

PII: S0031-9422(98)00096-X

THE MICROBIOLOGICAL HYDROXYLATION OF 3,16-DISUBSTITUTED ANDROSTANES BY *CEPHALOSPORIUM APHIDICOLA*

JAMES R. HANSON,* PETER B. HITCHCOCK and A. CHRISTY HUNTER

School of Chemistry, Physics and Environmental Science, University of Sussex, Brighton, Sussex, BN1 9QJ, U.K.

(Received 2 December 1997)

Key Word Index—*Cephalosporium aphidicola*; microbiological hydroxylation; steroid; 5α -androstane-3, 16-dione.

Abstract— 5α -Androstane-3, 16-dione has been prepared by hydroboration and oxidation of 3β -hydroxy- 5α -androst-16-ene. Reduction with sodium borohydride gave the 3β , 16β -diol. The fungus *Cephalosporium aphidicola* has been shown to hydroxylate 5α -androstane-3, 16-dione predominantly at the C- 6β position with minor hydroxylation occurring at the C- 7α and C- 14α positions. In contrast hydroxylation of the 3β , 16β -diol took place at C- 11α . The 3β -hydroxy- 16α , 17α -epoxide was hydroxylated at the C- 6β position. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

Predictive models for the microbiological hydroxylation of steroids have been based on the results of the transformation of a large number of steroids by relatively few organisms. In studies with 5α-androstanes it has been observed [1, 2] that when the substrate possessed oxygen functions at two of the 3-, 11- (6 or 7) or 16-positions, substantial monohydroxylation occurred at the third position. When a substrate possessed an oxygen function in each terminal ring the 'normal' mode [1] of binding led to hydroxylation at position 11 and the 'reverse' mode of binding to hydroxylation on ring B. The microbiological hydroxylation of 3, 16-disubstituted 5αandrostanes was of particular interest in this context since this disubstitution pattern has a quasi-symmetry in which the C-3 position in the 'normal' binding mode and the C-16 position in the 'reverse' binding mode can be superimposed.

 5α -Androstane-3, 16-dione and the 16-hydroxy-3-ketone were hydroxylated by *Aspergillus ochraceus* and *Rhizopus nigricans* at C-11 α . The 3-hydroxy-16-ketone was hydroxylated by *Aspergillus ochraceus* at C-11 α and by *Rhizopus nigricans* at C-7 α [2, 3] We have been studying [4, 5] the microbiological hydroxylation of steroids by *Cephalosporium aphidicola*. This fungus is capable of hydroxylating progesterone firstly at C-11 α and then at C-6 β whilst testosterone is hydroxylated at the C-6 β position with minor hydrox-

RESULTS AND DISCUSSION

The 16-ketone was prepared by the transposition of an oxygen function from C-17. The literature method [6, 7] based on the formation of a 16-benzylidene derivative did not give a satisfactory yield. An alternative method (Scheme 1) involved the conversion of the 17-ketone (3) via the 17-hydrazone (4) to a 17vinyliodide (5) by oxidation with iodine and triethylamine [8]. Reduction of the vinyliodide with sodium in ethanol gave the 16-ene (6). Hydroboration of the alkene gave a separable mixture of the 16α - and 17α -alcohols, (7) and (8). The stereochemistry of the alcohols followed from nOe studies based on irradiation of the 13 β -methyl group signal ($\delta_{\rm H}$ 0.70 and 0.65 in 7 and 8 respectively). This gave an enhancement of 3.5% at $\delta_{\rm H}$ 4.45 in the 16 α -alcohol (7) and 6.2% at $\delta_{\rm H}$ 3.73 in the 17 α -alcohol (8). The 16 α alcohol was oxidized with chromium trioxide to the 3, 16-diketone (9) and on reduction with sodium borohydride this gave the 3β , 16β -diol (10) [7]. Epoxidation of the 16-ene (6) with m-chloroperbenzoic acid gave the 16α , 17α -epoxide (11).

The substrates were incubated with *C. aphidicola* for 7 days in shake culture. The metabolites were

ylation occurring at the C-11 α and C-14 α positions. It was therefore of interest to examine the microbiological hydroxylation of 5α -androstane-3, 16-dione and the 3β , 16β -diol by *C. aphidicola* to see if this idea of quasi-symmetry might be extended to hydroxylations by this organism.

^{*}Author to whom correspondence should be addressed.

Scheme 1.

separated by chromatography. The results are given in Table 1. The sites of hydroxylation were established from changes in the ¹³C NMR spectra (Tables 2 and 3). Hydroxylation at C-14 in 12, 13, and 14 was apparent from the replacement of a methine resonance at ca. 51 by a tertiary alcohol signal at ca. 81. The position of the tertiary alcohol was revealed by the β -carbon downfield shifts in the resonances assigned to C-8, C-13 and C-15 and by the γ -gauche upfield shifts for C-7, C-9, C-12 and C-17 when compared to the unsubstituted analogues. Hydroxylation at C-7α in 14 was revealed by the downfield shift of the signals assigned to C-6 and C-8 whilst there were γ -gauche upfield shifts for C-5, C-9 and C-14 when compared to 12. There was a strong hydrogen bond between the C-7 and C-14 hydroxyl groups. The hydrogen only exchanged slowly when a solution was treated with deuterium bromide [slow disappearance of a signal at $\delta_{\rm H}$ 4.69 (OH).] The stereochemistry of this metabolite was confirmed by X-ray crystallography (Fig. 1).

Hydroxylation at C-6 β in 15, 16 and 17 was revealed by the downfield shift in the 1 H NMR signal for H-19 and in the 13 C NMR signals assigned to C-5 and C-7. There were γ -gauche shieldings for C-4 and C-8. Hydroxylation at C-11 α in 18 and 19 was revealed by the characteristic multiplicity of the 1 H NMR signal for H-11 β ($\delta_{\rm H}$ 4.20, triplet J 10 Hz, of doublets, J=4.8 Hz). Irradiation of both the H-18 and H-19 signals produced significant one enhancements of this resonance (6.4% and 6.2% respectively in 18; 5.6% and 7.5% respectively in 19). Furthermore, the 13 C NMR signals assigned to C-9 and C-12 showed downfield shifts compared to the unsubstituted compound.

The hydroxylation patterns observed with this fungus fit the pattern of normal and reverse binding observed previously with other organisms [1, 2]. How-

Table 1. Hydroxylation of 3,16-dioxygenated androstanes by C. aphidicola

Substrate	Product	Yield%
5α-Androstane	-3, 16-dione (9)	
	starting material	11
	14α -hydroxy- 5α -androstane-3, 16-dione (12)	3.1
	3β , 14α -dihydroxy- 5α -androstan-16-one (13)	5.6
	7α , 14α -dihydroxy- 5α -androstane-3, 16-dione (14)	3.8
	6β -hydroxy-5α-androstane-3, 16-dione (15)	15.4
	3β , 6β -dihydroxy- 5α -androstan-16-one (16)	8.9
16α, 17α-Epoxy	γ -5 α -androstan-3 β -ol (11)	
	starting material	57
	16α , 17α -epoxy- 5α -androstane- 3β , 6β -diol (17)	14
3β , 16β -Dihydi	$-$ oxy- 5α -androstane (10)	
	starting material	12
	11α, 16α-dihydroxy-5α-androstan-3-one (18)	4.5
	3β , 11α , 16β -trihydroxy- 5α -androstane (19)	19.9

Table 2. ¹³C NMR data for 5α-androstan-3, 16-dione (9) and its hydroxylation products

	9	12	13	14	15	16
1	37.95+	39.12	36.80	38.07	39.47	38.19
2	38.87	39.35	32.00	38.19	39.29	31.39
3	211.25	213.01	71.08	211.98	212.34	71.54
4	44.29	44.11	38.73	43.94	41.94	35.63
5	46.24	47.64+	44.44	38.95+	50.75	47.30
6	28.39	29.51	28.90	37.34	70.34	71.63+
7	31.67	28.00	28.03	69.19	40.06	39.73
8	34.53	37.06	36.97	40.01	29.75	29.93
9	53.42	47.29+	47.11	38.83 ⁺	53.66	54.18
10	35.59	38.01	35.84	35.89	35.86	35.20
11	20.71	20.98	19.67	19.82	20.78	20.61
12	37.79 ⁺	31.07	30.10	29.89	38.00	39.34
13	38.97	45.58	43.01	43.36	39.21	39.23
14	51.17	82.11	81.27	80.93	51.19	51.41
15	37.80	49.00	47.81	48.00	38.08^{+}	38.14
16	217.97	218.89	217.69	218.46	218.32	218.67
17	55.54	51.90	50.81	50.77	55.77	55.83
18	17.85	23.95	22.87	22.61	18.15	18.18
19	11.22	12.44	12.18	10.49	14.92	15.74

⁺assignments may be interchanged

ever an interesting feature is that whereas the diketone is hydroxylated at $C-6\beta$, the diol is hydroxylated at $C-11\alpha$. This could suggest that a ketone favours one mode of binding whilst an alcohol favours another. The 16, 17-epoxide, a hydrogen bond acceptor, behaves like the 16-ketone.

EXPERIMENTAL

General experimental details have been described previously [10]. Except where stated NMR spectra were determined in CDCl₃. Petrol refers to the fraction bp 60–80°. Extracts were dried over Na₂SO₄.

Hydroboration of 3β *-hydroxy-* 5α *-androst-*16*-ene* (6).

The steroid (6) (3 g) [11] in dry THF (90 cm³) was treated with 1 M borane in THF (90 cm³). After 4 h, $\rm H_2O$ (30 cm³) was added. The soln. was cooled to O° and 10% aq. NaOH (60 cm³) and 27.5% $\rm H_2O_2$ (90 cm³) were added dropwise. The mixture was left to stir overnight. Na₂SO₃ (6 g) was added followed by AcOH (3 cm³), $\rm H_2O$ (150 cm³) and dil. HCl (150 cm³). The soln. was extracted with EtOAc and the extract was washed with $\rm H_2O$, brine and dried. The solvent was evaporated to give a residue which was chromatographed on silica. Elution with 30% EtOAc-petrol gave $\rm 3\beta$, $\rm 17\alpha$ -dihydroxy- $\rm 5\alpha$ -androstane (8) (1.17 g)

Table 3. ¹³C NMR data for 3 β -hydroxy-16 α , 17 α -epoxy-and 3 β , 16 β -dihydroxy-5 α -androstane and their hydroxylation products

	11	17	10	18†	19†
1	36.77	38.35	36.96	36.24	37.94
2	31.26+	31.42	31.49	33.48	33.00+
3	70.95	71.54	71.31	209.28	70.51
4	37.96	35.23	38.17	44.03	39.74
5	44.81	47.48	44.83	46.33	45.84
6	28.48	71.82	28.62	28.21	29.89
7	31.74+	39.28	32.33	30.83	33.08+
8	33.47	28.51	35.27	37.26	35.27
9	54.63	54.65	54.33	58.83	61.01
10	35.56	35.61	35.59	36.34	38.00
11	20.78	20.68	20.91	66.68	68.26
12	27.26	27.38	37.22	49.96	51.78
13	40.52	40.69	40.21	39.33	40.98
14	43.94	43.83	54.44	51.93	53.68
15	32.37	32.43	39.01	39.33	40.08
16	53.72	53.80	72.12	69.43	71.05
17	62.16	62.25	51.38	50.14	51.80
18	15.13	15.60	19.11	18.97	20.56
19	12.17	15.60	12.35	10.28	13.12

⁺ assignments may be interchanged† determined in pyridine-d₅

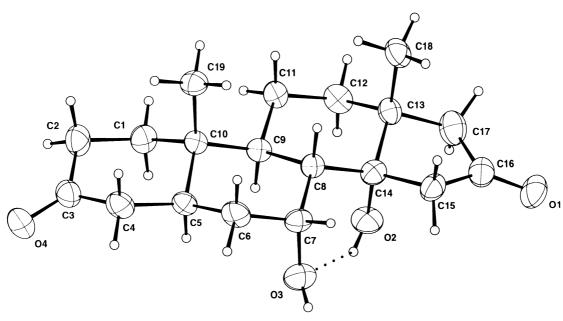


Fig. 1.

which crystallized from EtOAc-petrol as needles, mp 212° (lit.[12], 214°); IR $\nu_{\rm max}$.cm⁻¹ 3252; ¹H NMR $\delta_{\rm H}$ 0.65 (3H,s, H-18), 0.82 (3H,s, H-19), 3.60 (1H,tt, J=5 and 11 Hz, H-3), 3.73 (1 H, br.d., J=5 Hz, H-17). Further elution gave 3 β , 16 α -dihydroxy-5 α -androstane (7) (1.58 g) which crystallized from EtOAc-petrol as needles, mp 190° (Found: C, 73.7; H, 11.4. C₁₉H₃₂O₂. H₂O requires C, 73.5; H, 11.0%); IR $\nu_{\rm max}$ cm⁻¹ 3262; ¹H

NMR δ_H 0.70 (3 H,s, H-18), 0.80 (3H,s, H-19), 3.60 (1H,tt, J=5 and 11 Hz, H-3), 4.45 (1H,m, H-16).

Oxidation of 3β , 16α -dihydroxy- 5α -androstane (7).

The diol (7) (1.2 g) in Me_2CO (120 cm³) was treated with $8\,N$ CrO₃ reagent at O° until the orange colour persisted. The soln. was allowed to warm to room

12
$$R' = 0$$
, $R^2 = H$
13 $R' = \alpha - H$, $\beta - 0H$, $R^2 = H$
14 $R' = 0$, $R^2 = \alpha - 0H$, $\beta - H$

temp. over 30 min. MeOH was added and the soln. was concentrated, diluted with H_2O , and the product recovered in EtOAc. The extract was washed with aq. NaHCO₃, H_2O , dried and the solvent evaporated. The residue was crystallized from EtOAc to give 5α -androstane-3, 16-dione (9) (1 g) as cubes, mp $162-163^{\circ}$ (lit.[6], $162-163^{\circ}$); IR $v_{\rm max}$ cm⁻¹ 1738, 1703; ¹H NMR δ H 0.83 (3 H, s, H-18), 0.99 (3H, s, H-19).

Reduction of 5α -androstane-3, 16-dione (9).

The diketone (9) (0.9 g) in MeOH (30 cm³) was treated with NaBH₄ (1 g) at O° for 40 min. AcOH (3 cm³) was added and the solvent was evaporated. H₂O was added and the product was recovered in EtOAc. The extract was washed with aq.NaHCO₃, H₂O and dried. The solvent was evaporated to give 3 β , 16 β -dihydroxy-5 α -androstane (10) (0.85 g) which crystallized from EtOAc-petrol as needles, mp 178° (Found: C, 78.2; H, 11.1 C₁₉H₃₂O₂ requires C, 78.0; H, 11.0%), IR ν_{max} cm⁻¹ 3343; ¹H NMR δ H 0.82 (3H,s, H-18), 0.94 (3H,s, H-19), 3.60 (1H,tt, J=4.8 and 11.0 Hz, H-3), 4.37 (1 H,ttdd, J=7. 5,5.6 and 1.8 Hz, H-16).

Epoxidation of 3β -hydroxy- 5α -androst-16-ene (6).

The steroid (6) (1.8 g) [11] in CHCl₃ (100 cm³) was treated with m-chloroperbenzoic acid (3 g) at O° in

portions over 10 min. The mixture was allowed to warm to room temp. After 2 h, the soln was diluted with CHCl₃ and washed thoroughly with aq. Na₂SO₃, aq. NaHCO₃, H₂O and brine. The solvent was evaporated to give 16 α , 17 α -epoxy-5 α -androstane-3 β -ol (11) (1.1 g) which crystallized from petrol as needles, mp 149–151°, (Found: C,78.3; H,10.4. C₁₉H₃₀O₂ requires C,78.6; H, 10.4%); IR $v_{\rm max}$ cm⁻¹ 3479; ¹H NMR δ H 0.72 (3H,s, H-18), 0.81 (3H,s, H-19), 3.09 (1H,d, J = 3 Hz, H-17), 3.33 (1H,m, H-16), 3.57 (1H,tt, J = 5.5 and 11 Hz, H-3).

Incubation of steroids with C. aphidicola.

(a) The fungus was grown on shake culture ($100 \, \text{cm}^3$ medium) in $250 \, \text{cm}^3$ conical flasks as described previously [10]. Three days after inoculation, 5α -androstane-3, 16-dione (9) ($1.1 \, \text{g}$) in EtOH ($50 \, \text{cm}^3$) was evenly distributed between 50 flasks. After a further 7 days, the mycelium was filtered and the broth extracted with EtOAc. The extract was dried and the solvent evaporated to give a residue which was chromatographed on silica. Elution with 20% EtOAc-petrol gave the starting material ($121 \, \text{mg}$). Elution with 30% EtOAc-petrol gave 14α -hydroxy- 5α -androstane-3, 16-dione (12) ($36 \, \text{mg}$) which crystallized from EtOAc-petrol as needles, mp 198° (decomp.), (Found: C, 75.0; H, 9.2. $C_{19}H_{28}O_3$ requires C, 75.0; H, 9.3%);

IR v_{max} cm⁻¹ 3475, 1725, 1712; ¹H NMR δ H 1.07 and 1.08 (each 3H,s, H-18 and H-19). Elution with 45% EtOAc-petrol gave 3β , 14α -dihydroxy- 5α -androstan-16-one (13) (65 mg) which crystallized from EtOAcpetrol as needles, mp 236° (decomp.) (Found: C, 74.5; H,9.7.C₁₉H₃₀O₃ requires C,74.5; H,9.9%); IR v_{max} cm⁻¹ 3421, 1737; ¹H NMR δ H 0.87 (3H,s, H-18), 1.05 (3H,s, H-19), 3.61 (1H,tt, J = 5 and 11 Hz, H-3). Elution with 50% EtOAc-petrol gave 7α , 14α -dihydroxy-5α-androstane-3, 16-dione (14) (46 mg) which crystallized from EtOAc-petrol as needles, mp 238-239° (Found: C, 71.4; H, 8.9. C₁₉H₂₈O₄ requires C,71.2; H,8.8%); IR v_{max} cm⁻¹ 3411, 3340, 1732, 1712; 1 H NMR δ H 1.05 and 1.06 (each 3H,s, H-18 and H-19), 4.15 (¹H,br.s., H-7), 4.69 (¹H,s, OH). Further elution with 50% EtOAc-petrol gave 6β-hydroxy-5αandrostane-3, 16-dione (15) (179 mg) which crystallized from EtOAc-petrol as needles, mp 219° (Found: C,70.9; H,9.2. C₁₉H₂₈O₄ requires C,71.2; H,8.8%); IR $\upsilon_{max}\,cm^{-1}$ 3451, 1724, 1707; ^{1}H NMR δH 0.95 (3H,s, H-18), 1.25 (3H,s, H-19), 3.80 (1H,br.s, H-

Further elution with 60% EtOAc-petrol gave 3 β , 6 β -dihydroxy-5 α -androstan-16-one (16) (109 mg) which crystallized from EtOAc-petrol as needles, mp 184–185°, (Found: C, 74.2; H, 9.8. C₁₉H₃₀O₃ requires C,74.5; H,9.9%); IR $\nu_{\rm max}$ cm⁻¹ 3414, 1738; ¹H NMR δH 0.91 (3H,s, H-18), 1.17 (3H,s, H-19), 3.68 (1H,tt, J = 5.2 and 10.7 Hz, H-3), 3.84 (1H,d, J = 2 Hz, H-6).

- (b) Under similar fermentation conditions 16α , 17α -epoxy- 5α -androstane- 3β -ol (11) (800 mg) gave, on chromatography on silica in 20% EtOAc-petrol the starting material (470 mg). Further elution with 60% EtOAc-petrol gave 16α , 17α -epoxy- 5α -androstane- 3β , 6β -diol (17) (125 mg) as a gum, (Found: M⁺ 306.218 $C_{19}H_{30}O_3$ requires 306.219); IR v_{max} cm⁻¹ 3479; ¹H NMR δ H 0.76 (3H,s, H-18), 1.14(3H,s, 19-H), 3.11 (1H,d, J=3 Hz, H-17), 3.36 (1H,m,H-16), 3.65 (1H,tt, J=5 and 11 Hz, H-3), 3.80 (1H,d, J=2 Hz, H-6).
- (c) Under similar fermentation conditions 3β , 16β dihydroxy-5α-androstane (10) (1 g) gave, on chromatography on silica in 40% EtOAc-petrol, the starting material (12 mg). Elution with 50% EtOAc-petrol gave 11α , 16β -dihydroxy- 5α -androstane-3-one (18) (47 mg) which crystallized from EtOAc-petrol as cubes, mp 204° (lit.[1], 206–207°); IR v_{max} cm⁻¹ 3348, 1715; ¹H NMR (pyridine-d₅) δH 1.16 (3H,s, H-18), 1.21 (3H,s, H-19), 4.20 (1H,dt, J=4.8 and 10 Hz, H-11), 4.61 (1H,dd, J = 5.6 and 8 Hz, H-16). Elution with 60% EtOAc-petrol gave 3β , 11α , 16β -trihydroxy- 5α androstane (19) (210 mg) which crystallized from EtOAc-petrol as cubes, mp 245–249 $^{\circ}$ (lit.[1], 250– 251°); IR v_{max} cm $^{-1}$ 3384, 3371; 1 H NMR (pyridine d_5) δH 1.09, (3H,s, H-18), 1.20 (3H,s, H-19), 3.90 (1H, tt, J = 5 and 10 Hz, H-3), 4.23 (1H, dt, J = 4.8 and)10 Hz, H-11), 4.57 (1H,dd, J = 5.5 and 8 Hz, H-16).

Crystallographic Structure Determination of (14).

 $C_{19}H_{28}O_4$, M-320.4, orthorhombic, space group $P2_12_12_1$ (No.19), a=6.2790(10), b=11.802(2),

c=22.629(3) A, $\alpha = \beta = \gamma = 90^{\circ} V = 1676.9$ (4) A³ Z=4, D_{calc}. =1.27 g.cm⁻³, F(000) 696, monochromated Mo-K_{\alpha} radiation $\gamma = 0.71073$ A, u=0.09 mm⁻¹

Data were collected using a crystal ca. $0.30 \times 0.15 \times 0.15$ mm on an Enraf-Nonius CAD 4 diffractometer. A total of 3367 reflections were collected with $2 < \theta < 25^{\circ}$ for 0 < h < 7, 0 < k < 14, -26 < 26 and 2199 reflections with 1 > 20(I) were used in the refinement. There was no crystal decay.

The structure was solved by direct methods using SHELXS-86 and non-hydrogen atoms were refined anisotropically by full matrix least squares on all F^2 using SHELXS-93. The hydrogen atoms were included in riding mode with $U_{\rm iso}(H)$ equal to $1.2U_{\rm eq}(C)$ or $1.5U_{\rm eq}(C)$ for methyl groups. Hydroxyl groups were fixed at idealised geometry but with the torsion angle defining the H atom positions refined and $U_{\rm iso}$ (H) equal to $1.5U_{\rm eq}(O)$. The final R indices $[I\!>\!20(I)]$ were $R_1\!=\!0.062,WR_2\!=\!0.155$ and R indices (all data) $R_1\!=\!0.086,WR_2\!=\!0.173.$ The crystallographic data have been deposited with the Cambridge Crystallographic Data Centre.

REFERENCES

- 1. Browne, J. W., Denny, W. A., Jones, E. R. H., Meakins, G. D., Morisawa, Y., Pendlebury, A. and Pragnell, J., *J. Chem. Soc.*, *Perkin Trans*, 1973, 1493.
- 2. Chambers, V. E. M., Denny, W. A., Evans, J. M., Jones, E. R. H., Kasal, A., Meakins, G. D. and Pragnell, J., *J. Chem. Soc.*, *Perkin Transl.*, 1973, 1, 1500.
- Bell, A. M., Browne, J. W., Denny, W. A., Jones, E. R. H., Kasal, A. and Meakins, G. D., *J. Chem. Soc.*, *Perkin Transl*, 1972, 2930.
- 4. Farooq, A., Hanson, J. R. and Iqbal, Z., Phytochemistry, 1994, 37, 723.
- Hanson, J. R., Nasir, H. and Parvez, A., *Phyto-chemistry*, 1996, 42, 411.
- Bridgeman, J. E., Butchers, C. E., Jones, Sir Ewart R. H., Kasal, A., Meakins, G. D. and Woodgate, P. D. (1970) J. Chem. Soc., (C), p. 244
- Ghilezan, I., Jones, E. R. H., Meakins, G. D. and Miners, J. O., J. Chem. Soc., Perkin Transl, 1976, 1350.
- 8. Barton, D. H. R., O'Brien, R. E. and Sternhell, S. (1962) *J. Chem. Soc.*, p. 470.
- Cookson, R. C. and Coxon, J. M. (1971) J. Chem. Soc., (C), p. 1467.
- 10. Hanson, J. R. and Nasir, H., *Phytochemistry*, 1993, **33**, 831.
- 11. Ohloff, G., Maurer, B., Winter, B. and Giersch, W., *Helv. Chim. Acta*, 1983, **66**, 192.
- St. Andre, A. F., Macphillamy, H. B., Nelson, J. A., Shabica, A. C. and Scholz, C. R., *J. Am. Chem. Soc.*, 1952, 74, 5506.