PII: S0031-9422(97)00848-0

A CARDENOLIDE GLYCOSIDE FROM GOMPHOCARPUS SINAICUS

NAHLA S. ABDEL-AZIM*

Chemistry of Medicinal Plants Lab., National Research Centre, Dokki, Cairo, Egypt

(Received in revised form 1 September 1997)

Key Word Index—Gomphocarpus sinaicus; Asclepiadaceae; aerial parts; Δ^7 -cardenolides.

Abstract—A cardenolide glycoside was isolated from the aerial parts of *Gomphocarpus sinaicus* Boiss. along with the previously known cardenolide glycoside 15β -hydroxycalotropin. The structure of the new glycoside was elucidated on the basis of spectroscopic data and comparison of NMR data with those of the congeners. It was identified as 15β -hydroxy-7,8-dehydrocalotropin. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

Gomphocarpus sinaicus Boiss. (syn. Asclepias sinaica Muschl.), indigenous to the sandy mountainous region in South Sinai province of Egypt, is rich in a number of cardenolides, in particular cardenolide glycosides with unusual doubly linked sugars [1–3]. In a previous study on G. sinaicus [3], the structure of the compounds thought to be 5,6-dehydrocalotropia and 5,6-dehydrocalotropagenin were revised to 7,8-dehydrocalotropia and 7,8-dehydrocalotropagenin, respectively. In the course of further investigations, a new cardenolide glycoside was isolated and its structure is described in this paper.

RESULTS AND DISCUSSION

Compound 1 had the molecular formula $C_{29}H_{38}O_{10}$ deduced from its FAB-mass spectrum and the presence of 29 carbons observed in the ^{13}C NMR spectrum. In the ^{1}H NMR spectrum one formyl proton was observed at δ 9.86 as a singlet signal, suggesting compound 1 to be a 9-oxocardenolide. An anomeric proton signal appeared as a singlet at δ 5.08, so that compound 1 was considered to be a doubly linked glycoside. A proton signal assignable to H-3' was observed at δ 4.12 (dd, J = 12, 4.5 Hz) and its coupling mode to the C-4' methylene protons showed that H-3' retained β (axial)-orientation. In the ^{1}H and ^{13}C NMR spectra, this compound exhibited the presence of one secondary hydroxyl group along with a 14β -hydroxyl in the aglycone moiety.

Comparing the ¹H and ¹³C NMR data of compound 1 with those reported for 7,8-dehydrocalotropin [3], signals due to rings A, B and C of the steroidal frame-

1 $R_1 = OH, \Delta^7$

15-hydroxycalotropin $R_1 = OH$

7,8-dehydrocalotropin $R_1 = H_1 \Delta^7$

work and the sugar moiety were in good agreement. In the 1 H NMR spectrum, an extra multiplet signal was observed at δ 4.75. In the 13 C NMR spectrum, the carbon signal for C-15 was shifted from δ 39.6 in 7,8-dehydrocalotropin to δ 74.3 in compound 1. The signals due to C-16 was also downshifted (= 10.2 ppm). Since these shifts were similar to those reported fro 15-hydroxycardenolides [3–5], compound 1 should be a 15-hydroxy-7,8-dehydrocalotropin. The orientation of the hydroxyl group was determined to be β by the similarity of the chemical shifts to those for 3'-epiafroside isolated from the same plant [3] and not to those reported for 15α -hydroxycardenolides (15α -hydroxycardenolides (15α -

^{*} Author to whom correspondence should be addressed.

Table 1. ¹H NMR spectral data for compound 1, 7,8-dehydrocalotropin and 15β -hydroxycalotropin

Н	1	7,8-dehydrocalotropin	15 β -hydroxycalotropin	
1α	1.18 t(12)	1.15 t(12)	1.12 t(12)	
1β	2.50 dd (12, 4.5)	2.50 dd(12, 4.5)	2.48 dd(12, 4.5)	
2β	hidden	4.85 hidden	hidden	
3α	4.15 td(12, 4.5)	4.30 ddd (12, 10, 4.5)	$4.30 \ td(10, 4.5)$	
7	6.25	6.36		
15	4.75 m	1.85, 2.36	4.73	
17	2.76 dd(10.5, 6)	2.85	2.77	
18	0.85	0.85	0.88	
19	9.86 s	9.86 d(1.5)	10.02	
21	5.24 dd (18, 1.5)	5.25 dd (18, 1.5)	5.26 dd (18, 1.5)	
	4.98 dd (18, 1.5)	5.05 dd (18, 1.5)	5.04 dd (18, 1.5)	
22	6.12	6.11 br. s	6.08 br. s	
1′	5.08 s	5.08 s	hidden	
3′	4.12 dd (12, 4.5)	4.12 dd (12, 4.5)	4.12 dd (12, 4.5)	
4′	2.02, 2.12 q(12)	$2.02 \ td(12, 4.5)$	2.01, 2.10	
	1	$2.12 \ q(12)$	•	
5′	3.77 m	3.76 m	3.74 m	
6′	1.34 d(6)	1.35 d(6)	1.34 d(6)	

Spectra were measured in pyridine- d_5 .

Table 2. ¹³C NMR spectral data for compound 1 and related compounds

С	1	7,8- dehydrocalotropin	15β hydroxycalotropin	3'- epiafroside	15α-hydroxy- cardenolide
1	35.6	35.5	36.5	42.8	36.9
2	68.8	68.9	69.3	69.1	26.9
3	72.0	72.0	72.3	73.1	73.8
4	33.6	33.7	33.9	32.9	34.3
5	38.5	38.8	43.5	45.0	44.1
6	29.6	29.6	28.1	28.3	29.4
7	122.3	120.9	27.1	26.8	27.7
8	138.2	140.7	42.5	40.9	42.5
9	44.8	44.9	48.7	49.4	50.2
10	52.2	52.3	53.0	37.9	36.0
11	23.7	23.7	22.1	21.6	21.3
12	38.1	38.8	38.1	38.5	39.6
13	48.4	50.8	49.2	49.0	49.2
14	83.2	84.4	81.5	81.8	85.1
15	74.3	39.6	72.2	72.9	79.5
16	38.1	27.9	37.8	37.9	39.6
17	48.8	50.7	48.2	49.4	48.4
18	16.6	16.1	16.5	16.8	17.7
19	206.6	206.7	208.0	13.8	11.2
20	175.3	175.3	174.9	175.1	175.8
21	73.6	73.6	73.7	73.7	73.8
22	118.1	117.9	118.1	118.1	117.1
23	174.5	174.3	174.3	174.8	175.0
1'	97.3	97.3	97.3	97.4	
2′	92.7	92.7	92.7	92.7	
3′	73.9	73.9	73.8	73.9	
4′	39.9	39.9	39.9	39.9	
5'	68.5	68.5	86.5	68.5	
6′	21.5	21.5	21.5	21.5	

Spectra were measured in pyridine- d_5 .

Short Report 275

hydorxyuzarigenin acetate) [6]. Thus, compound 1 was identified to be the new compound 15β -hydroxy-7,8-dehydrocalotropin. Since from a previous publication [3], the structures of the compounds thought to be 5,6-dehydrocalotropin and 5,6-dehydrocalotropagenin were revised to 7,8-dehydrocalotropin and 7,8-dehydrocalotropagenin, respectively, and as the NMR data of compound 1 are very similar to those reported for a compound which has previously been isolated from G. sinaicus and identified as 15β -hydroxy-5,6-dehydrocalotropin [1], this compound should also be revised to 15β -hydroxy-7,8-dehydrocalotropin. The identity of the known cardenolide glycoside 15β -hydroxycalotropin was established by comparing its spectral data with literature data [1].

EXPERIMENTAL

Generally for instrumental, plant material, extraction, fractionation and isolation see reference [3], where the purified chloroform extract was fractionated by CC on silica gel 60 and eluted with CHCl₃–MeOH (17:3). The eluted fractions were classified according to TLC into three groups. Group II was again subjected to CC on silica gel 60 and eluted with CHCl₃-MeOH (4:1) (10 ml fractions). Fractions 80–115 were further purified using FC RP-18 with 60%

MeOH in H_2O . The concentrated eluate was separated on MPLC using MeOH–CH₃CN–H₂O (1:1:1.7) to give 15β-hydroxycalotropin (8.1 mg) (m/z 547; [M-H]⁻), and compound 1 (3.1 mg) (m/z 545; [M-H]⁻). ¹H and ¹³C NMR data: see Tables 1 and 2.

Acknowledgements—The author would like to thank Dr A. A. Shahat, Pharmaceutical Sciences Department, University of Antwerp, Belgium, for recording FAB-MS. Many thanks also go to Dr H. Hunkler, Institute of Organic Chemistry, University of Freiburg, Germany, for the NMR measurements.

REFERENCES

- El-Askary, H., Hölzl, J., Hilal, S., El-Kashoury, E., Phytochemistry, 1993, 34, 1399.
- 2. El-Askary, H., Hölzl, J., Hilal, S., El-Kashoury, E., *Phytochemistry*, 1995, **38**, 943.
- Abdel-Azim, N. S., Hammouda, F. M., Hunkler, D. and Rimpler, H., Phytochemistry, 1996, 42, 523.
- Cheung, H. T. A., Nelson, C. J. and Watson, T. R., J. Chem. Soc. Perkin Trans. I, 1988, 1851.
- Cheung, H. T. A., Chiu, F. C. K., Watson, T. R. and Wells, R. J., J. Chem. Soc. Perkin Trans. I, 1983, 2827.
- Yamauchi, T., Abe, F. and Nishi, M., Chem. Pharm. Bull., 1978, 26, 2894.