

PII: S0031-9422(98)00234-9

MELIACIN BUTENOLIDES FROM TRICHILIA ESTIPULATA

Diógenes A. G. Cortez, João B. Fernandes,†* Paulo C. Vieria,†
M. Fátima das G. F. da Silva,† Antonio G. Ferreira,† Quézia B. Cass‡ and
José Rubens Pirani‡

Departamento de Farmácia e Farmacologia, Universidade Estadual de Maringá, Avenida Colombo nº 5790, CP 331, CEP 87020-900, Maringá, PR Brazil; †Departamento de Química, Universidade Federal de São Carlos, CP 676. CEP 13565-905, São Carlos, SP, Brazil; ‡Departamento de Botânica, Insituto de Biociências, Universidade de São Paulo, São Paulo, Brazil

(Received in revised form 26 January 1998)

Key Word Index—*Trichilia estipulata*; Meliaceae; stem bark; leaves; meliacin butenolides; dammaranes; coumarins; sterols.

Abstract—The stem bark of *Trichilia estipulata* afforded three novel meliacin butenolides, 7α -23-dihydroxy-3-oxo-24,25,26,27-tetranorapotirucall-1,14,20(22)-trien-21,23-olide, 7-deacetyl-23-hydroxyneotrichilenonelide and 7-deacetyl-21-hydroxyneotrichilenonelide, which were identified on the basis of spectroscopic analyses. Scopoletin, isofraxidin, 7-oxo-24β-, 7-oxo-24α-sitosterols and 3β-O-β-D-glucopyranosylsitosterol were also isolated. The known compounds, velozonol, carnaubadiol, velozona, carnauba-21-ol-3-one, isofouqueriol, isofouquerinone, sitostenone and sitosterol were isolated from the leaves. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

As a part of our continuous investigation into the chemical composition of Brazilian Meliaceae, we have recently reported the isolation of aryltetralin lignan glycosides from *Trichilia estipulata* [1]. Further studies with this species have now led to the isolation of three new meliacin butenolides.

RESULTS AND DISCUSSION

A methanol-soluble fraction of the dichloromethane extract of the stem bark was purified by repeated column chromatography on silica gel to give 3β -O- β -D-glucopyranosylsitosterol and two mixtures of meliacin butenolides (1–4).

The components of the major mixture were identified as 1 and 2 on the basis of the following data. The ¹H NMR spectrum (Table 1) showed signals (δ 5.46 m, 1H, 6.29 br s, 1 H; 6.63–6.65 m, 2 H) for a γ -hydroxybutyrolactone. This was corroborated by the ¹³C NMR spectrum (Table 2) which showed signals for two hemiacetal carbons (δ 98.5, C-21 and 96.3, C-23) and two α - β -unsaturated- γ -lactones (δ 137.1, C-20; 170.1, C-21; 145.8/146.0, C-22 and 166.6, C-20; 119.7, C-22; 170.8, C-23). These signals

indicated the presence of 21-hydroxy- and 23-

hydroxy-20(22)-ene-21,23-γ-lactones. Acetylation of

1 and 2 with acetic anhydride in pyridine gave acet-

ates 1a and 2a, which could be separated by pre-

parative HPLC. Butenolide 1a showed all the

spectral data (Tables 1 and 2) of 7α,21-diacetoxy-3-

oxo-24,25,26,27-tetranorapotirucall-1,14,20(22)-

trien-21,23-olide, which has previously been isolated from *Picrolemma granatensis* (Simaroubaceae) as the deacetyl compound but it was also transformed into 1a [2]. The mass spectrum of 2a indicated a

molecular formula $C_{30}H_{38}O_7$ ([M]⁺ m/z 510), which

strongly suggested an isomer of 1a. The principal

change observed in the ¹H NMR of 2a was the

deshielded resonances δ 6.94 and 6.88 for a γ -

hydroxybutyrolactone. This was also supported by

the ¹³C NMR spectrum (Table 2), which agreed clo-

sely with published data for a 23-γ-hydroxybuteno-

lide moiety related to that of nimocinolide (5) [3].

The structure of the new natural product was thus

established as 7α,23-dihydroxy-3-oxo-24,25,26,27-

tetranorapotirucall-1,14,20(22)-trien-21,23-olide (2).

The second mixture of butenolides exhibited spectral data similar to 1 and 2. The 13 C NMR spectrum (Table 2) showed signals at δ 217.4 and 220.1, characteristic of a ring D15-one, as in the model 7-acetylneotrichilenone (6) [4], instead of a ring D14-ene. This mixture was submitted to preparative TLC affording 3 and 4, in addition to a small

^{*}Author to whom correspondence should be addressed.

1:
$$R = R_1 = R_2 = H$$

1a: $R = R_1 = Ac$, $R_2 = H$

2: R = R₁ = R₂ = H 2a: R = R₁ = Ac, R₂ = H 5: R = H, R₁ = Ac, R₂ = OH

4: R = H 4a: R = Ac

amount of 3, that could not be separated. The ¹H and ¹³C NMR spectra of 3 showed deshielded resonances (δ 146.0 C-22 and δ 6.94 H-22) for a 23-yhydroxybutenolide moiety. The new natural product is therefore 7-diacetyl-23-hydroxyneotrichilenonelide (3). The ¹H and ¹³C NMR spectra of 4 with a trace of 3, in addition to the signals described above for 3, revealed significant upfield shifts for H-22 (δ 6.16) and C-22 (δ 120.1). From these data **4** was characterized as 7-deacetyl-21-hydroxyneotrichilenonelide. As a further confirmation of the assignments, the above mixture was acetylated and subsequently purified by preparative HPLC to yield two pure acetate derivatives, whose UV, IR, ¹H NMR and mass spectra were consistent with structures 3a and 4a. However, they were obtained in amounts insufficient for ¹³C NMR.

From the medium polar fraction of the dichloromethane extract of the stem bark, two known coumarins, scopoletin [5] and isofraxidin [6], and a

mixture of 7-oxo-24 β - and 7-oxo-24 α -sitosterols [7, 8] were obtained.

The hexane extract of the leaves afforded the dammarane triterpenoids, velozonol [9], carnaubadiol [10], velozona and carnauba-21-ol-3-one [11], and the sterols, sitostenone and sitosterol. From the dichloromethane extract, isofouqueriol [12] and isofouquerione [13] were obtained. The occurrence of meliacin butenolides is a feature of *Trichilia* [14].

EXPERIMENTAL

General

IR: KBr. ¹H and ¹³C NMR: 200 and 50 MHz, respectively, with TMS as standard.

Plant material

Trichilia estipulata L. was collected in Cachoeiro do Itapemirim, ES, Brazil. A voucher is deposited

Table 1. ¹H NMR chemical shifts for compounds 1 (C₂D₆CO, 200 MHz), 1a, 2a, 3, 4, 3a and 4a (CDCl₃, 200 MHz)

Н	1*	la	2*	2a	3	4*	3ª	4a
1	6.78 d(10)	7.09 d(10)	6.78 d(10)	7.13 d(10)	7.10 d(10)	7.60 d(10)	7.15 d(10)	7.12 d(10)
2	5.38 d(10)	5.84 d(10)	5.38 d(10)	5.38 d(10)	5.80 d(10)	5.78 d(10)	5.88 d(10)	5.89 d(10)
7	3.67 m	5.37 m	3.65 m	5.34 m	3.98 m	3.79 m	4.92 m	3.90 m
14						21.7.1.	2.46 s	2.46 s
15	$5.20 \ m$	5.23 m	5.19 m	5.24 m			21.00	2.10.
17					3.66 m	3.54 m	3.60 m	3.51 m
21	5.46 m	6.85 br s				5.88 m		6.90 br s
22	6.62 m	5.99 br s	6.64 m	6.94 m	6.94 br s	6.16 br s	6.95 br s	6.13 br s
23			6.29 br s	6.88 m	6.15 m		6.94 br s	0.12 0. 5
7-Ac		1.94 s		1.94 s			2.10 s	2.10 s
21-Ac		2.15 s						2.20 s
23-Ac				2.14 s			2.24 s	
Me	$0.80 \ s$	1.19 s	$0.80 \ s$	1.18 s	1.15 s	1.15 s	0.89 s	0.89 s
	$0.79 \ s$	1.15 s	$0.79 \ s$	1.17 s	1.14 s	1.11 s	1.14 s	1.10 s
	$0.72 \ s$	1.05 s	$0.72 \ s$	1.05 s	1.07 s	1.07 s	1.05 s	1.05 s
	0.67 s	$0.91 \ s$	0.67 s	$0.90 \ s$	0.85 s	1:06 s	1.07 s	1.06 s
	$0.62 \ s$		$0.62 \ s$			0.84 s	1.17 s	1.12 s

Coupling constants (Hz) in parentheses.

in the Herbarium of Instituto de Biociências, USP, São Paulo.

Isolation of compounds

Ground stem bark (530 g) were extracted with hexane, then CH₂Cl₂ and, finally, with MeOH. The CH₂Cl₂ extract (7.9 g) was submitted to vacuum chromatography over silica gel using CH₂Cl₂,

CH₂Cl₂-EtOAc (1:1), EtOAc and MeOH. The MeOH fr. was subjected to CC over silica gel. Elution with a CH₂Cl₂-Me₂CO gradient afforded two mixts. of limonoids and 3β -O- β -D-glucopyranosylsitosterol (30 mg). After spectroscopic analysis, the mixt. (28 mg) containing 1 and 2 was allowed to react overnight with excess Ac₂O in pyridine. Work-up as usual yielded the 7,21- and 7,23-diacetates, which were separated by prep. HPLC

Table 2. ¹³C NMR chemical shifts for compounds 1 (C₂D₆CO, 50 Mhz), 2, 1a, 3 and 4 (CDCl₃, 50 MHz) and a model compounds 5 and 6

C	1	2	la	2a	5**	6	3	4*
1	158.3	157.7	157.5	158.0	157.4	157.8	158.2	158.6
2	125.6	124.5	125.7	125.5	126.3	125.9	125.5	125.8
3	204.9	203.9	205.1	204.5	206.0	204.4	205.2	205.4
4	45.1	44.2	44.1	44.1	40.5	44.1	44.2	45.2
5	44.4	43.7	38.3	38.3	50.7	45.2	45.0	45.8
6	24.3	26.2	24.2	23.4	68.2	22.3	24.2	25.8
7	71.6	70.8	74.3	74.4	78.9	73.3	71.6	69.6
8	44.2	43.4	46.1	46.1	45.5	41.1	41.1	42.2
9	41.0	42.0	46.1	47.5	37.1	47.1	47.0	46.2
10	40.1	39.5	39.8	39.9	43.4	39.6	40.1	39.9
11	16.2	15.6	16.4	16.4	16.4	17.6	16.2	17.6
12	32.9	33.0	39.8	39.2	32.7	34.5	34.0	35.1
13	47.6	46.7	47.6	47.5	47.5	42.1	42.2	42.3
14	160.6	159.3	158.2	158.2	157.2	61.3	61.5	62.4
15	119.7	118.2	118.8	118.3	119.5	218.6	217.4	220.1
16	33.3	33.2	33.3	33.9	34.0/34.1	43.2	44.2	43.7
17	53.7	52.0	52.8	50.6	50.0	38.0	36.7	37.1
					51.0			
18	15.0	15.5	13.6	19.0		27.9	27.7	27.9
19	18.9	19.3	19.6	20.7		19.3	19.1	19.2
20	166.6	137.1	166.7	138.4	137.5/137.6	122.9	137.7	166.7
21	98.5	170.1	93.3	171.0	169.5/169.1	140.3	170.2	99.2
22	119.7	145.8/146.0	120.2	143.3	145.6/145.8	110.8	146.0	120.1
23	170.8	96.3	169.0	92.3/92.4	96.8/96.9	143.0	96.5/96.2	171.7
28	20.9	20.6	20.6	21.4	•	27.4	27.1	27.3
29	27.6	26.7	27.1	27.5		21.1	21.5	21.3
30	26.3	26.9	27.0	27.0		18.2	18.9	18.5
-OCOCH3				170.0	171.9	169.3	•	
				169.0				
-OCOCH3				21.3	21.2	21.1		
				21.0				

Multiplicity obtained by DEPT or J-MOD experiments.

^{*} Obtained from mixture

^{*} Obtained from mixture

^{**} Me = unassigned (27.2, 20.9, 20.3, 19.3 and 16.6).

(Hypersil silica 5 μ m, 27 × 0.7 cm, with hexane-CH₂Cl₂-Me₃CN, 10:9:1) affording **1a** (2 mg) and **2a** (3.4 mg). The second mixt. of limonoids was purified by prep. TLC (silica gel, CH₂Cl₂-MeOH, 49:1) to yield 6 mg of pure **3** and a mixt. of **3** and **4**. This mixt. was acetylated as described above yielding, after final purification by prep. HPLC as described above, acetates **3a** (0.5 mg) and **4a** (0.5 mg).

The concd CH₂Cl₂-sol. fr. was subjected to CC over silica gel, eluting with a hexane–EtOAc–MeOH gradient, affording scopoletin (8 mg), iso-fraxidin (3 mg) and a mixt. of 7-oxo-24 β - and 7-oxo-24 α -sitosterol (21 mg).

Ground leaves (648 g) were extracted in the same way as stem bark. The hexane extract was chromatographed on silica gel (hexane-CH₂Cl₂-EtOAc-MeOH gradient) yielding sitostenone (90 mg), sitosterol (20 mg) and two frs. Fr. 1 (37 mg) was a mixt. of velozonol and carnaubadiol. Fr. 2 (21 mg) was a mixt. of velozona and carnauba-21-ol-3-ona. These triterpenoids were identified in mixt. by comparison with published data. The CH₂Cl₂ extract was chromatographed as described above to give isofouqueriol and isofouquerione.

7\(\alpha, 21\)-Diacetoxy-3-oxo-24,25,26,27-tetranorapotirucall-1,14,20(22)-trien-21,23-olide (1a)

Viscous oil. [α]_D + 56° (25°, CHCl₃; c 0.017). UV [CHCl₃ λ_{max} nm (ϵ)]: 251 (2792). IR v_{max} film KBr cm⁻¹: 2933, 1763, 1740, 1663, 1455, 1030, 880. ¹H NMR (CDCl₃, 200 MHz): Table 1. ¹³C NMR (CDCl₃, 50 MHz): Table 2. MS m/z (rel. int.): 450 [M-60]⁺ (32), 391(9), 390(25), 375(16), 135(15), 120(6), 93(19), 92(2), 91(17), 69(15), 43(100).

 7α ,23-Diacetoxy-3-oxo-24,25,26,27-tetranorapotirucall-1,14,20(22)-trien-21,23-olide (**2a**)

Viscous oil. [α]_D + 30° (25°, CHCl₃; c 0.010). UV [CHCl₃ λ_{max} nm (ϵ)]: 245(2448). IR ν_{max} film KBr cm⁻¹. 2928, 1770, 1730, 1664, 820. ¹H NMR (CDCl₃, 200 MHz): Table 1. ¹³C NMR (CDCl₃, 50 MHz): Table 2. MS m/z (rel. int.): 510 [M]⁺ (1), 450(3), 331(1), 301(12), 241(15), 149(17), 136(3), 121(6), 93(8), 92(2), 91(10), 43(100).

7-Deacetyl-23-hydroxyneotrichilenonelide (3)

Viscous oil. IR v_{max} film KBr cm⁻¹: 3427, 2931, 1734, 1658, 1127, 1036. ¹H NMR (CDCl₃, 200 MHz): Table 1. ¹³C NMR (CDCl₃, 50 MHz): Table 2. MS m/z (rel. int.): 424 [M-18]⁺ (1), 259(16), 184(32), 156(13), 149(36), 136(24), 120(29), 105(30), 95(19), 55(64), 43(100).

23-Acetoxyneotrichilenonelide (3a)

Viscous oil. $[\alpha]_D$ –9.0° (CHCl₃; c 0.0033). UV [CHCl₃ λ_{max} nm (ϵ)]: 251(2105). IR ν_{max} film KBr cm⁻¹: 2924, 1740, 1734, 1658, 1559, 1460, 1227, 1021. ¹H NMR (CDCl₃, 200 MHz): Table 1. MS

m/z (rel. int.): 526 [M]⁺ (2), 483(14), 330(12), 261(15), 202(12),156(35), 154(34), 148(100).

21-Acetoxyneotrichilenonelide (4a)

Viscous oil. [α]_D -6.0° (CHCl₃; c 0.0033). UV [CHCl₃ λ_{max} nm (ϵ)]: 251(3684). IR ν_{max} film KBr cm⁻¹: 2927, 1744, 1671, 1558, 1459, 1208, 1033. ¹H NMR (CDCl₃, 200 MHz): Table 1. MS m/z (rel. int.): 526 [M]⁺ (2), 484(4), 483(14), 466(9), 467(5), 451(1), 424(1), 407(3), 406(6), 391(2), 330(13), 271(2), 137(32), 148(100).

Acknowledgements—The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), Financiadora de Estudos e Projetos (FINEP) and Universidade de São Paulo, IQ-São Carlos for MS. D.A.G.C. acknowledges Fundação Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES) for the award of a scholarship.

REFERENCES

- Cortez, D. A. G., Fernandes, J. B., Cass, Q. B., Vieira, P. C., Silva, M. F. das G. F. da, Ferreira, A. G. and Pirani, J. R., Natural Product Letters, 1998, 11, 255.
- Rodrigues, F. E., Fernandes, J. B., Vieira, P. C. and da Silva, M. F. das G. F., Phytochemistry, 1993, 34, 501.
- 3. Siddiqui, S., Faizi, S., Mahmood, T. and Siddiqui, B. S., *Journal of the Chemical Society Perkin I*, 1986, 1021.
- Kraus, W., Cramer, R. and Sawitzki, G., Phytochemistry, 1981, 20, 117.
- Razdan, T. K., Qadri, B., Harkar, S. and Waight, E. S., *Phytochemistry*, 1987, 27, 2063.
- Borris, R. P., Cordell, G. A. and Farnsworth, N. R., Journal of Natural Products, 1980, 43, 641.
- 7. Itoh, T., Yoshida, K., Tamura, T. and Matsumoto, T., *Phytochemistry*, 1982, **21**, 727.
- 8. Schroeder, G., Romer, M., Beck, J. P. and Anton, R., *Phytochemistry*, 1980, **19**, 2213.
- Suga, T., Ohta, S., Ohta, E. and Aoki, T., *Phytochemistry*, 1986, 25, 1243.
- Dutta, P. K., Das, K. and Banerji, N., *Phytochemistry*, 1983, 22, 2563.
- Pinto, A. C., Baker, P. M., Gilbert, B., Pinchin, R., Reis, M. A. F., Waineraich, S. M. and Zocher, H. D., *Phytochemistry*, 1980, 19, 2486.
- 12. Waterman, G. P. and Ampofo, S., *Phytochemistry*, 1985, **24**, 2925.
- Aalbersberg, W. and Singh, Y., Phytochemistry, 1991, 30, 921.
- Cortez, D. A. G., Vieira, P. C., Fernandes, J. B., da Silva, M. F. das G. F. and Ferreira, A. G., Phytochemistry, 1992, 31, 625.