

PII: S0031-9422(98)00445-2

# AREPTINS A AND B TWO NEW NEO-CLERODANE DITERPENOIDS FROM AJUGA REPTANS

PETER Y. MALAKOV\* and GEORGI Y. PAPANOV

Department of Organic Chemistry, University of Plovdiv, 24 Tsar Assen Str. 4000 Plovdiv, Bulgaria

(Received in revised form 3 April 1998)

Key Word Index—Ajuga reptans; Labiatae; neo-clerodane diterpenoids; areptins A and B.

**Abstract**—Two new *neo*-clerodane derivatives, areptins A and B, have been isolated from the acetone extract of the aerial parts of *Ajuga reptans*, in addition to the previously known diterpenes, ajugareptansin, ajugorientin, ajugachin A and iridoid glucosides, 8-acetylharpagide and harpagide. The structures of the new compounds were established by chemical and spectroscopic means as:  $(11S,13R,16S)-2\alpha,6\alpha,19$ -triacetoxy-3 $\beta$ -(2-methylbutyryloxy)-4 $\alpha$ , 18:11, 16:15, 16-triepoxy-*neo*-clerodan-1 $\beta$ -ol (areptin A); (11S,13S,16S),  $6\alpha$ -19-diacetoxy-1 $\beta$  [(E)-2-methyl-2-butenoyloxy]-4 $\alpha$ , 18:11, 16:15, 16-triepoxy-*neo*-cleroda-14-en-3 $\beta$ -ol) (areptin B). © 1998 Elsevier Science Ltd. All rights reserved

### INTRODUCTION

In continuation of our studies on the diterpenes from *Ajuga* species [1–5], we have now investigated the aerial parts of *A. reptans*. From the acetone extract of this plant we have isolated two new *neo*-clerodane diterpenes, areptins A (1) and B (2), besides the already known diterpenes ajugareptansin [6], ajugachin A [1], ajugorientin (5) [7] and iridoid glucosides, 8-acetylharpagide and harpagide [8–10]. The structures of 1 and 2 were established by chemical and spectroscopic means and by comparison with those of closely related compounds [1–3, 7, 11, 12].

#### RESULTS AND DISCUSSION

Areptin A (1) had a molecular formula  $C_{31}H_{46}O_{12}$  and its IR spectrum was consistent with the presence of hydroxyl (3454 cm<sup>-1</sup>) and ester groups (1746 br, 1234 br cm<sup>-1</sup>). The <sup>1</sup>H NMR spectrum (Table 1) showed signals for three acetate groups ( $\delta$  1.94 s, 2.05 s and 2.15 s), a 2-methylbutyric ester function ( $\delta$  2.18 m, 1.40 m, 1.06 d, J = 6.6 Hz; 0.85 t, J = 7.5 Hz) [2,6], together with characteristic signals of a neo-clerodane structure (Me-17 at  $\delta$  0.99 d, J = 6.3 Hz; Me-20 at  $\delta$  1.08 s) possessing a  $4\alpha$ ,18-oxirane ( $\delta$  2.73 d and 2.83 d, J = 4.0 Hz) and hexahydrofurofuran moiety (see the H-11, H-13, H<sub>2</sub>-15 and H-16 proton resonances

in Table 1), which was also confirmed by the significant peaks at m/z 113, 111, 83 and 69 in the mass spectrum of 1 like other neo-clerodane derivatives previously isolated from Ajuga plants [1-7]. The attachment of the above mentioned functions was revealed by the following signals due to six protons on carbon atoms bearing oxygen atoms:  $\delta$  5.06 dd (1H,  $J_1 = 10.4 \text{ Hz}$ ;  $J_2 = 8.4 \text{ Hz}$ ), 5.53 d (1H, J = 10.5 Hz), 4.33 d and 4.79 d,  $J_{\text{gem}} = 12.6 \text{ Hz}$ ), 4.67 dd (1H,  $J_1 = 11.5$ ;  $J_2 = 4.7$  Hz) and 4.18 m (2H, overlapped signals with H-11 $\alpha$ ). In addition the <sup>1</sup>H NMR spectrum of 1 showed an one-proton doublet at  $\delta$  1.81 (J = 10.5 Hz), which collapsed into a singlet when the multiplet at  $\delta$  4.18 was irradiated. This result clearly established that the hydroxyl group of areptin A (1) was at C-1 $\beta$  (equatorial position) like in ajugavensin C a neo-clerodane diterpene isolated from A. genevensis [2, 3]. The chemical shifts and the behaviour of the signals at  $\delta$  4.67 dd, 4.73 d br. and 4.79 d were the same as these at H-6 $\beta$  and  $H_2$ -19, respectively [1-4, 6, 7]. Moreover the signals at  $\delta$  5.06 t and 5.33 d are reciprocally coupled  $(J_{2\beta3\alpha} = J_{2\beta,1\alpha} = 10.4 \text{ Hz})$ , trans-diaxial coupling), which was revealed by double resonance experiments, and they must be assigned to a neoclerodane possessing two ester groups at the C-2x and C-3 $\beta$  equatorial positions. On the other hand the multiplet at  $\delta$  4.18 and the doublet at  $\delta$  1.81 clearly showed that 1 possessed a CH-CHOH-CHOR-CHOR-C≡ structural part in the ring A, which was also confirmed by the <sup>13</sup>C NMR data (Table 2),  $\delta$  66.8 d(C-1), 70.2 d(C-2) and 76.8

<sup>\*</sup>Author to whom correspondence should be addressed.

|     | Rl                  | R²  | R3 | R <sup>4</sup>      | X-Y                              |
|-----|---------------------|-----|----|---------------------|----------------------------------|
| 1 - | 0<br>1' 2'<br>5' 4' | OAc | н  | Н                   | CH <sub>2</sub> —CH <sub>2</sub> |
| 2   | Н                   | Н   | н  | O<br>1' 2'<br>3' 4' | сн—сн                            |
| 3 1 | 2'<br>5' 3' 4'      | OAc |    | O                   | CH <sub>2</sub> —CH <sub>2</sub> |
| 4   | Ac                  | Н   | Н  | O<br>1' 2'<br>3' 4' | сн—сн                            |
| 5   | Н                   | н   | Н  | O<br>1' 2'<br>5' 4' | CH <sub>2</sub> —CH <sub>2</sub> |

d(C-3). According to the coupling constants of above structural part (10.4 Hz) the ring A should be in a chair conformation [2, 3].

In agreement with above conclusion areptin A (1) was treated with CrO<sub>3</sub>-pyridine and derivative 3 was obtained, in which <sup>1</sup>H NMR spectra (Table 1) the signal of the proton of hydroxyl group at  $\delta$  5.45 had disappeared. The signals for H-10 $\beta$  and H-2 $\beta$  were paramagnetically shifted to  $\delta$  2.87 and  $\delta$  5.20 and transformed into a singlet and doublet, respectively. Moreover the signals for H-3  $\alpha$  ( $\delta$  5.53), H<sub>A</sub>-18 ( $\delta$  2.73) and H<sub>B</sub>-18 ( $\delta$  2.83) were also paramagnetically shifted to  $\delta$  5.75, 2.94 and 3.13, respectively, whereas the multiplet for 2H-15 was diamagnetically shifted and split at  $\delta$  3.68 ddd and 3.80 ddd. The location of the 2-methylbutyryl group in areptin A(1) was established from the hetero-nuclear multiple bond connectivity (HMBC) spectrum, which showed correlation between the carbonyl carbon of the 2-methylbutyryl moiety ( $\delta_C$  175.0) and the H-3 $\alpha$  ( $\delta$ 5.53 d) proton, whereas the carbonyl carbons of the three acetoxyl groups ( $\delta_{\rm C}$  170.6 s, 170.2 s and 170.0 s) were connected with the  $2\beta$  H ( $\delta$  5.06),  $6\beta$ H ( $\delta$  4.67) and 2H-19 ( $\delta$  4.33 and 4.79) protons, thus establishing the positions of the 2-methylbutyryl group (C-3 equatorial) and the three acetoxy (C-2, C-6 equatorial and C-19) groups. The relative configuration of 1 was deduced from a NOESY experiment. The axial H-6 $\beta$  showed NOE's with H-10 $\beta$ , H<sub>B</sub>-18 and H-8 $\beta$ . Moreover, the H-10 $\beta$  showed NOE's with H<sub>A</sub>-18, H-2 $\beta$  and  $1\beta$ -OH. The H-3 $\alpha$  showed cross-peaks with H<sub>A</sub>-19 and the acetoxyl group at C- $2\alpha$ . The Me-20 group showed NOE's with H-11 $\alpha$  and H<sub>B</sub>-19, whereas H-16 $\beta$  showed cross-peaks with H-13 $\beta$  and 1 $\beta$ -OH, consequently areptin A (1) possessed the same stereochemistry as ajugavensin C [2, 3].

Table 1. <sup>1</sup>H NMR data of compounds 1 and 3 (250 MHz, CDCl<sub>3</sub>, TMS as int. standard, chem. shifts in ppm, *J* in Hz)\*

|           |                       | Hz)*           |                       |      |      |
|-----------|-----------------------|----------------|-----------------------|------|------|
| Н         | 1                     | 3              | $J_{ m H,H}$          | 1    | 3    |
| lα        | 4.18 m <sup>†</sup>   | _              | 1α, 10β               | 10.5 | _    |
| 2β        | 5.06 t                | 5.20 t         |                       |      |      |
| $3\beta$  | 5.53 d                | 5.75 d         | $2\beta$ , $10\beta$  |      | < 1  |
| 6β        | 4.67 dd               | 4.86 dd        |                       |      |      |
| 7α        | ~1.50                 | _              | $2\beta$ , $1\alpha$  | 10.4 | 10.1 |
| $7\beta$  | ~1.58 <sup>†</sup>    | _              | $3\alpha$ , $2\beta$  | 10.4 | 10.1 |
| 8β        | $\sim 1.55^{\dagger}$ | -              | $6\beta$ , $7\alpha$  | 11.5 | 11.4 |
| 10β       | 1.81 d                | 2.87 s         | $6\beta$ , $7\beta$   | 4.7  | 4.9  |
| 11α       | $4.16 m^{\dagger}$    | 4.27 <i>dd</i> | 11α, 12A              | _    | 10.0 |
| 12A       | ~1.53 <sup>†</sup>    |                | 11α, 12B              | _    | 6.0  |
| 12B       | ~2.28*                |                | 15A, 15B              | -    | 8.7  |
| $13\beta$ | 2.95                  | 2.75 \$        | 15A, 14B              |      | 6.5  |
| 14A       | ~1.68 <sup>†</sup>    | _              | 15A, 14A              | -    | 3.4  |
| 14B       | ~2.20 <sup>†</sup>    |                | 15B, 14A              | -    | 6.6  |
| 15 (2H)   | $3.89^{\ddagger}$     | 15A 3.68 ddd   | 15B, 14B              | _    | 3.3  |
|           |                       | 15B 3.80 ddd   |                       |      |      |
| 16β       | 5.63 d                | 5.62 d         | $16\beta$ , $13\beta$ | 5.2  | 5.0  |
| Me-17     | 0.99  d               | 0.80 d         | $17, 8\beta$          | 6.3  | 6.6  |
|           |                       |                | 18A, 18B              | 4.0  | 3.8  |
| 18 A      | 2.73 d                | 2.94 d         | 19A, 19B              | 12.6 | 12.9 |
| 18 B      | 2.83 d                | 3.13 d         | 4', 3'                | 7.5  | 7.4  |
| 19 A      | 4.33 br d             | 4.27 d         | 2', 5'                | 6.6  | 7.2  |
| 19 B      | 4.79 d                | 4.62 d         |                       |      |      |
| Me-20     | 1.08 s                | $1.02 \ s$     |                       |      |      |
| OAc       | 1.94 s                | 1.91 s         |                       |      |      |
|           | $2.05 \ s$            | 1.96 s         |                       |      |      |
|           | 2.15 s                | 2.0 s          |                       |      |      |
| ОН        | 5.45 $br_{\pm}s$      | -              |                       |      |      |
| 2'        | $2.18 \ m^{\dagger}$  | 2.27 sept      |                       |      |      |
| 3'        | $1.40 m^{\dagger}$    | 1.42 m         |                       |      |      |
| 4'        | 0.85 t                | 0.81 t         |                       |      |      |
| 5'        | 1.06 d                | 1.03 d         |                       |      |      |
|           |                       |                |                       |      |      |

<sup>\*</sup>Spectral parameters were obtained by first-order approximation. All assignments were confirmed by double resonance experiments.

The second diterpenoid areptin B (2), had a molecular formula of C29H40O10 from elemental analysis and mass spectroscopy. Its IR spectrum was consistent with the presence of hydroxyl group  $(3473 \text{ cm}^{-1})$ , ester groups  $(1738, 1707, 1256 \text{ cm}^{-1})$ , a tigloyloxy moiety (1651 cm<sup>-1</sup>), a vinyl ether function (1620 and 734 cm<sup>-1</sup>) and an oxirane ring (3078 cm<sup>-1</sup>). The <sup>1</sup>H and <sup>13</sup>C NMR spectra (Tables 1 and 2) were almost identical with those of ajugorientin (5) [4]. In fact the observed differences between these spectra were consistent with the presence in compound 2 of a double bond between C-14–C-15 in the furofuran moiety,  $[(\delta 4.70 t,$ J = 2.1 Hz, 6.36 dd,  $J_1 = 2.5$ ;  $J_2 = 2.1 \text{ Hz}$ ); carbon atoms resonances at  $\delta_C$  102.0 d and 146.2 d [1]] instead of the hexahydrofurofuran part. Moreover, the signals of H-13 $\beta$  ( $\delta$  3.31 m) and H-16 $\beta$  ( $\delta$  5.87 d,  $J = 6.2 \,\mathrm{Hz}$ ) were paramagnetically shifted  $(\Delta + 0.66 \text{ ppm} \text{ and } \Delta + 0.31 \text{ ppm}, \text{ respectively}), \text{ in}$ comparison with those of the compound 5 [7]. The identical chemical shifts of the H-1 $\alpha$ , H-6 $\beta$  and C-19 methylene protons of 2 in comparison with 5 [2, 3, 7] supported the same arrangement of the ester substituents in both compounds.

Table 2. <sup>13</sup>C NMR spectral data of compounds 1, 2 and 4 (62.9 MHz, CDCl<sub>3</sub>, TMS as int. standard)\*

| C                     | 1                | 2                          | 4                   |
|-----------------------|------------------|----------------------------|---------------------|
| 1                     | 66.8 d           | 70.2 d <sup>†</sup>        | 69.4 d <sup>†</sup> |
| 2 3                   | 70.2 d           | $34.0 t^{\dagger}$         | 34.9 $t^{\dagger}$  |
| 3                     | 76.8 d           | 66.7 d                     | 66.4 d              |
| 4                     | 62.4 s           | 64.0 s                     | 64.1 s              |
| 4<br>5<br>6<br>7<br>8 | 44.8 s           | 44.7 s                     | 44.7 s              |
| 6                     | 69.3 d           | 71.3 $d^{\dagger}$         | 70.9 d <sup>†</sup> |
| 7                     | 31.7 t           | 33.7 $t^{\dagger}$         | 33.5 $t^{\dagger}$  |
|                       | 36.6 d           | 34.3 d                     | 35.1 d              |
| 9                     | 42.3 s           | 41.0 s                     | 40.8 s              |
| 10                    | 49.9 d           | 52.2 d                     | 52.1 d              |
| 11                    | 84.9 d           | 83.9 d                     | 84.4 d              |
| 12                    | 33.0 t           | 32.6 t                     | 31.9 t              |
| 13                    | 41.3 d           | 45.7 d                     | 45.6 d              |
| 14                    | 32.5 t           | $102.0 \ d$                | 102.4 d             |
| 15                    | 69.3 t           | 146.2 d                    | 146.4 d             |
| 16                    | 107.8 d          | 107.1 d                    | 108.2 d             |
| 17                    | 16.5 q           | $17.3 \ q$                 | 16.8 q              |
| 18                    | 42.7 t           | 43.6 t                     | 44.4 t              |
| 19                    | 61.7 t           | 61.6 <i>t</i>              | 62.2 t              |
| 20                    | 17.3 q           | 14.8 q                     | 15.5 q              |
| OAc                   | $170.0 \ s$      | $170.2 \ \hat{s}$          | 170.2 s             |
|                       | $170.2 \ s$      | 169.8 s                    | 169.4 s             |
|                       | 170.6 s          | $20.0 \ q$                 | 169.6 s             |
|                       | $21.0 \ q$       | $21.0 \ \dot{q}$           | 20.8 q              |
|                       | 21.0 q           | <u></u> '                  | +21.0 q             |
|                       | $21.1 \ \dot{q}$ | _                          | +21.1 q             |
| 1'                    | 175.0 s          | 166.3 s                    | 166.3 s             |
| 2'                    | 41.9 d           | 128.8 s                    | 128.7 s             |
| 3'                    | 26.5 t           | 137.4 d                    | 137.2 d             |
| 4'                    | 11.4 q           | 14.4 q                     | 14.4 q              |
| 5'                    | 14.1 q           | $12.1 \stackrel{\circ}{q}$ | 12.0 q              |

<sup>\*</sup>Multiplicities were determined by DEPT pulse sequence.

The presence of the hydroxyl group was confirmed by the acetylation of **2** yielding the derivative **4**, the IR spectrum of which was devoid of hydroxyl absorption (see Experimental) and whose <sup>1</sup>H NMR spectrum (Table 3) showed a paramagnetically shifted signal of H-3 $\alpha$  (5.53 *dd*,  $J_{3\alpha,2\beta}$ =7.3 Hz;  $J_{3\alpha,2\alpha}$ =4.2 Hz).

Important information about the conformation of the ring A of compound 2 was obtained from the vicinal coupling constants at  $\delta$  5.78 for H-1 $\alpha$  $(ddd, J_{1\alpha,10\beta} = 8.0 \text{ Hz}, J_{1\alpha,2\alpha} = 4.0 \text{ Hz}, J_{1\alpha,2\beta} = 4.8 \text{ Hz})$ and  $\delta$  4.32 for H-3 $\alpha$  (dd,  $J_{3\alpha,2\beta} = 7.2$ ;  $J_{3\alpha,2\beta} = 4.2$  Hz). Such behaviour of the above mentioned protons in the <sup>1</sup>H NMR spectra of the decaline part in 2 can be explained with distorted boat conformation ring A like other neo-clerodane diterpenoids [3, 6, 7]. All the above data were in complete agreement with structure such as 2 for areptin B. The absolute configurations of 1 and 2 were not ascertained. However, on biogenetic grounds, one could suppose that 1 and 2 belong to the neo-clerodane series like the other diterpenoids isolated from Ajuga species [1-7, 11, 12].

#### EXPERIMENTAL

Mps: uncorr. Plant materials was collected in August 1995, at Pirin Mountains near chalet rest-

<sup>\*</sup>Overlapped signals.

 $<sup>^{\</sup>ddagger}W_{1/2} = 17 \text{ Hz.}$ 

 $<sup>^{8}</sup>W_{1/2} = 17.2 \text{ Hz}.$ 

<sup>&</sup>lt;sup>†</sup>Assignments may be reversed.

Table 3. <sup>1</sup>H NMR data of compounds 2 and 4 (250 MHz, CDCl<sub>3</sub>, TMS as int. standard, chem. shifts in ppm, *J* in Hz)\*

| H           | 2                  | 4                   | $J_{ m H.H}$          | 2     | 4     |
|-------------|--------------------|---------------------|-----------------------|-------|-------|
| 1α          | 5.78 ddd           | 5.85 m <sup>+</sup> | 1α, 2α                | 4.0   | 4.0   |
| 2α          | ~1.67 <sup>+</sup> | ~1.69 <sup>†</sup>  | $1\alpha$ , $2\beta$  | 4.8   | 4.4   |
| 2β          | 2.45 ddd           | 2.52 ddd            | $1\alpha$ , $10\beta$ | 8.0   | 5.3   |
| 3α          | 4.32 dd            | 5.53 dd             | $2\alpha$ , $2\beta$  | 10.2  | 8.4   |
| 6β          | 4.79 dd            | 4.79 dd             | $2\beta$ , $3\alpha$  | 7.2   | 7.3   |
| 7α          | ~1.72 <sup>†</sup> | ~1.74 <sup>†</sup>  | $3\alpha$ , $2\alpha$ | 4.1   | 4.2   |
| 7β          | 2.01 t             | 2.03 t              | $6\beta$ , $7\beta$   | 4.8   | 4.9   |
| $8\beta$    | ~1.52 <sup>*</sup> | ~1.55 <sup>†</sup>  | $6\beta$ , $7\alpha$  | 12.4  | 12.6  |
| 10β         | 2.21 d             | 2.23 d              | 8β. 17                | 6.1   | 6.0   |
| 11α         | 4.28 ddd           | 4.17 dd             | 11α, 12A              | 11.7  | 11.7  |
| 13β         | 3.31 <sup>§</sup>  | 3.26 <sup>‡</sup>   | 11a, 12B              | 5.0   | 4.9   |
| 14          | $4.70 \ t$         | 4.72 t              | $13\beta$ , 14        | 2.5   | 2.5   |
| 15          | 6.36 <i>dd</i>     | 6.37 dd             | $13\beta$ , 15        | 2.1   | 2.3   |
| $16\beta$   | 5.87 d             | 5.85 d <sup>†</sup> | $13\beta$ , $16\beta$ | 6.2   | 6.2   |
| Me-17       | 0.89 d             | 0.86 d              | 14, 15                | 2.5   | 2.5   |
| 18A         | 2.91 d             | 2.93 d              | 18A, 18B              | 4.4   | 4.3   |
| 18 <b>B</b> | 3.02 d             | 2.99 d              | 19A. 19B              | 12.3  | 12.7  |
| 19A         | 4.17 br d          | 4.13 d              | $19A, 6\beta$         | < 0.3 | < 0.2 |
| 19B         | 5.02 d             | 5.06 d              | 3', 4'                | 6.9   | 6.8   |
| Me-20       | 0.94 s             | $0.99 \ s$          | 3', 5'                | 1.3   | 1.2   |
| OAc         | 2.11 s             | 2.13 s              | 4', 5'                | 0.9   | 0.8   |
|             | 1.95 s             | 1.94 s              |                       |       |       |
|             | _                  | 1.92 s              |                       |       |       |
| 3'          | 6.77 qq            | 6.80  qq            |                       |       |       |
| 4'          | 1.81 m             | 1.80 m              |                       |       |       |
| 5'          | 1.84 m             | 1.83 m              |                       |       |       |

<sup>\*</sup>Spectral parameters were obtained by first-order approximation. All assignments were confirmed by double resonance experiments.

house-"Banderitza" at 1998 msl (Bulgaria) and voucher specimens (No. 32723) are deposited in the Herbarium of the Department of the Botanica at the Higher Institute of Agriculture at Plovdiv, Bulgaria.

# Extraction and isolation of the compounds

Dried and powdered Ajuga reptans, aerial parts (1.1 kg) were extracted with Me<sub>2</sub>CO (71) at room temp. for 7 days. After removal of the solvent, the residue (48 g) was dissolved in 800 ml 60% aq Me<sub>2</sub>CO then cooled at 2-4° for 24 h and filtered. This process was repeated  $3 \times$ . The combined filtrates were extracted first with CHCl<sub>3</sub> (100 ml  $\times$  4) and the extract was washed with H2O, dried (Na<sub>2</sub>SO<sub>4</sub>) and evapd. in vacuo giving a residue (5 g). This residue was chromatographed on a silica gel column (Merck, No. 7734, deactivated with 10% H<sub>2</sub>O, 110 g), eluted with CHCl<sub>3</sub>-petrol (9:1) yielded areptin A (1, 41 mg) and with CHCl<sub>3</sub>-areptin B (2, 28 mg), ajugareptansin (500 mg). Further elution with CHCl3-MeOH (9.5:0.5) yielded ajugachin A (31 mg) and ajugorientin (5, 47 mg). Second, the combined extracts were extracted with n-BuOH  $(5 \times 100 \text{ ml})$ . The *n*-BuOH-extract (4.8 g) was chromatographed (CC. Merck, No. 7734, 10% H<sub>2</sub>O, 115 g). Elution with CHCl3-MeOH mixtures yielded crude 8-acetylharpagide (78 mg) and harpagide (43 mg). The previously known compounds were identified by their spectroscopic (IR, <sup>1</sup>H and <sup>13</sup>C NMR) data and by comparison (mmp, TLC) with authentic samples.

### Areptin A (1)

Mp 169–172° (EtOAc-*n*-hexane);  $[\alpha]_D$  20° 0° (CHCl<sub>3</sub>,  $\epsilon$  0.225); IR  $v_{max}^{KBr}$  cm<sup>-1</sup>: 3454, 3078, 2973, 2880, 1746 br, 1448, 1463, 1372, 1234 br, 1180, 1149, 1078, 1046, 1027, 984, 621. <sup>1</sup>H NMR (Table 1), <sup>13</sup>C NMR (Table 2). EIMS (70 eV, direct inlet) m/z (rel. int):  $[M]^+$  absent, 592  $[M-H_2O]^+$  (0.01), 509(0.1), 506(0.6), 420(0.3), 395(0.8), 318(0.5), 312(1), 225(4), 187(6), 185(4), 113(100), 111(28), 102(18), 101(15), 83(21), 69(19), 43(28). (Found: C 61.12; H 7.73.  $C_{31}H_{46}O_{12}$  requires: C 60.98; H 7.54%).

### Oxidation of 1 to 3

CrO<sub>3</sub>-pyridine oxidation of **1** (22 mg) in the usual manner yielded **3** (16 mg) as an amorphous solid, mp. 89–92°, [ $\alpha$ ]<sub>D</sub> 20°–3.7° (CHCl<sub>3</sub>, c 0.227), IR  $\nu_{\rm max}^{\rm KBr}$  cm<sup>-1</sup>: 3072, 2977, 2882, 1744 br, 1721, 1446, 1460, 1362, 1247, 1172, 1127, 1067, 1028, 981, 603. <sup>1</sup>H NMR (Table 1). EIMS (70 eV, direct inlet) m/z (rel. int): 608 [M]<sup>+</sup> (0.01), 529(0.03), 507(0.4), 506(0.3), 497(0.7), 495(0.8), 404(0.6), 393(1), 314(2), 236(6), 185(7), 113(60), 111(21), 102(16), 101(14), 83(28), 69(27), 43(100). (Found: C 61.47; H 7.58. C<sub>31</sub>H<sub>44</sub>O<sub>12</sub> requires: C 61.18; H 7.23%).

#### Areptin B (2)

An amorphous solid mp.  $91-95^{\circ}$ ,  $[\alpha]_D$   $20-21.2^{\circ}$  (CHCl<sub>3</sub>, c 0.211); IR  $v_{max}^{KBr}$  cm<sup>-1</sup>: 3473 (OH), 3078, 1707, 1651 (tigloyloxy), 1620, 734 (vinyl ether), 1738, 1256 (OAc and tigloyloxy), 2967, 2938, 2878, 1462, 1373, 1187, 1150, 1110, 1068, 1034, 905, 804. <sup>1</sup>H NMR (Table 3), <sup>13</sup>C NMR (Table 2). EIMS (70 eV, direct inlet) m/z (rel. int): 548 [M]<sup>+</sup> (0.01), 489(0.02), 449[M–OTig]<sup>+</sup> (0.06), 448[M – HOTig]<sup>+</sup> (0.1), 437(0.7), 338(0.5), 332(0.9), 278(1), 216(3), 198(4), 111(85), 83(50), 69(70), 55(40), 43(100). (Found: C 63.02; H 7.11.  $C_{29}H_{40}O_{10}$  requires: C 63.50; H 7.30%).

## Acetylation of 2 to 4

Compound 2 (25 mg) was treated with a mixt. of Ac<sub>2</sub>O (0.8 ml) and pyridine (1 ml) at room temp. for 48 h. Work-up in the usual manner gave 4 (22 mg). Amorphous solid, mp.  $86-89^{\circ}$ ,  $[\alpha]_D$  $20-18.09^{\circ}$  (CHCl<sub>3</sub>, c 0.257); IR  $v_{\text{max}}^{\text{KBr}}$  cm<sup>-1</sup>: 3061, 2971, 2934, 1741, 1707, 1652, 1618, 1445, 1369, 1250, 1143, 1093, 1071, 1037, 1011, 949, 899, 735.1H NMR (Table 3), 13C NMR (Table 2). EIMS (70 eV, direct inlet) m/z (rel. int): 548 [M] absent,  $499[M - OTig]^+(0.02)$ , 498(0.01),  $489[M - C_6H_7O_2]^+$ (0.01),390(0.2), 387(0.3), 314(0.3), 258(2), 111(70), 83(58), 69(40), 55(38), 43(100). (Found: C 63.27; H 7.41. C<sub>31</sub>H<sub>42</sub>O<sub>11</sub> requires: C 63.05; H 7.12%).

<sup>\*</sup>Partially overlapped signals.

 $<sup>^{\</sup>ddagger}W_{1/2} = 18 \text{ Hz}.$ 

 $<sup>{}^{\</sup>S}W_{1:2} = 21 \text{ Hz}.$ 

#### REFERENCES

- Boneva, I. M., Mikhova, B. P., Malakov, P. Y., Papanov, G. Y., Duddeck, H. and Spassov, S. L., *Phytochemistry*, 1990, 29, 2931.
- Malakov, P. Y., Papanov, G. Y., de la Torre, M. C. and Rodriguez, B., *Phytochemistry*, 1991, 30, 4083.
- Malakov, P. Y., Papanov, G. Y., Perales, A., de la Torre, M. C. and Rodriguez, B., Phytochemistry, 1992, 31, 3151.
- Bozov, P. I., Papanov, G. Y., Malakov, P. Y., de la Torre, M. C. and Rodriguez, B., Phytochemistry, 1993, 34, 1173.
- 5. Boneva, I. M., Malakov, P. Y. and Papanov, G. Y., *Phytochemistry*, 1998, 47, 303.

- 6. Camps, F., Coll, J., Cortel, A. and Messeguer, A., Tetrahedron Letters, 1979, 19, 1709.
- 7. de la Torre, M. C., Rodriguez, B., Bruno, M., Piozzi, F., Vassallo, N., Bondi, M. I. and Servettaz, O., *Phytochemistry*, 1997, **45**, 121.
- 8. Scarpati, M. C., Guiso, M. and Panizzi, L., *Tetrahedron Letters*, 1956, 3439.
- Lichti, H. and Wartburg, A., Helv. Chim. Acta, 1966, 49, 1552.
- Bianco, A., Casiola, P., Guiso, M., Iavarone,
   C. and Trogolo, C., Gazz. Chim. Ital., 1981,
   201.
- Camps, F., Coll, J. and Cortel, A., Chem. Letters, 1981, 1093.
- Camps, F., Coll, J. and Cortel, A., Chem. Letters, 1982, 1053.