PH: S0031-9422(98)00230-1

DITERPENE ALKALOIDS FROM ACONITUM KIRINENSE

FENG FENG*, JING-HAN LIU and SHOU-XUN ZHAO

Department of Phytochemistry, China Pharmaceutical University, Nanjing, 210009, China

(Received in revised form 3 March 1998)

Key Word Index—Aconitum kirinense; Ranunculaceae; roots diterpene alkaloids; kirinines B and C.

Abstract—Two new C_{20} —diterpenoid alkaloids, kirinines B and C, were isolated from the roots of *Aconitum kirinense*. Their structures were elucidated by spectroscopic methods as 1,19–epoxydenudatine and 1–ace-tyllepenine azomethine, respectively. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

Aconitum kirinense Nakai grows in Jilin Province, north east China. Its root is used in traditional Chinese medicine for the treatment of rheumatic arthritis, rheumatoid disease, etc [1]. Chemical studies on the root of the crude drug resulted in the isolation of nine diterpene alkaloids. Two of them, lepenine(3) and kirinine A(4), have been reported in former articles [2, 3]. We report here the isolation and structural determination of kirinines B and C, two new C₂₀-diterpene alkaloids.

RESULTS AND DISCUSSION

Kirinine B(1) was isolated as colourless cubes, mp 157 ~ 158°. EIMS showed the [M]⁺ at m/z 357 and the base peak at $300[M-C_3H_5O]^+$. The molecular formula $C_{22}H_{31}NO_3$ was assigned on the basis of ¹H NMR, DEPT ¹³C NMR and the mass spectrum. The ¹H NMR spectrum showed the presence of an exocyclic double bond (δ 5.23, 5.04, both $1 \text{ H}, t, J_1 = J_2 = 2.0 \text{ Hz}, H_2 - 17), \text{ an ethyl group}$ bound to N ($\delta 0.99,3 \text{ H},t,J = 7.3 \text{ Hz,H}_3-22$) and an angular methyl group (δ 0.78,3 H,s,H₃-18). All of these resonances suggested a C20-diterpene alkaloid. The compound had the same molecular skeleton as lepenine, which was confirmed by the comparison of NMR data with lepenine (Tables 1 and 2). However, instead of a signal for a methylene carbon at $ca \delta 60$ (C-19) in this kind of alkaloid, a signal for a methine carbon appeared at δ 93.13, which belonged to a tertiary carbon bound to two hetero atoms, a characteristic of an ether

After deuterium-exchange, signals for two pro- $(\delta 1.76,1 \text{ H},d,J = 6.8 \text{ Hz},OH-15$ tons and 1.40.1 H, d, J = 6.9 Hz,OH-11) disappeared. This revealed that there were two hydroxyl groups in the molecule. Its ¹H-¹H COSY NMR spectrum indicated coupling between the two hydroxyl groups with H-15 (δ 4.28) and H-11 (δ 3.74), respectively, and revealed the presence of hydroxyl groups at C-15 and C-11. Thus, the structure of kirinine B was assigned as 1,19-epoxydenudatine (1). The NMR data of kirinine B were very similar to those of 11acetyl-1,19-epoxydenudatine (5) [5]. Compared with the latter, the hydroxyl group at C-11 of kirinine B shifted the C-11 resonance upfield (1.5 ppm) and shifted the C-9 and C-12 resonances downfield (5.3 and 3.9 ppm, respectively) as a result of its β effect.

Kirinine C was isolated as colourless needles, mp $218-220^{\circ}$. Its mass spectrum showed the [M]⁺ at m/z 371, with the base peak at 293 [M–CH₃COOH–H₂O]⁺. The IR spectrum showed the presence of hydroxyl (3200 cm⁻¹), a C=N azomethine group (1640 cm⁻¹) and a carbonyl group (1740 cm⁻¹). Its molecular formula was $C_{22}H_{29}NO_4$ based on DEPT ¹³C NMR, ¹H NMR and mass spectral data.

The presence of an imine (-CH=N-) group in kirinine C was established by comparison with the ¹³C NMR chemical shifts of known atisine deriva-

bridge between C-1 and C-19 [4]. The base peak m/z 300 [M-C₃H₅O]⁺ and the fragment m/z 122 [C₈H₁₂N]⁺ in the mass spectrum [5], IR absorption at 1110 cm⁻¹ and ¹H NMR signals at δ 3.68 (1 H,s,H-19) and 4.19 (1 H,d,J = 5.3 Hz,H-1) also indicated the presence of a C₁-C₁₉ inner ether in kirinine B [4, 6, 7].

^{*}Author to whom correspondence should be addressed.

- (1) R=H kirinine B
- (5) R=Ac 11-acetylepoxydenudatine
- (2) kirinine C
- (3) R=H lepenine
- (4) R=Ac kirinine A

tives containing an imine group (e.g. atisine azomethine shows a resonance at $\delta 166.4$) [8]. The lack of an alkyl substituent linked with N and the absence of a chemical shift in the region of $\delta 60$ (C-19) in these alkaloids (compared with 57.1 and 56.8 for lepenine and kirinine A, respectively) were explained by the presence of an imine group ($\delta 169.3$, C-19). The downfield shift (10.9 ppm) of the C-4 and the upfield shift (1.1 ppm) of the C-20 in kirinine C relative to lepenine, are due to the presence of this group [9]. This was also confirmed by the downfield shift (0.99 ppm) of H-20 in kirinine C relative to lepenine.

Comparing the ¹³C NMR data of kirinine C with that of lepenine, the presence of oxygen-groups at

Table 1. ¹H NMR data of kirinine B (1), kirinine C (2) and lepenine (3) (300 MHz, CDCl₃)

Н	1	2	3
1β	4.19 d (5.3)	5.30 dd (10.8.7.2)	4.17 dt (10.8,6.9)
2a	1.24 m	1.30 m	1.82 m
2b	1.83 m	1.98 m	2.35 m
3a	1.56 m	1.23 m	1.32 m
3b	1.63 m	1.51 m	1.64 m
5	1.61 m	1.43 m	1.37 d (7.6)
6a	1.67 m	1.20 m	1.25 m
6b	2.35 ddd	2.91 <i>ddd</i>	2.74 dd (13.0,7.6)
	(12.6, 8.5, 2.0)	(14.0, 7.8, 1.3)	
7	1.84 m	2.17 m	2.21 m
9	1.28 d (9.6,6.8)	1.35 d (9.2)	1.37 d (9.5)
11	3.74 dd (9.6,6.8)	3.84 dd(9.2,1.4)	4.46 dd (9.5.6.7)
12	2.21dd (5,3,5.2)	2.15 m	2.21 m
13a	1.47 m	1.48 m	1.47 m
13b	1.71 m	1.69 m	1.72 m
14a	1.97 <i>ddd</i>	1.96 m	1.94 m
	(14.0, 11.7, 7.0)		
14b	1.21 m	1.25 m	1.14 m
15α	4.28 dt (6.8,2.0,2.0)	$4.28 \ s(hr)$	4.28 dt (7.7,2.1,2.1)
17a	5.04 t (2.0,2.0)	5.22 t (2.0,2,0)	5.08 d (2.1,2.1)
17b	5.23 t (2.0,2.0)	5.22 t (2.0,2.0)	5.28 t (2.1,2.1)
18(Me) 0.78 s	0.98 s	$0.70 \ s$
19	3.68 s	7.25 s	$2.23 \ m.2.50m$
20	3.04 dd (4.1,2.1)	$4.67 \ s(br)$	$3.68 \ s(br)$
21	2.63-2.69 m		2.30-2.50 m
22	0.99 t (7.3,7.3)		1.05 t (7.0.7.0)
OH	1.76 d (6.8)	1.86 s(br)	$2.50 \ s(br)$
OH	$1.40 \ d \ (6.8)$	1.81 s(br)	2.08 d (7.7)
MeCO		2.05 s	2.32 s(br)

C-1,11 and 15 could also be proved. In its ^{1}H NMR spectrum the signal for $1-\beta$ H was at far lower field than that of the $11\alpha,15\alpha$ protons. Therefore, the acetoxyl group should be situated at C-1 and the two hydroxyl groups at C-11 and 15. Thus, the structure of kirinine C was determined as 1-acetyllepenine azomethine (2).

EXPERIMENTAL

¹H NMR and ¹³C NMR were recorded at 300 and 75 MHz, respectively. Chemical shifts are given in δ values relative to TMS in CDCl₃.

Plant material

Roots of the A. kirinense were collected around Yanji city, Jilin province, and were identified by Hui-Zhong Xiao (Department of Pharmacy, Yanbian Medical College). A herbarium voucher

Table 2. ¹³C NMR data of kirinine B (1), kirinine C (2) lepenine (3) and 11-acetyl-1,19-epoxydenudatine (5) (75 MHz, CDCl₃)

C	1	2	3	5
1	68.7 d	72.6 d	70.8 d	68.3 d
2	24.6 t	27.1 t	31.2 /	24.1 t
3	30.0 t	33.5 t	38.4 t	29.7 tt
4	37.6 s	44.6 s	33.7 s	37.5 s
5	50.2 d	49.1 d	52.4 d	49.6 d
6	24.6 t	24.5 t	23.1 t	24.4 1
7	47.5 d	47.9 d	46.9 d	47.4 d
8	45.9 s	47.9 s	43.7 s	45.5 s
9	51.8 d	56.3 d	54.1 d	46.5 d
10	49.8 s	48.1 s	51.0 s	49.4 s
11	72.7 d	73.8 d	71.3 d	74.2 d
12	47.2 d	46.7 d	42.3 d	43.3 d
13	24.7 t	25.1 t	24.6 t	24.3 t
14	27.2 t	26.7 t	27.5 s	26.9 t
15	77.3 d	77.3 d	78.0 d	77.1 d
16	154,3 s	154.3 s	154.5 s	153.7 s
17	110.4 /	109.7 t	109.3 t	110.7 /
18	18.7 q	21.0 q	$26.0 \ q$	1 8.6 q
19	93.1 d	169.3 d	57.1 i	92.9 d
20	70.1 d	68.8 d	67.7 d	69.8 d
21	48.5 t	1.0	50.7 t	48.4 <i>t</i>
22	14.1 q	-	13.6 q	14.1 q
COMe		21.6 g		
COMe		170.7 s		

specimen is deposited in the Department of Phytochemistry, China Pharmaceutical University.

Isolation of alkaloids

Crude alkaloids [2] were chromatographed on neutral Al₂O₃ and eluted with CHCl₃-MeOH (10:1) to give fr. 2. Kirinine B (1) (40 mg) was obtained from this fr. as colourless cubes. Upon further elution with CHCl₃-MeOH (10:3), kirinine C (2) (15 mg) was obtained as colourless needles.

Kirinine B (1). $C_{22}H_{31}NO_3$, mp. 157–158°. IR ν_{max}^{KBr} cm⁻¹ 3400, 2940, 2850, 1640, 1460, 1100, 1090, 960, 900. EIMS (probe) 70 eV, m/z (rel. int.): 357[M] $^+$ (36), 339 [M–H₂O] $^+$ (16), 329[M– C_2H_5O] $^+$ (100), 122[$C_8H_{12}N$] $^+$ (57). ¹H NMR (300 MHz, CDCl₃): Table 1. ¹³C NMR (75 MHz, CDCl₃): Table 2.

Kirinine C (2). $C_{22}H_{29}NO_4$, mp. 218–220°. lR ν_{max}^{KBr} cm⁻¹ 3210, 2980, 1740, 1640, 1220, 1020, 900. EIMS 70 eV, m/z (rel. int.): 371[M]⁺ (44), 353 [M–H₂O]⁺ (19), 312 [M–CH₃COOH]⁺ (32), 293 [M–CH₃COOH–H₂O]⁺ (100). ¹H NMR (300 MHz, CDCl₃): Table 1. ¹³C NMR (75 MHz, CDCl₃): Table 2.

REFERENCES

- The Editorial Board of Zhong Guo Ben Cao Tu Lu., in Zhong Guo Ben Cao Tu Lu. People's Health Press, Beijing, 1989, p. 46.
- 2. Feng, Feng and Jinghan, Liu, Journal of China Pharmaceutical University, 1996, 27(2), 74.
- Feng, Feng and Jinghan, Liu, Journal of Chinese Pharmaceutical Sciences, 1997, 6(1), 14–17.
- Proksa, B., Uhrin, D., Bastsuren, D., Batbaiar, N. and Selenge, N., Planta Med., 1990, 56, 461.
- 5. Fengpeng, Wang and Xiaotian, Liang, Acta Pharm Sin, 1985, 20, 436.
- Bando, H., Wada, K. and Amiya, T., Heterocycles, 1987, 26, 2623.
- Wada, K., Bando, H. and Amiya, T., Heterocycles, 1985, 23, 2473.
- 8. Naresh, V. and Pelletier, S. William, *Tetrahedron*, 1978, **34**, 2421.
- Pelletier, S. W., Mody, N. V., Djarmati, Z., Micovic, I. V. and Thakkar, J. K., Tetrahedron Letters, 1976, 14, 1055.