PII: S0031-9422(98)00293-3

EUDESMANOLIDE FROM CENTAUREA GRANATA

KAMEL MEDJROUBI, FADILA BENAYACHE,* SAMIR BENAYACHE, SALAH AKKAL, MOHAMED KAABECHE, FRANCOIS TILLEQUIN† and ELISABETH SEGUIN†

Unité de Recherche de Chimie, Laboratoire de Phytochimie I, Université de Constantine, 25000 Constantine, Algérie; †Laboratoire de Pharmacognosie, URA au CNRS 1310, Faculté de Pharmacie Université René Descartes Paris V France

(Received in revised form 9 March 1998)

Key Word Index—Centaurea granata; Compositae; sesquiterpene lactones; eudesmanolides.

Abstract—Investigation of the aerial parts of *Centaurea granata* afforded, in addition to two known polymethoxylated flavones, a new eudesmanolide. The structure of the new compound was elucidated by spectroscopic methods as 8α -hydroxy- 11β ,13-dihydro onopordaldehyde. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

In continuation of our previous chemical investigation of the genus Centaurea [1-3], we have investigated *Centaurea granata L*. We now report on the isolation and structural elucidation of a new eudesmanolide together with two known flavones.

RESULTS AND DISCUSSION

Column chromatography of the chloroformsoluble portion of a methanol extract of the aerial parts of C. granata afforded two flavones and a sesquiterpene lactone. The flavones were identified [4] as 5-hydroxy-6,7,3',4'-tetramethoxyflavone (1) and 5,3'-dihydroxy-6,7,4'-trimethoxyflavone (2). The position of methoxyl groups in these compounds followed from the mass [5] and UV [6] spectral data as well as by ¹H NMR [7]. The mass spectrum of the new compound 3 showed the quasi-molecular ion $[M + NH_4]^+$ at m/z 284 (DCI/NH₃) and ions at m/z 267 (2%) [MH]⁺, 238 (20%) [M – CO]⁺ and 220 (100%) $[M - CO - H_2O]^+$ (DEI). These data agreed with a molecular formula C15H22O4. The ¹H NMR spectrum (Table 1) exhibited a typical triplet at δ 3.79 for H-6 and a double triplet at δ 3.95 for H-8 indicating the presence of oxygenated functions at C-6 and C-8. In addition the coupling patterns and the magnitude of the

All these assignments were confirmed by ¹H-¹H COSY, ¹H-¹³C COSY, DEPT experiments and are in good agreement with literature data for similar eudesmanolides [8–13]. In an HMBC (400 MHz) experiment optimized for an 8 Hz long-range coupling, a correlation between H-6 and C-12 was found. This correlation and the chemical shifts of H-6, H-8, C-6 and C-8 indicated a C-6 lactonized eudesmanolide with an hydroxyl group at C-8. Therefore, compound 3 is 8α-hydroxy-11β,13-dihydro onopordaldehyde [13].

coupling constants of H-5 to H-8 were in agreement with trans disposition of H-5/H-6, H-6/H-7 and H-7/H-8. The same spectrum exhibited an angular methyl signal at δ 0.98 which suggested that this compound has a eudesmanolide-type skeleton and an aldehyde proton signal (doublet) at δ 9.55 which could be at C-4. The α orientation of the aldehyde group could be deduced from the value of the coupling constant (4 Hz) between H-4 and H-15 which is in agreement with an axial position for H-4 [8]. The triplet at δ 1.75 (J = 11 Hz) which may be attributed to H-5 confirmed the β -position of H-4. The doublet at δ 1.36 (J = 7 Hz) was attributed to H-13. The dq at δ 2.52 (J = 12; 7 Hz) was attributed to H-11 and then the configurations at C-5, C-6, C-7, C-8, and C-11 followed from the couplings observed. In the ¹³C NMR spectrum (Table 1), the signals at 203.20; 177.96; 79.20 and 68.32 ppm were assigned to C-15 (aldehyde 1730 cm^{-1} in the IR spectrum), C-12 (γ -lactone 1780 cm^{-1} in the IR spectrum), C-6 and C-8 respectively.

^{*}Author to whom correspondence should be addressed.

3

EXPERIMENTAL

Plant material

Centaurea granata was collected from El-kala in eastern Algeria and authenticated by Dr. Mohamed Kaâbache from the Department of Biology (University of Setif, Algeria). A voucher specimen is deposited in the Herbarium of Research Unit of Chemistry, University of Constantine. under n° 05/1988/CCG10.

Extraction and isolation of the compounds

Air-dried and powdered aerial parts (175 g) were soaked in MeOH (1,5 l). The MeOH extract was concentrated and the residue dissolved in H_2O (70 ml). The sol. was treated with $Pb(OAc)_2$ under stirring and filtered.

The yellow coloured filtrate was extracted with $CHCl_3$ (3 × 30 ml). The extract was dried with Na_2SO_4 and then concd. to a gum (1 g) [14]. The gum (1 g) was dissolved in a minimum amount of $CHCl_3$ and the soln. chromatographed over a silica gel (230–400 mesh) column with $CHCl_3$ to give 1 and 2. CC was achieved with hexane– $CHCl_3$ –EtOAc (1:1:1) to give 3.

Table 1. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectral data of compound 3 [CDCl₃+1 drop MeOH (d_4), TMS as int. standard and (last col.) CDCl₃+C₆D₆, 3:1]

Н		C		
1	*	1	26.09	25.08
ľ	*	2	19.30 ^a	19.30 ^b
2	*	3	40.43	40.39
2'	*	4	48.89	48.84
3	*	5	48.39	48.29
3'	*	6	79.20	79
4	2.45 m	7	59.20	59.10
5	1.75 t	8	68.32	68.54
6	3.79 t	9	51.50	51.15
7	1.68 m	10	35.14	35.07
8	3.95 dt	11	41.21	41.13
9	1.38 m	12	177.96	178
9"	1.86 dd	13	14.31	14.33
11	2.52 dq	14	19.30 ^a	19.22 ^b
13	1.36 d	15	203.20	202.09
14	0.98 br. s			
15	9.55 d			
ОН	3.47 s			

- * Obscured multiplets
- ^a Superposition of C-2 and C-14
- ^b Assignments may be interchanged
- J (Hz): 4,15 = 8,9' = 4; 4,5 = 5,6 = 6,7 = 7,8 = 8,9 = 11; 7,11 = 12; 9,9' = 13.

8α-Hydroxy-11β,13-dihydro onopordaldehyde (3)

White crystals, mp 235°; IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3600 (OH), 1780 (γ -lactone), 1730 (aldehyde); EIMS m/z (rel. int.): 267 [MH]⁺ (2), 266 [M]⁺ (0.5), 238 [M - 28]⁺ (20), 220 [M - CO - H₂O]⁺ (100), 205 (40), 147 (62); DCIMS (NH₃) m/z (rel. int.): 284 [MNH₄]⁺ (100); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 273 (97); [α]_D²⁰ + 20° (MeOH, c 0.1)

REFERENCES

- Benayache, F., Benayache, S., Medjroubi, K., Massiot, G., Aclinou, P., Drozdz, B. and Nowak, G., *Phytochemistry*, 1992, 31, 4360.
- 2. Medjroubi, K., Benayache, F., Benayache, S., Akkal, S., Khalfallah, N. and Aclinou, P., *Phytochemistry*, 1997, **45**, 1449.
- 3. Akkal, S., Benayache, F., Benayache, S. and Jay, M., *Biochemical Systhematics and Ecology*, 1997, **25**(4), 361.
- Mabry, T. J., Markham, K. R. and Thomas, M. B., The Systematic Identification of Flavonoids. Springer, New York, 1970.
- 5. Goudard, M., Favre-Bonvin, J., Lebreton, P. and Chopin, J., *Phytochemistry*, 1978, 17, 145.
- 6. Voirin, B., Phytochemistry, 1983, 22, 2107.
- Markham, K. R., Techniques of Flavonoid Identification. Academic Press, London, 1982.
- 8. Rustaiyan, A., Ahmadi, B., Jakupovic, J. and Bohlmann, F., *Phytochemistry*, 1986, **25**, 1659.
- 9. Shimizu, S., Miyaze, T., Ueno, A. and Usmanghani, K., *Phytochemistry*, 1989, **28**, 3399.

- Miski, M., Meriçli, A. H. and Mabry, T. J., *Phytochemistry*, 1988, 27, 1417.
- 11. Mahmoud, Z., El-Masry, S., Amer, M., Ziesche, J. and Bohlmann, F., *Phytochemistry*, 1983, **22**, 1290.
- 12. Da Silva, A. J. R., Garcia, M., Baker, P. M.
- and Rabi, J. A., Organic Magnetic Resonance, 1981, 16(3), 234.
- 13. Rustaiyan, A., Nazarians, L. and Bohlmann, F., *Phytochemistry*, 1979, **18**, 879.
- 14. Drozdz, B. and Piotrowski, J., *Polish Journal of Pharmacology and Pharmacy*, 1973, **25**, 91.