

PII: S0031-9422(98)00161-7

PENTACYCLIC TRITERPENOIDS FROM RUBUS XANTHOCARPUS

BAO-ZHI LI, BIN-GUI WANG and ZHONG-JIAN JIA*

Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P.R. China

(Received 17 December 1997)

Key Word Index—Rubus xanthocarpus; Rosaceae; pentacyclic triterpenoid; ursane; glucosyl ester.

Abstract—Eight pentacyclic triterpenoids have been isolated from the aerial parts of *Rubus xanthocarpus* and four of them are new compounds. Their structures were elucidated on the basis of spectral data and chemical transformations as: $1\alpha,2\alpha,3\beta,19\alpha$ -tetrahydroxyurs-12-en-28-oic and, $2\alpha,3\alpha,19\alpha,24$ -tetrahydroxyurs-12-en-28-oic acid-28-*O*-β-D-glucopyranusyl ester, $2\alpha,3\alpha,19\alpha$ -trihydroxyurs-12-en-24-formyl-28-oic acid-28-*O*-β-D-glucopyranosyl ester and 2,3-*O*-isopropylidenyl-2α,3α,19α-trihydroxyurs-12-en-28-oic acid. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

Rubus xanthocarpus grows widely in the Northern regions of China [1]. The fruits, seeds, roots and leaves of this plant have been used as folk medicine for their anti-cancer and anti-bacterial activities for a long time in China [2]. Previous chemical investigations of this genus showed that ursane and oleatriterpenoid saponins are the components [3-6]. However, no chemical study of the species of Rubus xanthocarpus has been reported previously. Here we report the isolation and structural elucidation of four new compounds, $1\alpha, 2\alpha, 3\beta, 19\alpha$ -tetrahydroxyurs-12-en-28-oic acid (1), 2α,3α,19α,24-tetrahydroxyurs-12-en-28-oic acid-28- $O-\beta$ -D-glucopyranosyl ester (2), $2\alpha, 3\alpha, 19\alpha$ -trihydroxyurs-12-en-24-formyl-28-oic acid-28-O-β-D-glucopyranosyl ester (3), 2, 3-O-isopropylidenyl- $2\alpha, 3\alpha, 19\alpha$ -trihydroxyurs-12-en-28-oic acid (4), and of four known compounds (5-8) from this species.

RESULTS AND DISCUSSION

The *n*-butanol soluble part of the methanol extract from the aerial parts of *R. xanthocarpus* was rechromatographed over silica gel to afford compounds 2, 3, 4 and 6. Compounds were treated with diazomethane and subjected to CC to give compounds 1a, 5a, 7a and 8a.

The known compounds were characterized as methyl $2\alpha,3\alpha,19\alpha,23$ -tetrahydroxyurs-12-en-28-oate (5a) [4], $2\alpha,3\beta,19\alpha$ -trihydroxyurs-12-en-28-oic acid 6 [7], dimethyl $2\alpha,3\beta,19\alpha$ -trihydroxyurs-12-en-24,28-dioates (7a) [8] and $2\alpha,3\beta,19\alpha$ -trihydroxyurs-12-en-24,28-dioic acid-24-methyl ester-28-O- β -D-glucopyr-

2 R=CH₂OH

3 R=CHO

^{*}Author to whom correspondence should be addressed.

Table 1. 13C NMR and DEPT data for compounds 1a, 2, 3 and 4

C	1a ^a	DEPT	2 ^b	DEPT	3 ^b	DEPT	4 ^a	DEPT
1	71.2	СН	42.2	CH₂	42.7	CH ₂	42.1	CH ₂
2	78.9	CH	66.2	CH	72.6	CH	71.6	CH
3	80.7	CH	78.9	CH	78.9	СН	82.3	CH
4	40.6	C	45.1	C	54.0	C	35.4	C
5	53.1	CH	49.5	CH	48.6	CH	49.4	CH
6	18.3	CH_2	19.1	CH_2	18.2	CH_2	18.4	CH_2
7	32.6	CH_2	33.9	CH_2	33.7	CH_2	32.3	CH_2
8	42.9	C	40.8	C	40.5	C	40.0	C
9	47.8	CH	47.8	CH	46.5	CH	46.5	CH
10	37.7	C	38.6	C	38.7	C	38.0	C
11	25.5	CH_2	24.3	CH_2	26.0	CH_2	23.5	CH_2
12	129.8	CH	128.3	CH	128.3	CH	129.3	CH_
13	137.3	C	139.2	C	139.2	C	137.7	C
14	41.1	C	42.1	C	42.2	C	41.2	C
15	28.2	CH_2	29.1	CH_2	29.0	CH_2	28.1	CH_2
16	26.0	CH_2	26.0	CH ₂	26.6	CH_2	25.3	CH_2
17	47.9	C	48.6	C	48.6	C.	47.7	C -
18	53.1	CH	54.4	CH	54.4	CH	52.6	CH
19	73.2	C	72.6	C	72.7	C	72.7	C
20	41.1	CH	42.1	CH	42.1	CH	41.1	CH
21	27.3	CH_2	26.7	CH_2	26.0	CH_2	25.9	CH_2
22	37.4	CH_2	37.7	CH_2	37.6	CH_2	37.5	CH_2
23	28.2	CH_3	24.4	CH ₃	24.6	CH ₃	28.8	CH_3
24	16.1*	CH_3	65.1	CH ₂	205.4	C	23.8	CH_3
25	12.0	CH ₃	17.3*	CH_3	16.6*	CH_3	15.3*	CH ₃
26	16.6*	CH ₃	17.2*	CH ₃	17.5*	CH ₃	16.7*	CH ₃
27	24.6	CH ₃	24.4	CH ₃	20.4	CH ₃	24.4	CH ₃
28	178.4	C	176.9	C	176.9	c	183.7	C
29	27.4	CH_3	26.9	CH ₃	26.9	CH_3	26.5	CH ₃
30	17.1*	CH_3	16.6*	CH ₃	17.5*	CH ₃	16.1*	CH ₃
28-		. ,					isopropylidenyl	,
CO ₂ Me	51.6	CH_3					1 13 3	
glu-l'		.,	95.8	CH	95.8	СН	28.3	CH_3
2'			74.0	CH	74.0	CH	27.4	CH ₃
3′			79.2	CH	79.2	CH	107.0	C.,
4′			71.2	CH	71.2	CH		-
5′			78.9	CH	78.9	CH		
6′			62.3	CH ₂	62.3	CH₂		

a Run in CDCl3

anosyl (8a) [9] by direct comparison of their spectral data (¹H, ¹³C NMR and DEPT) with those reported, respectively.

Compound 1a was obtained as an amorphous powder. Its IR spectrum showed the absorption bands for hydroxyl groups (3435 cm⁻¹), ester carbonyl group (1725 cm⁻¹), and a double bond (1630 cm⁻¹) in the molecule. The EI mass spectrum displayed a molecular ion peak at m/z 518 [M]⁺, which suggested the molecular formula $C_{31}H_{50}O_6$, and ions at m/z 458 [M-60]⁺, 440, 278 and 260. This result was consistent with the ¹³C NMR and DEPT spectra (Table 1). The characteristic retro-Diels-Alder fragment peaks at m/z 239 (A/B ring) and 278 (D/E ring) indicated a double bond located at C-12, C-13, which suggested a ursane or oleanane skeleton for compound la [10], and trioxygenated substitution on rings A/B, one oxygenated and methyl carbonyl ester substitution on rings D/E. The ¹H NMR spectrum of compound **1a** showed a broad singlet at δ 2.59 (1H, s, H-18), which is a characteristic signal for the H-18 of an ursane type with 19-O-substitution, together with six tertiary methyls at δ 0.69, 0.84, 1.02 (2Me),

1.22, 1.27, a methyl doublet at δ 0.94 (3H, d, J = 6.6 Hz, Me-30), the ester methyl at δ 3.61 and the olefinic proton at δ 5.37 (1H, t, J = 3.8 Hz, H-12). Furthermore, the ¹³C NMR spectrum of 1a showed seven methyls and one methyl ester signal, also the olefinic carbon signals at δ 129.8 (CH, C-12) and 137.3 (C, C-13), all of which suggested a 19α-hydroxyurs-12-en type of triterpenoid for compound 1a [11]. The acetylation of 1a gave 1b. In the ¹H NMR spectrum of **1b**, three acetoxyl methyl signals at δ 1.94, 2.00 and 2.15 could be observed [12]. In addition, three acetoxy-bearing methine protons exhibited two doublets at δ 4.11 (J = 8.0 Hz) and δ 5.22 (J = 2.7 Hz) and a double doublet at δ 5.03 (J = 8.0, 2.7 Hz) were assignable to H-3 α , H-1 β and H-2 β , respectively. Three oxygenated methines and one oxygenated quartery carbon were also indicated in the 13C NMR spectrum of 1a at δ 71.2, 78.9, 80.7 and 73.2. Thus, the structure of la was elucidated as methyl- $1\alpha, 2\alpha, 3\beta, 19\alpha$ -tetrahydroxyurs-12-en-28-oate, the naturally occurring compound 1 should be $1\alpha, 2\alpha, 3\beta, 19\alpha$ -tetrahydroxyurs-12-en-28-oic acid.

^b Run in pyridine-d₅

^{*} interchangeable values in the same column.

Compound 2, another amorphous powder, revealed the presence of hydroxyl group (3388 cm⁻¹), ester carbonyl group (1726 cm⁻¹), trisubstituted double bond (1653 cm⁻¹) and glucosidic linkage (1076 cm⁻¹) in its IR spectrum. The FAB mass spectrum showed peaks at m/z 689 $[M + Na]^+$, $[M + Li]^{+}$ and $504 [M - glu]^{+}$, which suggested the molecular formula C₃₆H₅₈O₁₁ for 2, and this suggestion was further confirmed by the ¹³C NMR and DEPT data (Table 1). The ¹³C NMR spectrum of 2 showed, in addition to 30 signals consistent with a triterpenoid structure, six peaks in the range at δ 62-96 (95.8, 74.0, 79.2, 71.2, 78.9, 62.3) corresponding to the presence of a glucose moiety and the anomeric carbon signal at δ 95.8 (CH) showed an ester linkage with the aglycone [13]. The ¹H NMR spectrum of compound 2 showed a singlet at δ 2.89, the characteristic signal for the H-18 of ursane triterpenoid with 19α-hydroxyl substitution, together with a pair of double bond signals at δ 128.3 (CH, C-12) and 139.2 (C, C-13) in the ¹³C NMR spectrum, suggested a 19α-hydroxyurs-12-en skeleton for the aglycone of compound 2 [11]. On alkaline hydrolysis compound, 2 gave D-glucose as the sugar component which was identified by direct comparison with an authentic sample.

Comparison of the ¹³C NMR and DEPT spectral data of 2 with those of $2\alpha,3\beta,19\alpha,24$ -tetrahydroxacid-28-O-β-D-glucopyranosyl vurs-12-en-28-oic ester, previously identified from the leaves of Rubus accuminatus [3], showed that their structures were similar, except that the resonance of the hydroxylated carbons C-2 and C-3 of 2 were shifted upfield at δ 66.2 for C-2 and δ 78.9 for C-3, but the known compound was at δ 68.7 for C-2 and δ 85.8 for C-3. Furthermore, the ¹H NMR spectrum of 2 showed signals at δ 3.83 (m, H-2 β), δ 3.57 (br.s, H-3 β), which suggested the α -configuration for the two hydroxy groups on ring A. Compounds reported with a 2α, 3α-diol system [4] had the same chemical shifts for C-2 and C-3 as those for compound 2. This also confirmed the configuration of 2α , 3α -diol for compound 2. The ¹H NMR spectrum showed that the glucosyl group was linked with the aglycone in the β -configuration by the anomeric proton at δ 6.30 (d, J = 8.2 Hz) The ¹H NMR spectrum also revealed the presence of five methyl signals as singlets at α 1.04, 1.16, 1.35, 1.59 and 1.65, a methyl signal as a doublet at δ 1.04 and one olefinic proton signal at δ 5.52 (1H, br.s, H-12). Thus, the structure of compound 2 was elucidated as 2α, 3α, 19α, 24-tetrahydroxyurs-12-en-28-oic acid-28-O-β-D-glucopyranosyl ester.

Compound 3, obtained also as an amorphous powder, revealed the presence of a hydroxyl group (3422 cm⁻¹), a carbonyl group (1713 cm⁻¹), a trisubstituted double bond (1647 cm⁻) and a glucosidic linkage (1068 cm⁻¹) in its IR spectrum. The FAB-

mass spectrum showed ions at m/z 687 [M + Na]⁺, $671 [M + Li]^+$ and $502 [M - glu]^+$. This result was consistent with the molecular formula C₃₆H₅₆O₁₁ previously established on the basis of the ¹³C NMR and DEPT spectra (Table 1). Its 13C NMR spectrum showed, in addition to 30 signals consistent with triterpenoid, almost the same six peaks in the range δ 62-96 corresponding to the presence of a glucose moiety and ester linkage with the aglycone as those of compound 2. On alkaline hydrolysis, compound 3 gave D-glucose as the sugar component which was identified by direct comparison with an authentic sample. Furthermore, the 'H NMR spectrum showed the glucopyranosyl group was linked in the β -configuration for its anomeric proton at δ 6.30 (d, J = 7.9 Hz). According to the olefinic carbon signals at δ 128.3 (CH, C-12) and 139.2 (C, C-13) in its ¹³C NMR spectrum, compound 3 had a ursane skeletone [11]. The ¹H NMR spectrum of 3 showed signals of two hydroxy-bearing methines at δ 4.05 (m, H-2 β) and 3.60 (br.s, H-3 β), a sharp singlet at δ 2.89 for the 18-H of a 19α-hydroxyurs-12-en system, five methyl singlets, one methyl doublet at δ 1.04 (J = 6.4 Hz, Me-30) and an obvious aldehyde proton signal at δ 10.5, consistent with the presence of an aldehyde group, which was confirmed by the 13 C NMR signal at δ 205.4 for a formyl group. Comparison of the ¹³C NMR and DEPT spectral data of the aglycone moiety of compound 3 with those of compound 2, showed that their structures were very similar, and 3 had the 2α , 3α , 19α -trihydroxyurs-type of structure. In addition, comparison of the spectral data of compound 3 with those of the related compounds [4,5], showed that the formyl group could be accommodated at the C-24 position in compound 3. Thus, compound 3 was determined to $2\alpha, 3\alpha, 19\alpha$ -trihydroxyurs-12-en-24-formyl-28-oic acid-28-*O*-β-D-glucopyranosyl ester.

Compound 4 was obtained as colourless crystals. The IR spectrum indicated the presence of a hydroxyl group (3543 cm⁻¹), ester carbonyl group (1728 cm⁻¹), trisubstituted double bond (1675 cm⁻¹) and ether bond (1048 cm⁻¹). The EI mass spectrum displayed a molecular ion peak at m/z 528 [M]⁺ consistent with the molecular formula C33H52O5, which was confirmed by 13C NMR and DEPT data (Table 1). Also the m/z 482 $[M-COOH-1]^+$ and the characteristic retro-Diels-Alder fragment peaks at m/z 246 and 264, indicated an ursane or oleanane skeleton for compound 4 [10] with dioxygenated substitution on rings A/B, one oxygenated substitution and one ester methyl substitution on rings D/E. Its ¹³C NMR and DEPT spectra showed a pair of olefinic carbon signals at δ 129.3 (CH, C-12) and 137.7 (C, C-13), one carbonyl signal at δ 183.7 (C-28), three hydroxylated carbon signals at δ 71.6 (CH, C-2), 82.3 (CH, C-3), 72.7 (C, C-19), and nine methyl signals. Comparison of the 13C NMR data of 4 with those of the related known compounds $2\alpha, 3\alpha, 19\alpha$ -trihydroxyurs-12-en-28-oic acid suggested their structures were similar except for the two additional methyls (δ 28.3, 27.4) and one quaternary carbon (δ 107.0) in 4. These signals suggested an extra isopropylidene moiety in 4. Since the C-2 and C-3 signals were shifted downfield about 5.5, and 3.0 ppm, respectively, the position of the isopropylidene was attached to the oxygenated carbon atoms at C-2 and C-3. The ¹H NMR spectrum showed a characteristic broad singlet at δ 2.54 (1H, s, H-18), together with nine methyls, an olefinic proton at δ 5.34 (br.s, H-12), two methine protons at δ 4.22 (m, H-2 β) and 3.70 (d, J = 4.3 Hz, H-3 β). In conclusion, the structure of compound 4 was identified as 2, 3-O-isopropylidenyl- 2α , 3α , 19α trihydroxyurs-12-en-28-oic acid and it is considered that it could be a artifact.

EXPERIMENTAL

General

Mps: uncorr.; IR (film, MeOH): Nicolet FT-170 SX; Optical rotations: J-20C; 1 H NMR (400 MHz), 13 CNMR (400 MHz) and DEPT spectra: Bruker AM-400 FT-NMR, CDCl₃ or pyridine- d_5 as solvent, TMS as int. standard; FABMS and EIMS: VG-ZAB-HS.

Plant material

Aerial parts of *R. Xanthocarpus* were collected in September 1994 at Zhang county, Gansu province, People's Republic of China. It was identified by Prof. Zexiang Peng, Department of Biology, Lanzhou University. A voucher specimen was deposited in the Institute of Organic Chemistry, Lanzhou University.

Extraction and purification

Powdered, dried aerial parts of R. xanthocarpus (5 kg) were extracted successively with MeOH at room temp (8 days ×3) and the MeOH extracts were taken to dryness to give 550 g of extract. A suspension of the resulting extract in water (11) was washed 3x with petrol (800 ml, 500 ml, 600 ml) and then extracted with EtOAc $(3 \times 500 \text{ ml}, \text{ each time})$ and finally extracted with n-BuOH saturated with H_2O (3 × 500 ml, each time). The *n*-BuOH extract was taken to dryness to give the crude glycosidic fraction (185 g), which was chromatographed on silica gel (100-180 mesh) using a step-gradient of CHCl₃-MeOH-H₂O (30:1:1 to 10:10:1) and finally MeOH to give six frs.(I-VI). Fr. II was divided into two parts fr. II-1 and fr. II-2. Compound 4 was obtained as a pure triterpene from fr. II-1 by repeated CC on silica gel CC with petrol-Me₂CO (10:3) and further purified by prep. TLC (silica GF₂₅₄) with petrol-Me₂CO (10:3). Fr. II-2 was separated by repeated CC on silica gel with CHCl₃–MeOH–H₂O (13:1:0.05) and gave compound **6**. The rest of fr. II-2 was treated with an ethereal solution of CH₂N₂ to yield methyl esters. The methyl esters were separated by CC on silica gel, first with CHCl₃–MeOH–H₂O (27:1:0.05), then with petrol–Me₂CO (46:17) and yielded **1a**, **5a** and **7a**. From fr. III, compound **3** was obtained by CC on silica gel with CHCl₃–MeOH–H₂O (11:1:0.05). Finally, fr. IV was also treated with an ethereal solution of CH₂N₂ and compounds **2** and **8a** were obtained from the esterified fr. IV by separating on silica gel with CHCl₃–MeOH–H₂O (16:1:0.05).

Methyl $1\alpha,2\alpha,3\beta,19\alpha$ -tetrahydroxyurs-12-en-28-oate (1a)

Amorphous powder, $[\alpha]_0^{20}$: -21 (CHCl₃, c 0.27). IR γ_{max} cm⁻¹: 3435, 1725, 1630. EIMS, m/z (rel.int.): 518[M]⁺(3), 458[M-COOMe-1]⁺(8), 440(5), 278(2), 260(2), 239(7), 221(5), 219(9), 203(7). ¹H NMR: δ 0.94 (d, 3H, J = 6.6 Hz, Me-30), 0.69, 0.84, 1.02 (2 × Me), 1.22, 1.27 (s, 3H each, Me-29, 27, 26, 25, 24, 23), 2.59 (br.s, 1H, H-18), 5.37 (t, 1H, J = 3.8 Hz, H-12), 3.61 (s, 3H, OCH₃). ¹³C NMR and DEPT data see Table 1.

Triacetate (1b) of compound (1a)

¹H NMR: δ 4.11 (*d*, 1H, J = 8.0 Hz, H-3α), 5.03 (*dd*, 1H, J = 8.0, 2.7 Hz, H-2β), 5.22 (*d*, 1H, J = 2.7 Hz, H-1β), 1.94, 2.00, 2.15 (*s*, 3H each, 3×OAc).

 $2\alpha,3\alpha,19\alpha,24$ -tetrahydroxyurs-12-en-28-oic acid-28-O- β -D-glucopyranosyl ester (2)

Amorphous powder, mp: $226-228^{\circ}\text{C}$, $[\alpha]_{D}^{20}$: -27 (MeOH, c 0.315). IR γ_{max} cm⁻¹: 3388, 1726, 1653, 1076. FABMS, m/z (rel.int.): 689[M + Na]⁺, 673[M + Li]⁺, 504[M-glu]⁺. ¹H NMR: δ 6.30 (d, 1H, J = 8.2 Hz, H-1'), 5.52 (br.s, 1H, H-12), 3.83 (m, 1H, H-2 β), 3.57 (br.s, 1H, H-3 β), 4.02–4.62 (m, 7H, Me-24, H-2'-6'), 2.89 (s, 1H, H-18), 1.65, 1.59, 1.35, 1.16, 1.04 (s, 3H each, Me-23, 25, 26, 27, 29), 1.04 (d, 3H, J = 6.4 Hz, Me-30). ¹³C NMR and DEPT data see Table 1.

 $\alpha,3\alpha,19\alpha$ -Trihydroxyurs-12-en-24-formyl-28-oic acid-28-O- β -D-glucopyranosyl ester (3)

White amorphous powder, mp: $144-146^{\circ}$ C, $[\alpha]_{D}^{20}$: -64 (MeOH, c 0.12). IR γ_{max} cm⁻¹: 3422, 1713, 1647, 1068. FABMS, m/z (rel. int.): $687[\text{M} + \text{Na}]^+$, $671[\text{M} + \text{Li}]^-$, $502[\text{M} - \text{glu}]^+$. ¹H NMR: δ 10.5 (s, 1H, H-24), 6.30 (d, 1H, J = 7.9 Hz, H-1'), 5.50 (s, 1H, H-12), 4.05 (m, 1H, H-2 β), 3.60 (br.s, 1H, H-3 β), 4.10-4.60 (m, 5H, H-2'-6'), 2.89 (s, 1H, H-18), 1.57, 1.52, 1.33, 1.18, 0.96 (s, 3H each, Me-23, 25, 26, 27, 29), 1.04 (d, 3H, J = 6.4 Hz, Me-30). ¹³C NMR and DEPT data see Table 1.

2,3-O-isopropylidenyl- 2α , 3α , 19α -trihydroxyurs-12-en-28-oic acid (4)

Amorphous crystal. IR γ_{max} cm⁻¹: 3543, 1728, 1675, 1048. EIMS, m/z (rel. int.): 528[M]⁺ (4), 482[M-HCOOH]⁻ (12), 352(3), 264(5), 246(10), 223(8), 149(100). ¹H NMR: δ 5.34 (br.s, 1H, H-12), 4.22 (m, 1H, H-2 β), 3.70 (d, 1H, J = 4.3 Hz, H-3 β), 2.54 (s, 1H, H-18), 1.49, 1.33, 1.22, 1.07, 0.89, 0.88 (s, 3H each, Me-23, 24, 25, 26, 27, 29), 0.96 (d, J = 6.6 Hz, Me-30), 0.70, 0.89 (s, 3H each, 2 × Me of isopropylidenyl). ¹³C NMR and DEPT data see Table 1.

Acknowledgements—This work was financially supported by the National Natural Science Foundation of China.

REFERENCES

- Yu, T. T., Lu, T. C. and Li, C. L., Flora Reipublicae Popularis Sinicae, Vol. 37. Science Press, Beijing, 1985.
- 2. Jiangsu College of New Medicine, A Dictionary of Traditional Chinese Medicine. Shanghai People's Publishing House, Shanghai, 1977.

- 3. Zhou, X. H., Kasai, R., Ohtani, K., Tanaka, O., Nie, R. L., Yang, C. R., Zhou, J. and Yamasaki, K., *Phytochemisty*, 1992, **31**, 3642.
- 4. Seto, T., Tanaka, T., Tanaka, O. and Naruhashi, N., *Phytochemistry*, 1984, **23**, 2829.
- Durham, D. G., Liu, X. J. and Richards, R. M., Phytochemistry, 1994, 36, 1469.
- Durham, D. G., Liu, X. J. and Richards, R. M., Phytochemistry, 1996, 42, 505.
- Kuang, H. X., Kasai, R., Ohtani, K., Liu, Z. S., Yuan, C. S. and Tanaka, O., Chem. Pharm. Bull., 1989, 37, 2232.
- 8. Francisca, W. L. A. and Mirian, P. S., Journal of Natural Products, 1990, 53, 1436.
- Fumiko, A. and Tatsuo, Y., Chem. Pharm. Bull., 1989, 35, 1748.
- Cong, P. Z., Application of MS in Natural Organic Compounds. Science Press, Beijing, 1987, p. 684.
- 11. Doddrell, D. M., Khong, P. W. and Lewis, K. G., Tetrahedron Letters, 1974, 27, 2381.
- 12. Pu, X. Y. and Zhou, J., Yunnan Zhiwu Yanjiu (Acta Botanica Yunnanica), 1987, 9, 503.
- Yamasaki, K., Kohda, H., Kobayashi, T., Kasai, R. and Tanaka, O., Tetrahedron Letters, 1976, 13, 1005.