300 MHz, acetone-d_s)

Н	1	2	3	4
2	8.07 s	8.14 s	8.15 s	8.32 s
6	6.29 d	6.29 d	6.28 d	6.31 d
8	6.42 d	6.41 d	6.41 d	6.45 d
2′		7.38 d	7.04 d	7.48 d
3′	6.81 s			
5′		6.98 d		
6′	6.98 s	7.39 dd	6.89 d	7.52 d
1"		3.33 d	3.37 d	
2"		5.32 t	5.31 t	
4"		1.72 s	1.74 s	
5"		$1.70 \ s$	1.71 s	
5-OH	13.04 s	13.04 s	$13.02 \ s$	12.88 s
ОН	9.69 br	9.66 br	9.66 br	9.84 br
			8.15 br	8.90 br
OMe	3.89 s	3.87 s	3.81	
	3.80 s			
	3.78 s			
CHO				10.38 s

J values: H-6/H-8 = 2.1 Hz; H-2'/H-6' in 1, 2 and 4 = 2.3 Hz, in 3 = 2.1 Hz; H-5'/H-6' in 2 = 8.4 Hz; H-1"/H-2" in 2 and 3 = 7.3 Hz.

hydroxyl groups at C-5 and C-7. The three methoxyls should then be located in B-ring.

Furthermore, in the ¹H NMR spectrum two singlets at δ 6.81 and 6.98 could be assigned to the two *para* protons at C-3' and C-6' of B-ring and hence the

^{*}Author to whom correspondence should be addressed.

Table 2. ¹³C NMR data for isoflavones isolated from *E. sacluexii* (75.48 MHz, acetone-d₆)

C	1	2	3	4
2	155.7	155.1	155.4	155.4
3	122.2	124.6	124.7	122.9
4	182.1	182.3	182.1	181.2
4a	106.8	106.9	106.8	106.1
5	164.5	164.6	164.6	163.9
6	100.5	100.5	100.6	100.0
7	165.6	165.6	165.7	165.3
8	95.2	95.2	95.2	94.7
8a	159.7	159.7	159.6	159.1
1'	112.7	124.7	128.5	128.4
2'	154.0*	131.6	116.9	119.8
3′	100.2	131.1	151.2	151.7
4'	152.3*	159.0	147.4	151.4
5'	144.7	117.7	136.6	130.6
6'	118.2	129.4	122.8	124.1
1"		29.9	29.9	
2"		124.2	124.7	
3"		133.3	133.2	
4"		18.5	18.6	
5"		26.6	26.5	
OMe	57.1	56.5	61.4	62.8
	57.6			
	57.8			
CHO				189.9

C-Assignments were established based on HMQC and HMBC experiments.

methoxyls should be at C-2', C-4' and C-5'. The chemical shift values for B-ring carbon atoms are consistent with such oxygenation pattern [4]. Therefore, this compound is 5,7-dihydroxy-2',4',5'-trimethoxy-isoflavone or 7-demethylrobustigenin. This structure was confirmed by HMBC and HMQC experiments.

Although 1 has been synthesized earlier [5], this is the first report on its occurrence in nature.

Compound 2, which analysed for $C_{21}H_{20}O_5$ by HRMS, is also an isoflavone with two hydroxyl, a methoxyl and a 3-methylbut-2-enyl substituents. The presence of a signal for chelated hydroxyl group at δ 13.04 and two *meta* coupled aromatic protons at δ 6.29 (H-6) and 6.41 (H-8) are again consistent with C-5 and C-7 oxygenated A-ring. This was supported by the EIMS with a fragment ion at m/z 153.

In the ¹H NMR spectrum, three aromatic protons with ABX spin system, appearing at δ 7.38 (d, J = 2.3 Hz), 6.98 (d, J = 8.4 Hz) and 7.39 (dd, J = 2.3, 8.4, Hz), were assigned to H-2′, H-5′ and H-6′, respectively. Thus the B-ring is substituted with a methoxyl and prenyl groups at C-4′ and C-3′. From biogenetic considerations, the methoxyl has to be at C-4′ and the prenyl at C-3′. This was confirmed by HMBC experiment which showed J³ correlations of the methylene protons (δ 3.33) of the prenyl chain with C-4′ (δ 159.0) and C-2′ (δ 131.6). Therefore, this is 5,7-dihydroxy-4′-methoxy-3′-(3-methylbut-2-enyl)isoflavone, for which the trivial name 3′-(3-methylbut-2-enyl)biochanin A is suggested.

Compound 3, analysed for $C_{21}H_{20}O_6$, is an isoflavone with identical A-ring substitution as in 1 and 2, which was deduced from ¹H (Table 1), ¹³C (Table 2) NMR and MS spectra. In the B-ring the presence of a hydroxyl, methoxyl and 3-methylbut-2-enyl substituents was also evident from the ¹H and ¹³C NMR spectra.

In the ¹³C NMR, the chemical shift values (δ 151.2 and 147.4) of the sp^2 carbon atoms in B-ring requires oxygenation to occur on adjacent carbons viz at C-3′ and C-4′. Two *meta*-coupled protons at δ 7.04 and 6.89 can then be assigned to H-2′ and H-6′, and hence the 3-methylbut-2-enyl group should be placed at C-5′. In ¹³C NMR spectrum, the downfield chemical shift value (δ 61.4) of the methoxyl group requires that it

^{*} Interchangeable.

is *di-ortho*-substituted; thus it has to be at C-4′ rather than C-3′ [6]. The structure was confirmed through study of direct and long range heteronuclear CH-coupling interactions. On these bases, this new compound is 5,7,3′-trihydroxy-4′-methoxy-5′-(3-methylbut-2-enyl)isoflavone for which the trivial name 5′-(3-methylbut-2-enyl)pratensein is suggested.

Compound 4 is again an isoflavone, analysing for $C_{17}H_{12}O_7$. Comparison of its 1H (Table 1) and ^{13}C (Table 2) NMR spectra with those of 3 revealed identical oxygenation, with the methoxyl again being at C-4′. The only difference between these two compounds is on the nature of the substituents at C-5′. The presence of a singlet at δ 10.38 (in the 1H NMR) and a doublet at δ 189.9 (in the ^{13}C NMR) suggested the substituent at C-5′ in compound 4 is a formyl group. This was confirmed by HMQC experiment which showed a direct CH-correlation between the formyl proton and carbonyl carbon atom. Hence this compound is 5,7,3′-trihydroxy-5′-formylisoflavone or 5′-formylpratensein.

EXPERIMENTAL

General

Mps: uncorr. Analytical TLC: Merck pre-coated silica gel 60 F_{254} plates. TLC plates were developed using CHCl₃–EtOAc (6:1), and spots were detected under UV light (254 nm). CC on silica gel 60 (70–230 mesh) and Sephadex LH-20. EIMS: direct inlet, 70 eV. ¹H NMR (300 MHz) and ¹³C NMR (75.48 MHz) were recorded on ARX 300 (Bruker) spectrometer using TMS as int. standard. HMQC and HMBC spectra were acquired using the standard Bruker software.

Plant material

The stem bark of *Erythrina sacleuxii* was collected from Gede forest station, Coast province, Kenya, in August 1994. The plant was identified at the University Herbarium, Botany Department, University of Nairobi, where a voucher specimen is deposited.

Extraction and isolation

Dried and ground stem bark (200 g) of Erythrina sacleuxii was extracted with CHCl₃ by cold percolation. The crude extract (15 g) was subjected to CC on silica gel (200 g) eluting with hexane containing increasing amounts of EtOAc. The fr. eluted with 10% EtOAc in hexane afforded 2 (47 mg); the fr. eluted with 20% EtOAc contains mixt. of two compounds which were separated by CC on Sephadex LH-20 (elu-

ent, CHCl₃-MeOH; 1:1) to give 1 (258 mg) and 3 (183 mg); while elution with 25% EtOAc afforded 4 (73 mg).

7-Demethylrobustigenin (1). Crystals fro MeOH, mp 241–243°(lit. [5] 243–244°). Found [M]⁺ m/z 344.0896, C₁₈H₁₆O₇ requires 344.0896. UV λ_{max} (MeOH) nm: 207, 225 sh, 260, 295. IR ν_{max} (KBr) cm⁻¹: 3378 (OH), 1660 (> C=O), 1582, 1524, 1450. ¹H NMR (see Table 1). ¹³C NMR (see Table 2). EIMS m/z (rel. int.): 344 [M]⁺ (100), 329 [M – Me]⁺ (16), 313 [M – OMe]⁺, (13), 301 (15) 153 (13).

3'-(3-Methylbut-2-enyl)biochanin A (2). Crystals from CHCl₃, mp 196–197°. Found [M]⁺ m/z 352.1311; C₂₁H₂₀O₅ requires 352.1311. UV λ_{max} (MeOH) nm: 208, 261, 288 sh, 323. IR ν_{max} (KBr) cm⁻¹: 3310 (OH), 1640 (> C=O), 1578, 1498, 1440. ¹H NMR (see Table 1). ¹³C NMR (see Table 2). EIMS m/z (rel. int.): 352 [M]⁺ (100), 337 [M – Me]⁺ (17), 321 [M – OMe]⁺, (7), 153 (25).

5'-(3-Methylbut-2-enyl)pratensein (3). Crystals from MeOH, mp 152–154°. Found [M]⁺ m/z 368.1260; $C_{21}H_{20}O_6$ requires 368.1255. UV λ_{max} (MeOH) nm: 208, 262, 289 sh, 324. IR ν_{max} (KBr) cm⁻¹ 3290 (OH), 1652 (> C=O), 1574, 1500, 1434. ¹H NMR (see Table 1). ¹³C NMR (see Table 2). EIMS m/z (rel. int.): 368 [M]⁺ (100), 353 [M – Me]⁺ (22), 311 (8), 153 (32). 5'-Formylpratensein (4). Amorphous powder. Found [M]⁺ m/z 328.0583; $C_{17}H_{12}O_7$ requires 328.0587. UV λ_{max} (MeOH) nm: 212, 261, 322. IR ν_{max} (KBr) cm⁻¹: 3392 (OH), 1662 (> C=O), 1618, 1582, 1506, 1442. ¹H NMR (see Table 1). ¹³C NMR (see

Acknowledgements—A.Y. is grateful to the African Network of Scientific and Technological Institutions (ANSTI) for the award of a scholarship and to DAAD for financing the study and also for a research visit to the Universität Potsdam. Mr S. G. Mathenge is thanked for identification of the plant material.

Table 2). EIMS m/z (rel. int.): 328 [M]⁺ (100), 299

 $[M-CHO]^+$ (21), 257 (7), 229 (11), 153 (10).

REFERENCES

- Gillett, J. B., Polhill, R. M. and Verdcourt, B., Flora of Tropical East Africa, Leguminosae, (Part 3) Subfamily Papilionoideae, 1971, p. 541.
- Barron, D. and Ibrahim, R. K., Phytochemistry, 1996, 43, 921.
- Dewick, P. M., in *The Flavonoids: Advances in Research Since 1986*, ed. J. B. Harborne, 1994, p. 117.
- Nkengfack, A. E., Sanson, D. R., Tempesta, M. S. and Fomum, Z. T., J. Nat. Prod, 1989, 52, 320.
- Nakayama, M., Ohira, S. and Matsui, T., Bull. Chem. Soc. Jpn, 1980, 53, 831.
- Yenesew, A., Midiwo, J. O. and Waterman, P. G., Phytochemistry, 1996, 41, 951.