PII: S0031-9422(98)00392-6

O-GERANYLATED ISOFLAVONES AND A 3-PHENYLCOUMARIN FROM *MILLETTIA GRIFFONIANA*†

EMANUEL YANKEP, ZACHARIAS T. FOMUM, DANIEL BISRAT,‡ ERMIAS DAGNE,*‡
VERONIKA HELLWIG§ and WOLFGANG STEGLICH§

Department of Organic Chemistry, University of Yaounde I. P.O. Box 812, Yaounde, Cameroon; ‡Department of Chemistry, Addis Ababa University, P.O. Box 30270, Addis Ababa, Ethiopia; §Institut für Organische Chemie der Universität, Karlstr. 23, 80333 Munich, Germany

(Received 5 March 1998)

Key Word Index—*Millettia griffoniana*; Leguminosae; root bark; isoflavones; 3-phenylcoumarin; *O*-geranylated isoflavone.

Abstract—Root bark of *Millettia griffoniana* yielded two new *O*-geranylated isoflavones and a new 3-phenylcoumarin. Their structures were determined on the basis of spectral evidence as 4'-methoxy-7-*O*-[(*E*)-3-methyl-7-hydroxymethyl-2,6-octadienyl]isoflavone, 3',4'-dihydroxy-7-*O*-[(*E*)-3,7-dimethyl-2,6-octadienyl]isoflavone and 4-hydroxy-5,6,7-trimethoxy-3-(3',4'-methylenedioxy)phenylcoumarin. © 1998 Published by Elsevier Science Ltd. All rights reserved

INTRODUCTION

In a previous paper, we reported the isolation and structural elucidation of seven isoflavones and a chalcone from *Millettia griffoniana* [1], a plant that grows in the central part of Cameroon. Further investigation of the chloroform extract of the root bark led to the isolation of two isoflavones and a 4-hydroxy-3-phenylcoumarin. In this paper, we report the structural elucidation of these compounds. To our knowledge, compound 1 is the first example of an isoflavone bearing a hydroxymethyl group on the geranyl side-chain.

RESULTS AND DISCUSSION

Compound 1 was obtained as a yellow powder, m.p. $138-139^{\circ}$ C. The molecular formula was determined as $C_{26}H_{28}O_5$ by HREI mass spectroscopy $(m/z \ 420.1951 \ [M]^+)$. It showed characteristic signals for an isoflavone in the ¹H-NMR (δ 7.84, s, H-2) and ¹³C NMR (δ 152.4, C-2) spectra [2]. The ¹³C NMR, along with the DEPT spectra, revealed the presence of three CH₃, four CH₂, ten CH and nine quaternary carbons, including a carbonyl carbon

 $(\delta175.9)$. The ¹H NMR spectrum also showed the presence of a methoxyl group at $\delta3.77$ and an ABX-spin system, with an *ortho*-coupled doublet at $\delta8.12$, a doublet of doublets at $\delta6.93$ and a *meta*-coupled doublet at $\delta6.70$, suggesting that ring-A is unsubstituted at positions 5, 6 and 8. Furthermore, the presence of an AA'BB'-spin system, with doublets at $\delta6.91$ and 7.42 (2H each), indicated that ring-B is substituted at the *para*-position by a methoxyl group. This was further confirmed by the mass spectrum which displayed a peak at m/z 132 from RDA cleavage.

The presence of an O-geranyl unit in the molecule, in which one geranyl methyl group is substituted by CH₂OH, is deduced from the ¹H NMR spectrum which revealed the presence of two methyls at $\delta 1.52$ and 1.61, four methylenes, of which two are oxymethylenes ($\delta 4.56$, d; 4.06, d) and two olefinic protons at $\delta 5.20$ (t) and 5.43 (t).

The Z-configuration for the double bond, C-6"/C-7", was assigned on the basis of NOESY experiments. In the NOESY spectra (Fig. 1), a strong interaction is observed, on the one hand, between the methylene protons of CH₂OH (δ 4.06) and H-5" (δ 2.08) and, on the other, between the methyl group at δ 1.52 and the olefinic proton H-6" (δ 5.20), indicating that the methyl group and the olefinic proton are *cis* to each other. Correlations between the aromatic protons H-6 and H-8 with H-1" of the geranyl unit are also observed. These data are

^{*}Author to whom correspondence should be addressed. †Part 6 in the series "The *Millettia* of Cameroon". For part 5 see Yankep *et al.* [Yankep, E., Fomum, Z. T. and Dagne, E., *Phytochemistry*, 1997. **46**, 591.].

consistent with 4'-methoxy-7-O-[(E)-3-methyl-7-hydroxymethyl-2,6-octadienyl]isoflavone for the structural assignment of 1.

Compound 2 was also obtained as a yellow powder, m.p. 164-165°C. The molecular formula was deduced as C25H26O5 from its HREI mass spectrum $(m/z \ 406.1776 \ [M]^{+})$. The ¹H NMR spectrum showed a typical isoflavone signal at δ 7.89 (H-2), an ABX-system at $\delta 8.17$ (H-5), 6.82 (H-8) and δ 6.91 (H-6) and an ABC-system at δ 6.86 (H-5'), 7.08 (H-2') and δ 7.05 (H-6'). The presence of a geranyl unit was evident from the ¹H and ¹³C NMR spectra (Tables 1 and 2) and its attachment to the oxygen at C-7 was derived from NOESY experiments, which revealed connections between the oxymethylene protons at C-1" and the aromatic proton at C-6. Thus, compound 2 is identified as 3',4'-dihydroxy-7-O-[(E)-3,7-dimethyl-2,6-octadienyllisoflavone.

Compound 3 was obtained as a yellow powder, m.p. 170-172°C. The molecular formula, C₁₉H₁₆O₈. was determined by HREI mass spectroscopy (m/z 372.0820 [M]⁺). Comparison between its ¹H and ¹³C NMR data with those of thonningine A and B [3], together with the characteristic resonance at δ 10.12 for the hydroxyl function at C-4, indicated 3 to be a 4-hydroxy-3-phenylcoumarin-type compound. The ¹H NMR spectrum showed three aromatic protons in an ABC-system for ring-B ($\delta 6.85$, d; 6.99, dd and 7.01, d) and one isolated aromatic proton ($\delta 6.68$, s) for ring-A of a phenylcoumarin. The ¹³C NMR (Table 2) revealed the presence of three OCH₃, one OCH₂O, four CH and 11 quaternary carbons, including an ester carbonyl carbon (δ 162.6). Thus, the structure of compound 3 is deduced to be 4-hydroxy-5,6,7-trimethoxy-3-(3',4'methylenedioxy)phenylcoumarin.

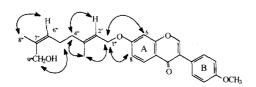


Fig. 1. 2D H-H COSY and 2D NOESY correlations for compound 1.

EXPERIMENTAL

General

UV: MeOH. IR: KBr. 1 H NMR and 13 C NMR (Bruker AMXR 300, 300 and 75 MHz in CDCl₃, respectively). EIMS: 70 eV. CC: silica gel 60 F_{254} (230–400 mesh, Merck). TLC: silica gel 60 F_{254} (Merck). Prep. TLC: silica gel 60 F_{254} + $_{366}$ self made plates (Merck); spots and bands were viewed by UV light (254 and 366 nm). TLC and prep. TLC solvent system I: petrol–EtOAc (3:2).

Plant material

The root bark of *M. griffoniana* was collected from Onguesse province, in the central part of Cameroon, in 1994. A voucher specimen is deposited at the National Herbarium, Yaounde, Cameroon.

Extraction and isolation

Powdered dried root bark (20 kg) was successively extracted with n-hexane (24 h; 3×20 l) and chloroform (24 h; 3×20 l) yielding 710 and 550 g, respectively. The concd CHCl₃ extract (50 g) was successively washed with petrol and EtOAc. The EtOAc-sol. part was further purified by CC on silica gel eluting with petrol–EtOAc gradients, fol-

Table 1. ¹H NMR spectral data for compounds 1-3 in CDCl₃

Н	1	2	3
2	7.84 s	7.89 s	_
5	8.12 d (8.9)	8.17 d (8.7)	_
6	6.93 dd (8.9, 2.3)	6.91 dd (8.7, 2.2)	_
8	6.70 d (2.3)	6.82 d(2.2)	6.68 s
2' 3' 5'	7.42 d (8.7)	7.08 brs	$7.01 \ d \ (1.7)$
3'	6.91 d (8.7)	_	_
5'	6.91 d(8.7)	6.86 d (8.0)	6.85 d (8.4)
6'	7.42 d (8.7)	7.05 dd (8.0, 2.0)	6.99 dd (8.4, 1.7)
1"	4.56 d (6.5)	4.60 d (6.5)	_
2"	5.43 t (6.3)	5.47 t (6.5)	_
4"	2.15 m	$2.08 \ m$	_
5"	$2.08 \ m$	$2.08 \ m$	_
6"	5.20 t (6.7)	5.08 t (6.9)	
8"	1.52 s	1.59 s	
9"	4.06 d	1.72 s	-
10"	1.61 s	1.67 s	
OCH ₂ O	-		5.95 s
4-OH	-		10.12 s
5-OMe	-	-	4.16 s
6-OMe	_		3.86 s
7-OMe		_	3.92 s
4'-OMe	3.77 s		_

Coupling constants (J in Hz) in parentheses.

Table 2. ¹³C NMR spectral data for compounds 1–3 in CDCl₃

C	1	2	3
2	152.4	154.8	160.9
2 3 4 5	124.9	126.3	101.2
4	175.9	178.0	162.6
5	128.2	128.5	146.9
6	115.4	116.5	137.6
6 7	163.1	164.7	147.3
8	101.3	103.3	96.7
9	157.9	159.7	156.9
10	118.4	118.2	103.9
l'	124.2	125.8	124.6
	130.5	114.6	111.1
2' 3' 4' 5'	114.4	148.1	149.9
4'	159.6	149.9	149.0
5'	114.4	117.5	108.1
6'	130.5	121.4	124.3
1"	65.8	66.9	
1" 2" 3" 4"	119.3	121.5	_
3"	142.1	141.8	
4"	39.9	40.6	
5"	26.2	27.4	
6"	127.7	125.0	-
7"	135.1	132.6	
7" 8"	17.2	17.8	-
9"	61.9	16.7	
10"	21.6	25.9	_
OCH₂O			101.0
5-OMe	_	_	62.9
6-OMe	-		61.4
7-OMe	_	_	56.4
4'-OMe	55.8		

Signal assignments are based on ${}^{1}H^{-13}C$ COSY and DEPT spectra.

lowed by prep. TLC using system I, resulting in the isolation of 1 (20 mg), 2 (30 mg) and 3 (11 mg).

4'-Methoxy-7-Of (E)-3-methyl-7-hydroxymethyl-2,6-octadienyl]isoflavone (1)

Yellow powder, m.p. $138-139^{\circ}$ C. $[\alpha]_{\rm D}^{23}$ -3.67° (CHCl₃; c 0.055). UV $\lambda_{\rm max}$ nm: 249, 298. IR $\nu_{\rm max}$ cm⁻¹: 3436, 2924, 1631, 1514; 1444, 1384, 1292, 1250. ¹H NMR (Table 1) and ¹³C NMR (Table 2). EIMS m/z (rel. int.): 420 [M]⁺ (20), 372 (10), 282 (16), 269 (21), 268 (100), 267 (7) 132 (7), 107 (7). 93

(11); HR-EIMS m/z: 420.1951 [M]⁺ (calcd for $C_{26}H_{28}O_5$: 420.1937).

3',4'-Dihydroxy-7-O-[(E)-3,7-dimethyl-2,6-octadienyl]-isoflavone (2)

Yellow powder, m.p. $164-165^{\circ}\text{C}$. $[\alpha]_{D}^{23}$ -7.66° (CHCl₃; c 0.044). UV λ_{max} nm: 202, 248, 292. IR ν_{max} cm⁻¹: 3435, 2925, 1624, 1509, 1384, 1281, 1192. ¹H NMR (Table 1) and ¹³C NMR (Table 2). EIMS m/z (rel. int.): 406 [M]⁺ (9), 337 (5), 326 (11), 282 (31), 271 (19), 270 (100); HR-EIMS m/z: 406.1776 [M]⁺ (calcd for $C_{25}H_{26}O_5$: 406.1780).

4-Hydroxy-5,6,7-trimethoxy-3-(3',4'-methylene-dioxy)phenylcoumarin (3)

Yellow powder, m.p. $170-172^{\circ}C$. [α] $_{D}^{25}$ -12.58° (CHCl₃; c 0.027). UV λ_{max} nm: 215, 329. IR ν_{max} cm⁻¹: 3430, 3256, 2924, 1710, 1639, 1613, 1573, 1501, 1458, 1399, 1284. ^{1}H NMR (Table 1) and ^{13}C NMR (Table 2). EIMS m/z (rel. int.): 372 [M] $^{+}$ (100), 357 (3), 211 (25), 210 (18), 195 (9), 171 (5), 162 (9); HR-EIMS m/z: 372.0820 [M] $^{+}$ (calcd for $C_{19}H_{16}O_{8}$: 372.0845).

Acknowledgements—E. Y. is grateful to the Swedish organization International Program in Chemical Sciences (IPICS) for sponsoring his visit to Addis Ababa University. D. B. also thanks IPICS-NAPRECA for a Home-University-based training fellowship.

REFERENCES

- Yankep, E., Fomum, Z. T. and Dagne, E., *Phytochemistry*, 1997, 46, 591.
- Mabry, T. J., Markham, K. R. and Thomas. M. B., The Systematic Identification of Flavonoids. Springer, New York, 1970.
- 3. Khalid, S. A. and Waterman, P. G., *Phytochemistry*, 1983, **22**, 1001.