PII: S0031-9422(97)01055-8

ACETYLENIC THIOPHENES FROM BLUMEA OBLIQUA

VIQAR UDDIN AHMAD,* NASEER ALAM and MOHAMMAD QAISAR

H.E.J. Research Institute of Chemistry, University of Karachi, Karachi-75270, Pakistan

(Received in revised form 29 September 1997)

Key Word Index—Blumea obliqua; Asteraceae; Acetylenic thiophenes.

Abstract—The acetylenic thiophene constituents from the aerial parts of *Blumea obliqua* yielded a novel dithienyl acetylene, 5'-Methylene-bis-[5-(3-butene-1-ynyl)]-2,2'-bithiophene, along with 5'-Hydroxymethyl-5-(3-butene-1-ynyl)-2,2'-bithiophene and 5'-Carboxaldehyde-5-(3-butene-1-ynyl)-2,2'-bithiophene. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

Acetylenic thiophenes have been found to possess very interesting biological activities. They have been found to show nematocidal [1], insecticidal [2], antibacterial [3], antifungal [4] and antiviral [5] activity.

In our previous papers [6-7], we have dealt with the phytochemical study of the hexane-soluble part of the methanolic extract of *Blumea obliqua*, which led to the isolation of six acetylenic thiophenes. We have now reinvestigated the same plant for thiophenic constituents and isolated three more acetylenic thiophenes (1, 2 and 4).

RESULTS AND DISCUSSION

Compound 1 was obtained as needle like crystals. The EI-mass spectrum showed a molecular ion peak $[M^+]$ at m/z 444.2. A strong $[M+2]^+$ peak (14.8% of $[M^+]$ indicated the presence of sulfur in the compound. HREI mass spectroscopy of the molecular ion peak resulted in the exact value of 444.0146 which was analyzed for the molecular formula $C_{25}H_{16}S_4$, suggesting eighteen degrees of unsaturation. The UV spectrum showed absorption maxima at 347.6 and 242.2 nm. This indicated the presence of a dithienyl acetylenic chromophore [8]. The IR spectrum displayed intense absorption peaks at 2900 (C—H) and 2175 cm⁻¹ (C \equiv C). The 1H NMR spectrum exhibited signals for two thiophenes, a vinyl group and a CH_2 group.

These findings suggested that 1 was a dimer of 2 and 3, which were also found abundantly in Asteraceae. The compound 1 may have been formed as a result of an enzyme catalyzed condensation reaction

of 2 with 3 or it may be an artifact. As the plant material was not subjected to acid or base and was not exposed to heat, it must be concluded that 1 was not an artifact. Dimeric compounds have also been reported in *Echinops bonnaticus* and *E. ritrol* [9] and in *Cardopatium corymbosum* [10].

The structure of compound 2 was established by comparing its ¹H NMR and EI mass spectral values with the literature values [12] and its ¹³C NMR data is presented in Table 1. Compound 4 was isolated previously from *Dyssodia acerosa* [13], but no structural data is available in the literature. We report here its UV, EIMS and ¹H NMR data in the Experimental.

EXPERIMENTAL

The NMR spectra were recorded on 400 and 500 MHz instruments and measured in CDCl₃, using TMS as an internal standard. Silica gel (Merck 70–230 mesh) was used for CC and silica gel 60 F₂₅₄, 0.25 mm precoated plates (Merck) were used for TLC and prep. TLC.

Plant Material

Aerial parts (60 kg fr. wt.) of *B. obliqua* were collected from Karachi in July 1995. A voucher specimen is stored in the herbarium at the Botany Department, University of Karachi (voucher No. 63484).

Extraction and Isolation

The air dried plant was chopped and macerated $\times 2$ in MeOH for a 7 day period each time. The extract was filtered and evaporated under red. pres. to a viscous mass (1132 g) which was partitioned between MeOH-H₂O (9:1) and C₆H₁₄. The C₆H₁₄ soluble portion was evaporated under red. pres. to an oily paste

^{*} Author to whom correspondence should be addressed.

$$H_{2}^{6'}$$

S

S

S

C=C-CH=CH₂

1

HO 6 5
$$\frac{4^{1}-3^{1}}{S}$$
 $\frac{2^{1}-2}{S}$ $\frac{3}{S}$ $\frac{4}{C}$ $\frac{7}{C}$ $\frac{8}{C}$ $\frac{9}{C}$ $\frac{9}{C}$ $\frac{9}{C}$ $\frac{1}{C}$ \frac

2

$$C = C - CH = CH$$

$$H \longrightarrow S \longrightarrow C = C - CH = CH_2$$

(51 g). This was loaded onto a silica gel column and eluted with C_6H_{14} , C_6H_{14} —CHCl₃ and CHCl₃. The fractions obtained with 10% CHCl₃ in C_6H_{14} were combined and rechromatographed repeatedly on a silica gel column. Finally, elution with 3% CHCl₃ in C_6H_{14} yielded 1. Prep. TLC of another fraction from 20% CHCl₃ in C_6H_{14} elution yielded 2 and 4.

5'-Methylene-bis-[5-(3-butene-1-ynyl)-2,2'-bithio-phene (I). Colorless needle like crystals (10 mg); UV $\lambda_{\max}^{\text{MeOH}}$ nm; 347.6, 242.2; IR $\nu_{\max}^{\text{CHCl}_3}$ cm $^{-1}$; 2900 (C—H), 2150 (C=C); EIMS m/z (rel. int.); 444.2 [M $^+$] (78.1), 229.1 (19.5), 57 (100); HREIMS m/z 444.0146 (C₂₅H₁₆S₄, requires 444.0134); 1 H and 13 C NMR (CDCl₃, 400 and 125 MHz); see Table 1.

5'-Hydroxymethyl-5-(3-butene-1-ynyl)-2,2'-bithiophene (2). Purified as yellow crystals (6 mg) by prep. TLC using C_6H_{14} : Et_2O (4:1, $R_f = 0.4$); UV $\lambda_{max}^{Et_3O}$ nm 347.2, 249.6; EIMS m/z (rel. int.): 245.7 (94.6), 228.8 (70), 216.8 (100); HREIMS m/z 246.0155 ($C_{13}H_{10}OS_2$, requires 246.0173), 'H NMR and ¹³C NMR (CDCl₃, 400 and 100 MHz); see Table 1.

5'-Carboxaldehyde-5-(3-butene-1-ynyl)-2,2'-bithiophene (4). Purified as yellow amorphous solid (4 mg) by prep. TLC using C_6H_{14} : Et₂O (4:1, $R_f = 0.3$); UV $\lambda_{\text{max}}^{\text{Et},O}$ nm : 370.2, 201.8; EIMS m/z (rel. int.) 243.7 (100), 214.7 (5.3); Peak matching m/z 243.9994 ($C_{13}H_8\text{OS}_2$, requires 244.0016), ¹H NMR (CDCl₃, 500 MHz): δ 5.58 (1H, dd, J = 1.9, 11.2 Hz, H-9 cis), 5.72 (1H, dd, J = 1.9, 17.5 Hz, H-9 trans), 6.04 (1H, dd, J = 11.2, 17.5 Hz, H-8) 7.13 (1H, d, J = 3.8 Hz, H-4)^a, 7.21 (1H, d, J = 3.8 Hz, H-3)^a, 7.65 (1H, d, J = 3.8 Hz, H-4')^a, and 9.85 (1H, s, H-6') (a = assignments may be interchanged).

Table 1. ¹³C NMR data and ¹H/¹³C connectivities (HMQC) for 1 and 2

Position	Compound 1		Compound 2	
	Chemical Shift (δ)	¹ H/ ¹³ C Connectivity (<i>J</i> = Hz)	Chemical Shift (δ)	$^{1}H/^{13}C$ Connectivity $(J = Hz)$
2	139.1		138.5	
3	124.0	6.95(d, J = 3.8)	123.4	6.99 (d, J = 3.8)
4	132.7	7.06(d, J = 3.8)	132.8	7.07(d, J = 3.8)
5	121.6		121.9	_
6	83.2		83.1	
7	92.9		93.0	
8	116.9	6.01 (dd, J = 11.2, 17.5)	116.8	6.01 (dd, J = 11.0, 17.5)
9	126.8	5.52 (dd, J = 1.9, 11.2) cis	126.9	5.52 (dd, J = 1.9, 11.0) cis
9	126.8	5.72 (dd, J = 1.9, 17.5) trans	126.9	5.72 (dd, J = 1.9, 17.5) trans
2'	135.8	_	138.9	- Andrewson
_ 3′	123.2	7.00(d, J = 3.6)	123.8	7.02(d, J = 3.6)
4′	126.3	6.80(d, J = 3.6)	126.1	6.89(d, J = 3.6)
5'	142.5		143.8	_
6′	30.7	4.27 (s)	60.1	4.80 (s)

Short Report

REFERENCES

- 1. Bakker, J., Gommers, F. J., Nieuwenhuis, I. and Wynberg, H., J. Bio. Chem., 1979, **254**, 1841.
- Iyengar, S., Arnason, J. T., Philogene, B. J. R., Murand, P., Werstink, N. H. and Timmins, G., Pesticide Biochem. Physiology, 1987, 29, 1.
- Matsuura, H., Saxena, G., Farmer, S. W., Hancock, R. E. W. and Towers, G. H. N., *Planta Med.*, 1996, 62, 65.
- Chan, G. F. Q., Towers, G. H. N. and Mitchell, J. C., *Phytochemistry*, 1975, 14, 2295.
- Hudson, J. B., Graham, E. A., Miki, N., Towers, G. H. N., Hudson, L. L., Rossi, R., Carpita, A. and Neri, D., Chemosphere, 1989, 19, 1329.
- Ahmad, V. U. and Alam. N., J. Nat. Prod., 1995, 58, 1426.

- Ahmad, V. U. and Alam, N., Phytochemistry, 1996, 42, 733.
- Bohlmann, F. and Zdero, C., Chem. Ber., 1970, 103, 834.
- 9. Christensen, L. P. and Lam. J., *Phytochemistry*, 1990, **29**, 2753.
- Selva, A., Arnone, A., Mondell, R., Sprio, V., Ceraulo, L., Petruso, S., Plescia, S. and Lamartina, L., *Phytochemistry*, 1978, 17, 2097.
- Zeisberg, R. and Bohlmann, F., Chem. Ber., 1975, 108, 1040.
- Bohlmann, F. and Kleine, K.-M., Chem. Ber., 1963, 96, 1229.
- 13. Bohlmann, F., Zdero, C. and Grenz, M., *Phytochemistry*, 1976, **15**, 1309.