

PII: S0031-9422(98)00327-6

THE MICROBIOLOGICAL HYDROXYLATION OF SOME STEROIDS WITH A CORTICAL SIDE CHAIN BY CEPHALOSPORIUM APHIDICOLA

JAMES R. HANSON* and A. CHRISTY HUNTER

School of Chemistry, Physics and Environmental Science, University of Sussex, Brighton, Sussex, BN1 9OJ, U.K.

(Received in revised form 23 March 1998)

Key Word Index—Cephalosporium aphidicola; hyphomycetes; microbiological hydroxylation; steroid; 21-hydroxypregna-4-en-3,20-dione.

Abstract—Hydroxylation of pregna-4-en-3-ones at C-11 α by the fungus *Cephalosporium aphidicola* is shown to be affected by the nature of the pregnane side chain whilst hydroxylation at C-6 β is unaffected. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

In our studies on the microbiological hydroxylation of steroids by the fungus Cephalosporium aphidicola, we have noted a number of differences between the hydroxylation of progesterone and testosterone [1, 2]. Whereas progesterone (1) was efficiently hydroxylated first at C-11a and then at C-6 β , testosterone (2) was hydroxylated at C-6 β and the hydroxylation at C-11a was only a minor transformation. On the other hand testosterone was hydroxylated at C-14a, a transformation which was not observed with progesterone. Hydroxylation of progesterone at C-17α led to further hydroxylation at C-12 β . In the light of these differences, it was of interest to see how the hydroxylation pattern was modified by the oxidation of the pregnane side chain which is a characteristic of the cortical hormones. In mammals oxidation of C-11 is an important transformation of the cortical steroids leading to cortisol and cortisone. A number of other studies, exemplified by Refs [3]-[6], have been reported on the microbiological transformation of cortical steroids. The major transformations which have been reported involve hydroxylation at C-6 and C-11, reduction of the Δ^4 -double bond and cleavage of the side chain.

RESULTS AND DISCUSSION

In order to examine the effect of oxidation of the side chain, the microbiological hydroxylation of 21-hydroxyprogesterone (deoxycorticosterone) (3), 17α , 21-dihydroxyprogesterone (cortexolone) (7) and 16α , 17α -epoxyprogesterone (9) by *C. aphidicola* was compared to the results obtained earlier with progesterone [1]. The substrates were incubated with the fungus in shake culture for 7 days. The results are tabulated (see Table 1).

The sites of hydroxylation were established from changes (β -deshielding and γ -gauche shielding effects) in the ¹³C NMR spectra (see Table 2) [7]. The stereochemistry of the hydroxylation followed from the characteristic shape and multiplicity of the CH(OH) resonances and the effect of the additional hydroxyl group on the position of the H-18, H-19 and H-21 resonances in the ¹H NMR spectra [8].

Hydroxylation of 21-hydroxyprogesterone (3) proceeded efficiently at C-6 β and was accompanied by some reduction of the C-20 ketone to the alcohol. In the previous work [1] on progesterone (1) this microbial reduction was shown to give the 20(R) alcohol. In contrast to the transformation of progesterone, hydroxylation at C-11 α was a secondary transformation. However, when a 17α -hydroxyl group was introduced as in 17α ,21-dihydroxyprogesterone (7), hydroxylation proceeded inefficiently and only at C-12 β rather than at C-11 α or C-6 β . Interestingly in the previous study [1] with pro-

^{*}Author to whom correspondence should be addressed.

gesterone, it was only 17α -hydroxyprogesterone that underwent hydroxylation at C-12 β . However, when the 17α -alcohol was replaced by a 16α , 17α -epoxide as in (9), hydroxylation took place at C-6 β and was accompanied by reduction of C-20.

In the Brannon-Jones model for steroid microbial hydroxylations, attack on ring B (C-6/7) and ring C (C-11) are linked in terms of "reverse" and "normal" binding [9, 10]. In this series the binding which leads to the hydroxylation at C-11 α in C. aphidicola

Table 1. Hydroxylation of cortical steroids by Cephalosporium aphidicola

Substrate	Product	Yield %
Deoxycorticosterone (3)		
	starting material (3)	10.7
	6β ,21-dihydroxypregna-4-en-3,20-dione (4)	6.4
	6β ,20S,21-trihydroxypregna-4-en-3-one (5)	9.0
Cortexolone (7)	6β ,11 α .21-trihydroxypregna-4-en-3,20-dione (6)	10.0
	starting material (7)	38.0
16α,17α-Epoxyprogesterone (9)	12β ,17 α ,21-trihydroxypregna-4-en-3,20-dione (8)	1.5
	starting material (9)	8.2
	16α,17α-epoxy-20R-hydroxypregna-4-en-3-one (10)	1.5
	6β ,20 <i>R</i> -dihydroxy- 16α ,17 α -epoxypregna-4-en-3-one (11)	21.0

is sensitive to the extent of the oxidation of the pregnane side chain whereas the binding which leads to oxidation at $C-6\beta$ is relatively independent of variations in this part of the molecule.

EXPERIMENTAL

General experimental details have been described previously [11]. Except where stated NMR spectra were determined in CDCl₃. Petrol refers to the fraction b.p. 60–80°. Extracts were dried over Na₂SO₄. Cephalosporium aphidicola was grown on shake culture (100 cm³ medium) in 250 cm³ conical flasks as described previously.

Incubation of steroids with C. aphidicola

(a). Three days after inoculation deoxycorticosterone (21-hydroxypregna-4-en-3,20-dione (3) (1.5 g) in EtOH (50 cm³) was evenly distributed between 50 flasks of *C. aphidicola*. After a further 7 days, the mycelium was filtered and the broth extracted with EtOAc. The extract was dried and the solvent evaporated to give a gum which was chromato-

graphed on silica. Elution with 50% EtOAc:petrol gave the starting material (160 mg). Elution with 60% EtOAc:petrol gave 6β,21-dihydroxypregna-4en-3,20-dione (4) (100 mg) which was crystallized from EtOAc:petrol as needles, m.p. 210-211° (lit., [12] 211–212°), IR v_{max} 3511, 3349, 1706, 1676, 1634 cm^{-1} . ¹H NMR δ_{H} 0.72 (3H, s, H-18), 1.39 (3H, s, H-19), 3.29 $(1H, t, J 4.6 Hz, H-17\alpha), 4.19$ and 4.21 (1H each, s, H-21), 4.37 (1H, br.s., H-6), 5.82 (1H, s, H-4). Elution with 80% EtOAc:petrol gave 6β , 20S, 21-trihydroxypregna-4-en-3-one (5) (140 mg) as a gum (Found M^+ 348.230, $C_{21}H_{32}O_4$ requires 348.230), IR v_{max} 3343 (br), 1696 cm⁻¹, ¹H NMR 0.85 (3H, s, H-18), 1.39 (3H, s, H19), 3.38 (1H, dq, J 6.4 and 9 Hz, H-20), 3.66 (2H, d, J 6.4 Hz, H-21), 4.35 (1H, br.s., H-6 α), 5.82 (1H, s, H-4). Elution with EtOAc gave 6β , 11α , 21-trihydroxypregna-4-en-3,20-dione (6) (162 mg) which crystallized from EtOAc:petrol as needles, m.p. 249° (lit., [12] $248-251^{\circ}$), IR v_{max} 3441, 3374, 1697, 1658 cm^{-1} , ¹H NMR (C₅D₅N), 0.79 (3H, s, H-18), 1.79 (3H, s, H-19), 4.32 (1H, dt, J 4.2 and 10.3 Hz, H-11 β), 4.41 and 4.50 (1H each, s, H-21), 4.54 (1H, br.s., H-6 α), 6.07 (1H, s, H-4).

Table 2. ¹³C NMR signals of the substrates and metabolites (determined at 75 MHz in CDCl₃)

Carbon No.	3	4	5	6	7	8	9	10	11
1	35.0	37.50	37.47	41.24	35.2	35.01	35.49	35.36	36.91
2	33.4	34.61	34.65	37.50	33.4	33.19	33.81	33.81	34.12
3	197.5	200.71	201.04	202.71	197.4	199.71	199.29	200.00	200.90
4	123.0	126.86	126.73	128.86	123.0	123.54	123.93	123.86	125.92
5	170.4	168.29	168.95	172.81	170.4	170.69	170.51	171.27	170.02
6	31.8	73.35	75.51	75.09	31.9	31.90	31.45	31.38	72.27
7	31.5	38.74	38.92	42.23	32.1	32.57	32.56	32.35	38.23
8	34.8	30.15	30.00	31.43	35.2	34.98	33.19	33,62	28.06
9	52.9	53.77	52.68	62.09	53.0	51.79	53.79	53.73	53.91
10	38.0	38.36	38.43	42.40	38.1	38.38	38.56	38.52	38.23
11	20.4	21.28	21.24	70.78	20.3	30.01	20.30	20.37	20.59
12	37.6	38.74	39.83	53.04	30.1	71.30	31.08	32.63	32.71
13	43.5	45.19	43.04	47.39	47.0	52.70	41.49	41.63	42.12
14	55.3	56.46	55.50	58.25	49.9	48.43	44.76	44.65	43.11
15	23.9	24.85	24.95	27.10	23.2	23.19	27.26	27.04	27.18
16	22.3	23.32	24.95	25.67	33.4	33.74	60.30	60.31	60.14
17	57.4	59.54	54.01	61.11	88.4	85.93	70.61	72.53	72.62
18	13.1	13.93	12.93	17.27	14.5	9.66	15.11	15.65	15.78
19	16.7	19.95	19.94	22.96	17.0	17.68	17.13	17.05	19.19
20	209.6	210.54	74.90	213.20	211.3	211.03	204.65	64.00	64.43
21	68.6	69.82	6.6.82	72.50	65.9	65.92	25.84	19.83	19.49

- (b). Under similar conditions cortexolone (17α ,21-dihydroxy-pregna-4-en-3,20-dione (7) (1.5 g) gave after chromatography in 50% EtOAc:petrol, the starting material (571 mg). Further elution with 60% EtOAc:petrol gave 12β ,17 α ,21-trihydroxy-pregna-4-en-3,20-dione (8) (23 mg) which crystallized from EtOAc:petrol as needles, m.p. 175–179° (lit., [13] 177–181°), IR $\nu_{\rm max}$ 3584, 3487, 3415, 1712, 1661 cm⁻¹, ¹H NMR $\delta_{\rm H}$ 0.69 (3H, s, H-18), 1.26 (3H, s, H-19), 4.16 (1H, s, H-12 α), 4.30 and 4.68 (each 1H, s, s, H-19), 5.82 (1H, s, H-4).
- (c). Under similar conditions 16α , 17α -epoxyprogesterone (9) (2 g) gave on chromatography in 20% EtOAc:petrol, the starting material (164 mg). Further elution with 50% EtOAc:petrol gave 16α , 17α -epoxy-20R-hydroxypregna-4-en-3-one (10) (36 mg) as a gum (Found M^+ 330.219, $C_{21}H_{30}O_3$ requires 330.219), IR v_{max} 3583, 1663 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 0.92 (3H, s, H18), 1.10 (3H, d, J 6.4 Hz, H-21), 1.19 (3H, s, H-19), 3.2 (1H, br.s., H-16), 4.30 (1H, q, J 6.4 Hz, H-20), 5.71 (1H, s, H-4). Further elution with 60% EtOAc:petrol gave 6β , 20*R*-dihydroxy- 16α , 17α -epoxypregna-4-en-3-one (11) (440 mg) which crystallized from EtOAc:petrol as needles, m.p. 253-255° (Found: C, 72.5; H, 8.7. $C_{21}H_{30}O_4$ requires C, 72.8; H, 8.7%), IR v_{max} 3467 (*br*), 1707 cm⁻¹; ¹H NMR δ_{H} 0.95 (3H, s, H-18), 1.10 (3H, d, J 6.4 Hz, H-21), 1.39 (3H, s, H-19), 3.30 (1H, s, H-16), 4.37 (2H, m, H-6 α and H-20), 5.81 (1H, s, H-4).

REFERENCES

 Farooq, A., Hanson, J. R. and Iqbal, Z., Phytochemistry, 1994, 37, 523.

- 2. Hanson, J. R., Nasir, H. and Parvez, A., *Phytochemistry*, 1996, **42**, 411.
- 3. Mahato, S. B. and Majumdar, I., Phytochemistry, 1993, 34, 883.
- Hanson, F. R., Mann, K. M., Nielson, E. D., Anderson, H. V., Brunner, M. P., Karnemaat, J. N., Colingsworth, D. R. and Haines, W. J., Journal of the American Chemical Society, 1953, 75, 5369.
- Holland, H. L., Nguyen, D. H. and Pearson, N. M., Steroids, 1995, 60, 646.
- Vitas, M., Rozman, D., Komel, R. and Kelly, S. L., Phytochemistry, 1995, 40, 73.
- 7. Blunt, J. W. and Stothers, J. B., Organic Magnetic Resonance, 1977, 9, 439.
- Kirk, D. N., Toms, H. C., Douglas, C., White, K. H., Smith, K. E., Latif, S. and Hubbard, R. W. P., Journal of the Chemical Society, Perkin Transactions II. 1990, 1567.
- Browne, J. W., Denny, W. A., Jones, Sir Ewart, R. H., Meakins, G. D. Morisawa, Y., Pendlebury, A. and Pragnell, J., Journal of the Chemical Society, Perkin Transactions I, 1973, 1493.
- Chambers, V. E. M., Denny, W. A., Evans, J. M., Jones, Sir Ewart, R. H., Kasal, A., Meakins, G. D. and Pragnell, J., Journal of the Chemical Society. Perkin Transactions I, 1973, 1500.
- Hanson, J. R. and Nasir, H., Phytochemistry, 1993, 33, 831.
- 12. Dusza, J. P., Joseph, J. P. and Bernstein, S., Journal of Organic Chemistry, 1962, 27, 4046.
- Hill, R. A., Kirk, D. N., Makin, H. L. J. and Murphy, G. M. (Eds.), *Dictionary of Steroids*. Chapman and Hall, London, 1991, p. 921.