

PII: S0031-9422(97)01060-1

POLYHYDROXYLATED TRITERPENES FROM SENECIO PSEUDOTITES

N. DE TOMMASI, L. RASTRELLI, M. R. LAURO and R. AQUINO†*

Dipartimento di Scienze Farmaceutiche, Università di Salerno, Piazza V. Emanuele 9, 84084 Penta, Salerno, Italy; † Dipartimento di Chimica delle Sostanze Naturali, Università "Federico II" di Napoli, via D. Montesano 49, 80131, Napoli, Italy

(Received in revised form 6 November 1997)

Key Word Index—Senecio pseudotites; Asteraceae; triterpenes; $2\alpha,3\beta,23$ -trihydroxy-urs-12,19(29)-dien-28-oic-acid; $2\alpha,3\beta,23$ -trihydroxy-urs-12,19(29)-dien-28-oic-acid-23-acetyl ester; 23-(*trans-p*-coumaroyloxy)- $2\alpha,3\beta$,-dihydroxy-urs-12,19(29)-dien-28-oic-acid.

Abstract—Three new polyhydroxylated triterpenes were isolated from the chloroform-methanol extract of the leaves of *Senecio pseudotites*. Their structures were elucidated as $2\alpha,3\beta,23$ -trihydroxy-urs-12,19(29)-dien-28-oic-acid; $2\alpha,3\beta,23$ -trihydroxy-urs-12,19(29)-dien-28-oic-acid-23-acetyl ester; 23-(*trans-p*-coumaroyloxy)- $2\alpha,3\beta$ -dihydroxy-urs-12,19(29)-dien-28-oic-acid by NMR spectroscopy. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

The leaves of *Senecio pseudotites* Griseb. have many traditional uses in South American popular medicine as a diuretic, antiashmatic and vermifugal drug [1]. In the course of our research on South American Asteraceae, (in a previous work) we described the isolation of chalcones from the methanol extract of the plant [2]. Here we report on the isolation and structural determination of three polyhydroxylated triterpenes (compounds 1–3) of the ursane series with a novel $2\alpha,3\beta,23$ -trihydroxy-12,19(29)-dien-28-oic acid skeleton from the chloroform–methanol (9:1) extract.

RESULTS AND DISCUSSION

Compounds 1–3 were purified by Sephadex LH-20 column and RP HPLC from the chloroform–methanol (9:1) extract of the leaves of *Senecio pseudotites*. The molecular formulas ($C_{30}H_{46}O_5$ for 1, $C_{32}H_{48}O_6$ for 2 and $C_{39}H_{52}O_7$ for 3) were determined by negative ion FAB mass spectra as well as ¹³C, and ¹³C DEPT NMR analysis, which also indicated their triterpenic nature. The following NMR data suggested the structural features of urs-12-en-28-oic acid for compounds 1–3: the olefinic hydrogen at δ 5.25 (1H, m H-12), a doublet signal for one of the methyls (δ 1.03, d, J = 6.4 Hz, Me-30), C-12 and C-13 resonances at δ 127.04

1 R = H

 $2 R = -COCH_3$

3
$$R = \frac{O}{C} CH = CH \frac{1}{3'} OH$$

* Author to whom correspondence should be addressed.

and 140.50, the carbonyl carbon resonance at δ 181.70 (C-28). The ¹H NMR spectrum of 1 showed also signals at δ 3.70 (*ddd*, J = 11.0, 12.0, 3.0 Hz) and 2.90

Table 1. 13 C NMR data (600 MHz, CD₃OD) of compounds 1–3

Carbon	DEPT	1	2	3
1	CH ₂	49.00	49.00	49.00
2	CH	67.50	68.00	67.90
3	CH	78.80	77.80	77.75
4	C	42.00	41.03	41.03
5	CH	49.04	48.60	48.60
6	CH_2	19.30	19.30	19.00
7	CH_2	32.80	33.00	33.05
8	C	40.30	40.20	40.25
9	CH	47.30	47.10	47.50
10	C	38.00	37.52	37.68
11	CH_2	25.02	24.80	24.80
12	CH	127.04	128.80	128.94
13	C	140.50	140.00	140.10
14	C	41.00	41.00	41.20
15	CH_2	28.51	28.00	28.02
16	CH_2	25.30	26.03	26.05
17	C	48.00	48.02	48.04
18	CH	51.01	51.01	51.05
19	C	154.09	154.00	154.02
20	CH	38.10	38.10	38.10
21	CH_2	32.52	32.46	32.48
22	CH_2	38.02	38.00	38.00
23	CH_2	64.10	67.05	67.08
24	CH_3	14.50	14.00	14.02
25	CH ₃	16.90	16.90	16.91
26	CH ₃	17.00	17.10	17.12
27	CH ₃	24.10	23.80	23.81
28	C	181.70	182.00	182.04
29	CH_2	107.90	107.72	107.80
30	CH ₃	21.51	21.45	21.46
COCH ₃			172.20	
COCH ₃			21.40	
1'	C			168.70
2′	CH			115.12
3′	CH			145.80
1"	C			125.30
2"	CH			130.50
3"	CH			116.00
4"	C			160.35
5"	CH			116.00
6"	СН			130.50

(d, J=11.0 Hz) ascribable respectively to the 2β - and 3α -protons on the carbons bearing hydroxyl functions. An AB doublet signal at δ 3.50 and 3.62 (J=11.5 Hz) indicated the presence of a hydroxymethyl group. The ¹³C NMR spectrum confirmed the existence of two –CHOH groups (δ 67.50 and 78.80) attributable to C-2 and C-3 positions and of one –CH₂OH group (δ 64.10) instead of typical Me-23 or Me-24 signals of an ursane skeleton [3]. The chemical shifts of C-4 (δ 42.00) and Me-24 (δ 14.50) led to the assignment of the –CH₂OH at C-23 α position. Furthermore the other carbon signals assignable to rings A, B, C, and D were in agreement with those reported for asiatic acid (2α ,3 β ,23-trihydroxyurs-12-en-28-oic acid) [4, 5] (Table 1). However the NMR

spectra of 1, compared with those of asiatic acid, lacked a doublet Me Signal (Me-29) and contained a complex proton signal at δ 4.65 and 4.74 (2H, br s) in the ¹H- as well as an sp² quaternary carbon (δ 154.09) and a $CH_2 = (\delta \ 107.90)$ in the ¹³C NMR spectrum, ascribable to an exo-methylene group. The location of the exo-cyclic double bond at C-19(29) was suggested by the absence of the Me-29 signal and confirmed by the resonances of the vicinal carbons C-18, C-20 and C-21. In fact the signals of C-18 (δ 51.01) and C-20 (δ 38.10) were shifted to upfield by ca. δ -4.7 and -0.5 whereas that of C-21 (δ 32.52) was shifted to lowfield by ca. $\delta + 1.3$ with respect to compounds with the ursolic acid skeleton [3-6]. As reported in previous papers replacement of a Me by an exo-methylene group induces similar shifts in ursolic acid derivatives [6, 7]. Thus the structure $2\alpha, 3\beta$, 23-trihydroxy-urs-12,19(29)-dien-28-oic-acid was assigned to compound 1.

The ¹³C NMR spectra of compounds 2 and 3 showed the signals ascribable to rings A, B, C, D, and E almost superimposable to those of 1 and the presence of an acetyl in 2 and a p-coumaroyl group in 3 (Table 1). The ¹H NMR spectrum of 2 showed a signal for COOMe (δ 2.01); signals ascribable to a pdisubstituted aromatic ring (AA'BB'-system with doublet like signals centered at δ 7.55 and 6.88, $J_{ortho} = 8$ Hz) and to the vinylic protons of a transdouble bond (δ 7.73 and 6.44, $J_{trans} = 16.0$ Hz) were present in the spectrum of 3. These data together with ¹³C NMR resonances in the aromatic zone led to the identification of a trans-p-coumaroyl moiety [8]. Since the proton and carbon signals of the -CH₂OH at C-23 group were typically shifted downfield ($\delta_{\rm H}$ 4.00 and 4.65; $\delta_{\rm C}$ 67.0) with respect to 1, the C-23 position must be esterified by the acetyl or the coumaroyl residues. The position of the acetyl and p-coumaroyl residues was confirmed by the results of the HMBC spectra which showed clear long-range correlation peaks between the carbonyl carbon (δ 172.2) of the acetyl and CH₂OH at C-23 signals (δ 4.00 and 4.65) of the aglycone in 2, and the carbonyl carbon (δ 168.70) and both CH₂OH at C-23 and H-2' (δ 7.55) signals of the coumaric acid residue in 3. Thus compound 2 2α , 3β , 23-trihydroxy-urs-12, 19(29)-dien-28-oicacid-23-acetyl ester and compound 3 was 23-(trans-pcoumaroyloxy)- 2α , 3β ,-dihydroxy-urs-12, 19(29)dien-28-oic-acid.

EXPERIMENTAL

NMR: CD₃OD, Bruker DRX-600 spectrometer; DEPT, and HMBC [9] experiments were performed using the UXNMR software package; chemical shifts are expressed in δ (ppm) referring to solvent peaks: $\delta_{\rm H}$ 3.34 and $\delta_{\rm C}$ 49.0 for CD₃OD. Optical rotations were measured on a Perkin-Elmer 192 polarimeter equipped with a sodium lamp (589 nm) and a 10 cm microcell. FAB-MS were recorded in the negative ion mode.

Plant material

The leaves of *S. pseudotites* were collected in Perù in October 1995 and identified by Prof. E. Cerrate. A voucher sample is deposited at the Herbario of the Museo de Historia Natural "J. Prado" de la Universidad Nacional Mayor de San Marcos, Lima, Perù.

Extraction and isolation

The powdered, dried leaves of *S. pseudotites* (500 g) were extracted successively with petrol ether (8.5 g), CHCl₃ (21.3 g), CHCl₃–MeOH (9:1) (10.6 g) and MeOH (31.3 g). Part of the CHCl₃ –MeOH (9:1) extract (6 g) was chromatographed on a Sephadex LH-20 column using MeOH as eluent. Frs (9 ml) were collected and checked by TLC [Silica gel plates in, CHCl₃–MeOH–H₂O (80:18:2) and CHCl₃–MeOH (8:2)]. Frs 18–24 (250 mg), containing the crude triterpenic mixture were submitted to reversed-phase HPLC on a C18 μ -Bondapak column (30 cm × 7.8 mm, flow rate 2.5 ml min⁻¹) using MeOH–H₂O (9:1) as the eluent to yield pure compounds 1 (12.0 mg, $R_t = 13.7$ min), 2 (9.7 mg, $R_t = 16.9$ min) and 3 (11.8 mg, $R_t = 20.5$ min).

Compound 1. [α]_D²⁵ = +15 (MeOH, c 1); negative FAB-MS (C₃₀H₄₆O₅): m/z 485 [M–H]⁻; ¹H NMR (CD₃OD): δ 0.73 (3H, s, Me-24), 0.91 (3H, s, Me-26), 1.07 (3H, s, Me-25), 1.03 (3H, s, Me-30), 1.21 (3H, s, Me-27), 2.90 (1H, d, d = 11 Hz, H-3α), 3.50 (1H, d, d = 11.5 Hz, Ha-23), 3.62 (1H, d, d = 11.5 Hz, Hb-23), 3.70 (1H, ddd, d = 11, 12, 3 Hz, H-2dβ), 4.65–4.74 (2H, dg), 5.27 (1H, dg), 4.65–4.74 rable 1.

Compound **2**. $[\alpha]_{0}^{25} = +18$ (MeOH, c 1); negative FAB-MS ($C_{32}H_{48}O_6$): m/z 527 [M–H]⁻; ¹H NMR (CD₃OD): δ 0.75 (3H, s, Me-24), 0.92 (3H, s, Me-26), 1.03 (3H, s, Me-30), 1.05 (3H, s, Me-25), 1.21 (3H, s,

Me-27), 2.01 (3H, s, COOMe), 2.91 (1H, d, J = 11 Hz, H-3α), 3.72 (1H, ddd, J = 11, 12, 3 Hz, H-2β), 4.00 (1H, d, J = 11 Hz, Ha-23), 4.65 (1H, d, J = 11 Hz, Hb-23), 4.63–4.68 (2H, br s, =CH₂), 5.27 (1H, m, H-12). ¹³C NMR see Table 1.

Compound 3. [α]₂²⁵ = +16 (MeOH, c 1); negative FAB-MS (C₃₉H₅₂O₇): m/z 631 [M–H]⁻; ¹H NMR (CD₃OD): δ 0.75 (3H, s, Me-24), 0.91 (3H, s, Me-26), 1.03 (3H, s, Me-30), 1.06 (3H, s, Me-25), 1.20 (3H, s, Me-27), 2.90 (1H, d, J = 11 Hz, H-3α), 3.70 (1H, ddd, J = 11, 12, 3 Hz, H-2 β), 4.00 (1H, d, J = 11 Hz, Ha-23), 4.65 (1H, d, J = 11 Hz, Hb-23), 4.68–4.74 (2H, br s, =CH₂), 5.25 (1H, m, H-12), 6.44 (1H, d, J = 16.0 Hz, H-2′), 6.88 (2H, d, J = 8 Hz, H-3″ and H-5″), 7.75 (2H, d, J = 8 Hz, H-2″ and H-6″), 7.73 (1H, d, J = 16.0 Hz, H-3′). ¹³C NMR see Table 1.

REFERENCES

- Valdizan, H. and Maldonado, A., La Medicina Popular Peruana, Imprenta Torres Aguirre, 1992, p. 287.
- 2. D'Agostino, M., De Feo, V., De Simone, F. and Pizza, C., *Phytochemistry*, 1991, **30**, 2440.
- 3. Seo, S., Tomita, Y. and Tori, K., *Tetrahedron Lett.*, 1975, 7.
- Kojima, H. and Ogura, H., *Phytochemistry*, 1985, 25, 729.
- Sashida, Y., Ogawa, K., Mori, N. and Yamanouchi, T., Phytochemistry, 1992, 31, 2801.
- 6. Aquino, R., De Tommasi, N., De Simone, F. and Pizza, C., *Phytochemistry*, 1997, **45**, 1035.
- Aquino, R., De Simone, F., Vinicieri, F. F., Baitz-Gacs, E. and Pizza, C., J. Nat. Prod., 1990, 53, 559
- De Tommasi, N., Pizza, C., Aquino, R., Cumandà,
 J. and Mahmood, N., J. Nat. Prod., 1997, 60, 270.
- Martin, G. E. and Crouch, R. C., J. Nat. Prod., 1991, 54, 1.