

PII: S0031-9422(98)00125-3

IRIDOID AND EUGENOL GLYCOSIDES FROM NEPETA CADMEA

Yoshio Takeda,* Yasushi Ooiso, Toshiya Masuda, Gisho Honda,† Hideaki Otsuka,‡ Ekrem Sezik§ and Erdem Yesilada§

Faculty of Integrated Arts and Sciences, The University of Tokushima, Tokushima 770, Japan; † Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606, Japan; ‡ Institute of Pharmaceutical Sciences, Hiroshima University School of Medicine, Minami-ku, Hiroshima 734, Japan; § Faculty of Pharmacy, Gazi University, Ankara 06330. Turkey

(Received in revised form 26 January 1998)

Key Word Index—*Nepeta cadmea*; Labiatae; 1,8,9-epideoxyloganic acid glucosyl ester; iridoid glucoside; eugenyl apiofuranosylglucopyranoside.

Abstract—From the aerial parts of *Nepeta cadmea*, a new iridiod glucoside, 1,5,9-epideoxyloganic acid glucosyl ester, and a new eugenyl glucoside were isolated, together with the known compounds, 1,5,9-epideoxyloganic acid, eugenyl-O- β -D-glucoside, icarisides B_1 and B_2 , (6S,9S)-roseoside, lariciresinol-4'-O- β -D-glucoside and rosmarinic acid. Sodium and potassium salts of 1,5,9-epideoxyloganic acid were also isolated. The structures of newly isolated compounds were elucidated by spectral and chemical analyses. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

Nepetalactone which has a peculiar physiological activity to cats has been known as a constituent of plants belonging to the genus Nepeta [1]. Species in this genus are also known to contain iridoid glucosides having a novel stereochemistry [2-6]. In the course of studies on the constituents of Turkish medicinal and related plants, we examined the glycosidic constituents of Nepeta cadmea collected in central Anatolia and isolated a new iridoid glucoside, 1,5,9-epideoxyloganic acid glucosyl ester (1), and a new phenylpropanoid glycoside, eugenyl-O-β-apiofuranosyl- $(1''-6')-O-\beta$ -glucopyranoside (5), together with the known compounds, 1,5,9-epideoxyloganic acid (2) [2], eugenyl-O- β -D-glucopyranoside (6) [7], icarisides B_1 and $B_2[8],(6S,9S)$ -roseoside(= corchoionoside C)[9, 10], lariciresinol-4'-O- β -D-glucoside [11] and rosmarinic acid [12]. The sodium (3) and potassium (4) salts of 1.5,9-epideoxyloganic acid were also isolated for the first time. This paper describes the isolation and characterization of these compounds.

RESULTS AND DISCUSSION

Methanolic extract of the aerial parts of *N. cadmea* was fractionated as described in the Experimental section. The *n*-BuOH-soluble fraction was separated

* Author to whom correspondence should be addressed.

by a combination of several types of chromatography to give 11 compounds, seven of which were known compounds and identified by comparison of their physicochemical data with reported values.

1,5,9-Epideoxyloganic acid glucosyl ester (1), $[\alpha]_D$ + 37.2°, was obtained as an amorphous powder and the molecular formula was determined as $C_{22}H_{34}O_{14}$ based on its negative ion HR-FAB mass spectrum. The ¹H and ¹³C NMR spectra were almost identical to 1,5,9-epideoxyloganic acid (2), except for the appearance of signals due to a β -glucopyranosyl ester moiety [δ_H 5.53 (1H, d, J = 7.6 Hz); ¹³C NMR: see Table 1] and an upfield shift (3.4 ppm) of the C-11 signal. These facts strongly suggested that compound 1 is the β -glucopyranosyl ester of 1,5,9-epideoxyloganic acid (2). Thus, alkaline hydrolysis of 1 gave 1,5,9-epideoxyloganic acid (2), confirming the above mentioned presumption.

Compound 3 $[\alpha]_D$ +63.1° and Compound 4 $[\alpha]_D$ +67.4° were obtained as amorphous powders and the elemental compositions were determined as $C_{16}H_{24}O_9$ Na and $C_{16}H_{24}O_9$ K, respectively. The ¹H and ¹³C NMR spectra were similar to those of **2** and the following discrepancies were observed. The ¹H signals due to H-3 resonated at upper field by 0.27 ppm in **3** and 0.13 ppm in **4**, and the ¹³C signals due to C-3, C-4 and C-11 shifted (see Table 1). Such shift changes have been reported when a carboxylic function changed to its anion [13]. Thus, compounds **3** and **4** were suggested to be sodium and potassium salts of 1,5,9-epideoxyloganic acid (**2**). The presumption was con-

- (1) R=Glc
- (2) R=H

(3) X=Na

Glc : β -D-Glucopyranose Api : β -D-Apiofuranose

(4) X=K

- (5) R=Glc(6'-1")-Api
- (6) R=Glc

Table 1. ¹³C NMR data for 1,5,9-epideoxyloganic acid glucosyl ester (1), 1,5,9-epideoxyloganic acid (2), and sodium (3) and potassium (4) salts of 2 (CD₃OD)

С	1	2	3	4
1	100.9	100.7	100.6	100.6
3	154.9	153.2	148.5	150.0
4	112.7	113.4	119.0	117.9
5	33.9	34.0	35.2	34.9
6	32.2	32.3	32.7	32.8
7	33.7	33.6	33.8	33.9
8	37.1	37.2	37.4	37.4
9	44.3	44.3	44.5	44.5
10	16.7	16.8	16.9	16.9
11	167.6	171.0	175.9	177.3
1′	103.9	103.9	103.9	103.9
2′	75.2	75.2	75.2	75.3
3′	78.3 (a)	78.3	78.3	78.3
4'	71.1 ^(b)	71.1	71.2	71.3
5′	78.0 (a)	78.0	78.1	78.2
6′	62.6 ^(c)	62.5	62.5	62.7
1"	95.4			
2"	73.9			_
3"	78.7ª			_
4"	71.2 ^b			
5"	78.2ª			
6"	62.4°	_	_	

(a)-(c):Assignments may be reversed.

firmed when both compounds gave 2 on treatment with ion-exchange resin.

Compound 5 was obtained as an amorphous

powder, $[\alpha]_D$ –95.9° and the molecular formula was determined as $C_{21}H_{30}O_{11}$ based on its negative ion HR-FAB mass spectrum. The ¹H and ¹³C NMR spectra showed the presence of a eugenol moiety as the structure of the aglycone portion, since both spectra were superimposable on those of eugenyl-O-β-D-glunopyranoside (6) [7], except for the signals due to the sugar moiety. The ¹³C NMR spectrum (see Table 2) also showed the presence of a terminal β-apiofuranosyl moiety [14]. The structure of the sugar moiety was finally deduced as β-apiofuranosyl-(1"-6')-β-glucopyranoside by comparison of the ¹³C NMR spectral data with those reported [14]. Thus, the struc-

EXPERIMENTAL

ture of compounds 5 was elucidated as eugenvl-O-B-

apiofuranosyl-(1''-6')-O- β -glucopyranoside.

General

Mps: uncorr.. NMR: ¹H (400 MHz) and ¹³C (100 MHz), TMS as int. standard. FAB-MS matrix, PEG-400. CC: silica gel 60 (230–400 mesh, Merck). TLC: precoated silica gel 60 F₂₅₄. HPLC: column, cosmosil 10C₁₈, detection, 230 nm, solvent, MeOH–H₂O (6 ml min⁻¹).

Plant material

Plant material was collected near Kovad Lake park in July, 1995, and identified as *N. cadmea* Boiss. by the authors (G.H. and E.S.). Voucher specimens (95

Table 2. ¹³C NMR data of eugenyl-*O*-β-apiofuranosyl-(1"-6')-*O*-β-glucopyranoside (5) and eugenyl-*O*-β-glucopyranoside (6) (CD₂OD)

С	5	6	
1	146.3	146.3	
2	150.8	150.7	
3	118.4	118.2	
4	136.5	136.4	
5	122.2	122.1	
6	114.1	114.1	
7	40.8	40.8	
8	139.0	139.0	
9	115.9	115.9	
OMe	56.7	56.7	
1'	103.1	103.0	
2′	74.9	74.9	
3′	78.0	78.1	
4′	71.6	71.3	
5'	77.8	77.8	
6′	68.7	62.5	
1"	111.0		
2"	77.0	_	
3"	80.5		
4"	75.0	_	
5"	65.6		

E 013) are deposited in the Herbaria of the Faculty of Pharmaceutical Sciences, Kyoto University, and the Faculty of Pharmacy, Gazi University.

Isolation

Dried aerial parts (1.25 kg) were extracted (\times 2) with MeOH (181) at room temp. for a month. The combined MeOH exts were concd in vacuo. The residue was dissolved in 90% MeOH (1 l) and the soln washed with *n*-hexane (11 \times 3). The 90% MeOH layer was concd in vacuo and the resultant residue suspended in H₂O (11). After the suspension was washed with EtOAc (1 1×3), the aq. layer was extracted with n-BuOH (1 1×3). The n-BuOH layer was concd in vacuo to give a residue (20 g). The n-BuOH-soluble fr. was sepd by CC on the highly porous synthetic resin, Dianion HP-20 ($\Phi = 70 \text{ mm}$, L = 420 mm) with stepwise increases of MeOH in H₂O [0 (3 1), 20 (3 1) and 50 (41)% ag. MeOH and MeOH (31)], frs of 11 being collected. The residue (2.96 g) from frs 3-10 was subjected to silica gel CC (200 g) with increasing amounts of MeOH in CHCl₃, CHCl₃-MeOH (97:3), CHCl₃-MeOH (19:1), CHCl₃-MeOH (93:7), CHCl3-MeOH (9:1), CHCl3-MeOH (17:3), CHCl3-MeOH (4:1), CHCl3-MeOH (7:3), CHCl3-MeOH (1:1) (each 1 l) and MeOH (500 ml) were passed successively. From the CHCl₃-MeOH (17:3) eluant, 12 ml fr were collected. Frs 179-256 gave a residue (281 mg) on evap which was separated by HPLC (MeOH: H₂O, 2:3) to give 1,5,9-epideoxyloganic acid (2) [2] (64 mg) and 1,5,9-epideoxyloganic acid glucosyl ester (1) (19.6 mg). Frs 312–358 gave a residue (1.68 g), which was separated on an ODS column (Φ = 40 mm, L = 350 mm) with a linear increase of MeOH in H₂O [20% MeOH (500 ml) \rightarrow 70% MeOH (500 ml)], collecting 5 ml frs. Frs 20–64 gave a residue (800 mg) on evapn, an aliquot of which (400 mg) was separated by repeated HPLC (MeOH–H₂O, 2:3, then MeOH–H₂O, 1:4) to give 1,5,9-epideoxyloganic acid Na salt (3)(30.4 mg) and 1,5,9-epideoxyloganic acid K salt (4) (192 mg).

The residue (5.88 g) from frs 11-13 was subjected to silica gel CC (300 g) with increasing amount of MeOH in CHCl₃, CHCl₃ (11), CHCl₃-MeOH (9:1, 1 1), CHCl₃-MeOH (17:3, 21), CHCl₃-MeOH (4:1, 1.5 1) and CHCl₃-MeOH (7:3, 1.5 l) were passed successively. The 10-15% MeOH eluate gave a residue (646 mg) which was separated by repeated HPLC (MeOH-H₂O (2:3)) and then MeOH-H₂O (3:7) to give icariside B₂ [8] (18.2 mg). The 15% MeOH eluate gave a residue (325 mg) which was separated by HPLC (MeOH-H₂O, 1:1) to give eugenyl-O- β -D-glucoside (6)(42.2 mg). The 15% MeOH eluate gave a residue (167 mg) which was separated by HPLC (MeOH- H_2O , 2:3) to give (6S, 9S)-roseoside [9] (68 mg). The 15-20% eluate gave a residue (271 mg) which was separated by HPLC (MeOH-H₂O,3:7) to give icariside B₁ [8] (37.7 mg). The 20% eluate and the 30% MeOH eluate gave residues (831 and 878 mg, respectively) which were separated by HPLC (MeOH-H₂O. 2:3) to give 1,5,9-epideoxyloganic acid (2) (122 mg from the former and 273 mg from the latter).

The residue (4.2 g) from frs 14-15 was subjected to silica gel CC (220 g) with increasing amounts of MeOH in CHCl3. CHCl3 (1 1) and CHCl3-MeOH [(19:1, 11), (9:1, 11), (17:3, 1.51), (4:1, 11), (9:1, 11),(17:3, 1.5 l), (4:1, 1 l) and (7:3, 500 ml)] were passed successively. The 5-10% MeOH eluate gave a residue (489 mg) which were separated by HPLC (MeOH- H_2O , l = 1) to give eugenyl-O- β -D-glucoside (6) (42.2) mg). The 15% MeOH eluate gave a residue (167 mg) which was separated by HPLC (MeOH-H₂O, 2:3) to give lariciresinel-4'-O- β -D-glucopyranoside [11] (18.7) mg). The 10-15% MeOH eluate gave a residue (370 mg) which was separated by HPLC (MeOH-H2O, 7:13) to give the new eugenyl- $O-\beta$ -apiofuranosyl(1"-6')-O- β -glucopyranoside (5) (10.7 mg). The 20–30% MeOH eluate gave a residue (1.22 g), an aliquot (420 mg) of which was separated by HPLC (MeOH-H₂O, 3:7) to give rosmarinic acid [12] (29.8 mg).

Known compounds isolated. 1,5,9-Epideoxyloganic acid (2). Needles, mp 122–123°, $[\alpha]_D^{27} + 91.6^\circ$ (MeOH, c 2.87) [2]. Icariside B_1 . Amorphous powder, $[\alpha]_D^{27} - 41.5^\circ$ (MeOH, c 1.86) [8]. Icariside B_2 . Amorphous powder, $[\alpha]_D^{27} - 77.0^\circ$ (MeOH, c 0.96) [8]. (6S,9S)-Roseoside. Amorphous powder, $[\alpha]_D^{27} + 50.2^\circ$ (MeOH, c 3.23) [9, 10]. Eugenyl-O- β -D-glucopyranoside. Amorphous powder, $[\alpha]_D^{27} - 48.3^\circ$ (MeOH, c 0.99) [7]. Lariciresinol-4'-O- β -D-glucopyranoside. Amorphous powder, $[\alpha]_D^{27} - 30.9^\circ$ (MeOH, c 0.93) [11]. Rosmarinic

790 Y. Takeda, et al.

acid. Amorphous powder, $[\alpha]_D^{27} + 64.4^{\circ}$ (MeOH, c 1.31) [12].

1,5,9-Epideoxyloganic acid glucosyl ester (1). Amorphous powder, $[\alpha]_D^{27} + 37.2^\circ$ (MeOH, c 0.98). IR v_{max} (KBr) cm⁻¹: 3349, 1704, 1637. UV λ_{max} (MeOH); 240 nm (log ε 4.01). CD Δ ε₂₃₃+2.17 (MeOH, c 1.88 × 10⁻⁴ M). ¹H NMR (CD₃OD): δ 1.07 (3H, d, J = 7.6 Hz, 10-H₃), 1.30 (1H, m, Ha-7) 1.65 (1H, m, Ha-6), 1.78 (1H, m, Hb-7), 2.01 (1H, m, Hb-6) 2.30 (1H, m, H-8), 2.44 (1H, dt, J = 8.8 and 4.0 Hz, H-9), 2.96 (1H, m, H-5), 3.22 (1H, dd, J = 8.4 and 8.0 Hz, H-2'), 4.58 (1H, d, J = 8.0 Hz, H-1'), 5.34 (1H, d, J = 4.0 Hz, H-1), 5.53 (1H, d, J = 7.6 Hz, H-1"), 7.55 (1H, s, H-3). ¹³C NMR: Table 1. HR-FABMS (negative) m/z 521.1883 [M-H]⁻ (C₂₂H₃₃O₁₄ requires 521.1871).

1,5,9-Epideoxyloganic acid Na salt (3). Amorphous powder, $[\alpha]_D^{27}+63.1^\circ$ (MeOH, c 1.16). IR v_{max} (KBr) cm⁻¹: 3317, 1651, 1524. UV λ_{max} (MeOH) 230 nm (log ε 3.88). CD Δ $\varepsilon_{222}+3.69$, Δ $\varepsilon_{247}-1.48$ (MeOH, c 3.02 × 10⁻⁴ M). ¹H NMR (CD₃OD): δ 1.08 (3H, d, J=7.3 Hz, H₃-10), 1.31 (1H, m, Ha-7) 1.63 (1H, m, Ha-6), 1.73 (1H, m, Hb-7), 2.00 (1H, m, Hb-6) 2.25 (1H, m, H-8), 2.35 (1H, dt, J=8.4 and 4.0 Hz, H-9), 2.97 (1H, m, H-5), 3.22 (1H, dd, J=8.0 and 8.0 Hz, H-2'), 3.67 (1H, dd, J=11.8 and 4.4 Hz, Ha-6'), 3.83 (1H, dd, J=11.8 and 1.6 Hz, Hb-6'), 4.55 (1H, d, J=8.0 Hz, H-1'), 5.19 (1H, d, J=4.4 Hz, H-1), 7.14 (1H, s, H-3). ¹³C NMR: Table 1. HR-FABMS (negative) m/z 381.1154 [M-H]⁻ (C₁₆H₂₂O₉ requires 381.1162).

1,5,9-Epideoxyloganic acid K salt (4). Amorphous powder, $[\alpha]_D^{27}+67.4^{\circ}$ (MeOH, c 1.08). IR v_{max} (KBr) cm⁻¹: 3333, 1651, 1539. UV λ_{max} (MeOH) 230 nm (log ε 3.87). CD Δ $\varepsilon_{224}+3.64$, Δ $\varepsilon_{245}-1.27$ (MeOH, c 2.71 × 10⁻⁴ M). ¹H NMR (CD₃OD): δ 1.08 (3H, d, J=7.2 Hz, H₃-10), 1.29 (1H, m, Ha-7) 1.67 (1H, m, Ha-6), 1.73 (1H, m, Hb-7), 2.00 (1H, m, Hb-6) 2.26 (1H, m, H-8), 2.36 (1H, dt, J=8.4 and 4.0 Hz, H-9), 2.97 (1H, m, H-5), 3.23 (1H, dd, J=8.4 and 8.0 Hz, H-2'), 3.69 (1H, dd, J=11.5 and 0.8 Hz, Ha-6'), 3.85 (1H, brd, J=11.5 Hz, Hb-6'), 4.57 (1H, d, J=8.0 Hz, H-1'), 5.22 (1H, d, J=4.0 Hz, H-1), 7.28 (1H, s, H-3). ¹³C NMR: Table 1. HR-FABMS (negative) m/z 397.0868 [M-H]⁻ (C₁₆H₂₂O₉ requires 397.0901).

Alkaline hydrolysis of 1,5,9-epideoxyloganic acid glucosyl ester (1). Compound 1 was dissolved in 0.5 N aq. NaOH (2 ml) and the soln stirred at room temp. for 2 h. The soln was treated with Amberlite IR-120 B (H-form). After removal of ion-exchange resin, the filtrate was coned in vacuo to give 2 (5.4 mg) as needles, mp $122-123^{\circ}$, which was identical to an authentic sample of 1,5,9-epideoxyloganic acid, based on mmp and comparisons of ¹H and ¹³C NMR spectra. HR-FABMS (negative) m/z: 359.1336 [M – H]⁻ (calcd for $C_{16}H_{23}O_9$: 359.1342).

Ion-exchange resin treatments of 3 and 4. Compounds 3 (10.8 mg) and 4 (16.5 mg) were separately treated with Amberlite IR-120 B (H-form) in H₂O (3 ml). After removal of ion-exchange resin by filtration,

the filtrate was concd, *in vacuo* to give 8.3 mg and 10.9 mg of 1,5,9-epideoxyloganic acid (2), respectively, as colourless needles. Sample from 3: mp 123–124°, $[\alpha]_D^{27} + 84.7^\circ$ (MeOH, c 0.42); HR-FABMS (negative) m/z 359.1359 [M-H]⁻ (calcd for $C_{16}H_{23}O_9$: 359.1342). Sample from 4: mp 122–124°, $[\alpha]_D^{27} + 90.6^\circ$ (MeOH, c 0.50); HR-FABMS (negative) m/z 359.1326 [M-H]⁻ (calcd for $C_{16}H_{23}O_9$: 359.1342). Both samples were identical to an authentic sample of 1,5,9-epideoxyloganic acid (2) based on mmp and comparisons of ¹H and ¹³C NMR spectra.

(1"-6')-O-β-alucopyr-Eugenvl-O-B-apiofuranosvl anoside (5). Amorphous powder, $[\alpha]_D^{27} - 95.9^{\circ}$ (MeOH, c 0.54). IR v_{max} (KBr) cm⁻¹: 3365.1594. UV λ_{max} (MeOH) nm (log ε): 226 (3.94), 278 (3.44). ¹H NMR (CD₃OD): δ 3.56 (2H, s, H₂-5"), 3.73 (1H, d, J = 9.5Hz, Ha-4"), 3.84 (3H, s, OMe), 3.89 (1H, d, J = 2.4Hz, H-2"), 3.94 (1H, d, J = 9.5 Hz, Hb-4"), 3.99 (1H, dd, J = 11.2 and 2.0 Hz, H₁-6'), 4.79 (1H, d, J = 7.2Hz, H-1'), 4.96 (1H, d, J = 2.4 Hz, H-1"), 5.03 (1H, dd, J = 10.0 and 2.0 Hz, Ha-9), 5.06 (1H, dd, J = 16.9and 2.0 Hz, Hb-9), 5.95 (1H, ddt, J = 16.9, 10.0 and 6.8 Hz, H-8), 6.74 (1H, dd, J = 8.3 and 1.7 Hz, H-5), 6.82 (1H, d, J = 1.7 Hz, H-3), 7.07 (1H, d, J = 8.3 Hz,H-6). ¹³C NMR: Table 2. HR-FABMS (negative) m/z $457.1715 [M-H]^{-} (C_{22}H_{29}O_{11} requires 457.1710).$

Acknowledgements—The authors thank the Cooperative Center of the University of Tokushima for opportunities to record NMR spectra. This work was supported in part by a grant-in-aid from the Ministry of Education, Science, Sports and Culture of Japan (No. 06041069).

REFERENCES

- Bottini, A. T., Dev, V., Garefagnoli, D. J., Lahani, H., Mathela, C. S. and Pant, A. K., Phytochemistry, 1987, 26, 1200 (and refs cited therein).
- Murai, F., Tagawa, M., Damtoft, S., Jensen, S. R. and Nielsen, B. J., Chemical and Pharmaceutical Bulletin, 1984, 32, 2809.
- Zapesochnaya, G. G., Kurkin, V. A., Pervykh, L. N. and Karasatov, B. S., Khimiya Prirodnykh Soedinenii, 1991, 771.
- Takeda, Y., Morimoto, Y., Matsumoto, T., Honda, G., Tabata, M., Fujita, T., Otsuka, H., Sezik, E. and Yesilada, E., *Journal of Natural Products*, 1995, 58, 1217.
- Takeda, Y., Matsumoto, T., Ooiso, Y., Honda, G., Tabata, M., Fujita, T., Otsuka, H., Sezik, E. and Yesilada, E., *Journal of Natural Products*, 1996, 59, 518.
- Takeda, Y., Yagi, T., Matsumoto, T., Honda, G., Tabata, M., Fujita, T., Shingu, T., Otsuka, H., Sezik, E. and Yesilada, E., *Phytochemistry*, 1996, 42, 1085.

- 7. Fujita, T. and Nakayama, M., *Phytochemistry*, 1992, **31**, 3265.
- Miyase, T., Ueno, A., Takizawa, N., Kobayashi,
 H. and Karasawa, H., Chemical and Pharmaceutical Bulletin, 1987, 35, 1109.
- Otsuka, H., Yao, M., Kamada, K. and Takeda, Y., Chemical and Pharmaceutical Bulletin, 1995, 43, 754 (and refs cited therein).
- Yoshikawa, M., Shimada, H., Saka, M., Yoshizumi, S., Yamahara, J., and Matsuda, H., Chemical and Pharmaceutical Bulletin, 1997, 45, 464.
- Sugiyama, M. and Kikuchi, M., Heterocycles, 1993, 36, 117.
- Rimando, A. M., Inoshiri, S., Otsuka, H., Kohda, H., Yamasaki, K. and Padolina, W. G., Shoyakugaku Zasshi, 1987, 41, 242 (and refs cited therein).
- 13. Iavarone, C., Sen, A., Trogoro, C. and Villa, S., *Phytochemistry*, 1983, **22**, 175.
- Yahara, S., Shigeyama, C., Ura, T., Wakamatsu, K., Yasuhara, T. and Nohara, T., Chemical and Pharmaceutical Bulletin, 1993, 41, 703.