Phytochemistry 50 (1999) 135-138

A triterpenoid saponin from Cucumaria frondosa

Nurettin Yayli^{a, *}, John A. Findlay^b

^aDepartment of Chemistry, Karadeniz Technical University, 61080 Trabzon, Turkey ^bDepartment of Chemistry, University of New Brunswick, Fredericton, NB, Canada E3B 6E2

Received 12 May 1998

Abstract

The structure of a new triterpenoid saponin, frondoside D, isolated from *Cucumaria frondosa* has been determined principally by high field 1D and 2D NMR and FAB-MS spectrometry. Frondoside D was shown to be 3β -{3-O-methyl-O- β -D-glucopyranosyl-(1-3)-O- β -D-xylopyranosyl-(1-4)-[O- β -D-xylopyranosyl-(1-2)]-O- β -D-quinovopyranosyl-(1-2)-O- β -D-4-sulfonatoxylo-pyranosyl}-16 β -acetoxy-23S-hydroxy-holost-7-ene, sodium salt. © 1998 Published by Elsevier Science Ltd. All rights reserved.

Keywords: Cucumaria frondosa; Triterpene saponin; Holost-7-ene; 18 → 20 lactone

1. Introduction

Recently we reported the structure of two novel oligosaccharides isolated from the common sea cucumber Cucumaria frondosa Gunnerus (Findlay, Yayli & Radics, 1992). One of these was a saponin designated frondoside B, (3) comprising a 3β -hydroxyholosta-7,24-diene aglycone and a disulfated pentasaccharide sidechain. The major saponin from this source, frondoside A, (2) (Girard et al., 1990; Yayli, 1993) features a 16β acetoxy-holosta-7-ene aglycone and a monosulfated pentasaccharide sidechain which differs from that of frondoside B (3) by the presence of a xylose unit in place of the $(1 \rightarrow 3)$ attached glucose-6-sulfate feature. Of particular interest was the isolation of the dimeric pentasaccharide frondecaside (Findlay, Yayli & Radics, 1992; Yayli, 1993) featuring six sulfate moieties.

2. Results and discussion

From *C. frondosa* we have now characterized an additional saponin designated frondoside D (1). Frondoside D (1) is closely related to frondoside A (2)

and frondoside A₁ (4) (Avilov et al., 1993), differing only by the presence of an hydroxyl group at C-23. The structure of frondoside D was deduced from 1D and 2D high field NMR data and supported by positive FAB-MS.

Conventional ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra, combined with DEPT data, afforded the structure of the oligosaccharide moiety which is identical with the monomeric oligosaccharide part of frondoside A (2) and frondoside A₁ (4) (Girard et al., 1990; Yayli, 1993; Avilov et al., 1993).

Analysis of the spectral data for frondoside D and comparison with those published for related saponin aglycones (Findlay, Yayli & Radics, 1992; Girard et al., 1990; Yayli, 1993; Avilov et al., 1993; Kitagawa et al., 1981; Kalinin, Stonik, Kalinovskii & Isakov, 1989; Stonik et al., 1982; Stonik, Mal'tsev, Kalinovskii & Elyakov, 1982) shows that the aglycone part of frondoside D is a holostane skeleton featuring a hydroxyl group at C-23 (Avilov et al., 1993; Kitagawa et al., 1981; Kalinin, Stonik, Kalinovskii & Isakov, 1989; Stonik et al., 1982; Stonik, Mal'tsev, Kalinovskii & Elyakov, 1982).

The positive FAB-mass spectrum (MNBA) of frondoside D (1) displayed a single peak in the higher mass range at m/z 1373 corresponding to $[M + Na]^+$ (M = $C_{60}H_{95}O_{30}SNa$), a composition differing from that of frondoside A (2) by the presence of an ad-

^{*} Author to whom correspondence should be sent.

ditional oxygen. The ¹³C NMR chemical shift inventory of 1 (Table 1) closely parallels that of frondoside A except for signals assigned to C-22 (46.78), C-23 (66.24) and C-24 (48.49) which are shifted downfield by δ 7.65, 43.48 and 8.86 ppm, respectively, in agreement with the presence of an OH group at C-23. The aglycone sidechain is thus comparable to that of stichlorogenol (Kitagawa et al., 1981; Kalinin, Stonik, Kalinovskii & Isakov, 1989; Stonik et al., 1982; Stonik, Mal'tsev, Kalinovskii & Elyakov, 1982), a C-23-hydroxy aglycone from the sea cucumber Stichopus chloronotus stereochemistry have been confirmed by Xray crystallography (Kitagawa et al., 1981). Comparable signals in the ¹³C NMR spectrum (pyridine- d_5) of the latter are observed at δ 47.62, 65.70 and 49.27 (Kitagawa et al., 1981), suggesting the 23S configuration in frondoside D. The ¹³C NMR chemical shifts inventory (Table 1) for the oligosaccharide chain of frondoside D are virtually identical with those of frondoside A and A₁ (Girard et al., 1990; Yayli, 1993; Avilov et al., 1993). Thus we conclude that frondoside D possesses structure 1, that is 3β -{3-O-methyl-O- β -Dglucopyranosyl-(1-3)-O- β -D-xylopyranosyl-(1-4)-[O- β -D-xylopyranosyl-(1-2)]-O- β -D-quinovopyranosyl-(1-2)- $O-\beta$ -D-4-sulfonato-xylopyranosyl}-16 β -acetoxy-23Shydroxy-holost-7-ene, sodium salt.

3. Experimental

3.1. Instrumentation

Mass spectra were recorded with a Kratos MS50 instrument. Optical rotations were measured with a Perkin-Elmer 241 polarimeter. NMR spectra were obtained at 20°C with a Bruker AMX-500 spectrometer and are referred to internal tetramethylsilane.

3.2. Isolation of saponins

A crude glycoside containing mixture (2.50 g) obtained from *C. frondosa* as previously described (Findlay, Yayli & Radics, 1992) was chromatographed on a silica gel 60 (100 g, 230–400 mesh) column eluting with a discontinuous gradient of CHCl₃–MeOH (4:1–4:4) and CHCl₃–MeOH–H₂0 (4:3:1) to give 26 fractions (\sim 20 ml each) which were combined on the basis of TLC analysis to provide four sub-fractions a, b, c and d.

3.3. Frondoside D, 1

Fraction c (9–13, 410 mg) was rechromatographed on a reversed-phase silica column (6 g, LiChroprep RP-18) eluting with a discontinuous gradient of

Table 1 ¹³C NMR data for frondoside D, (1) in pyridine-*d*₅–D₂O (5:2)

Aglycone of 1 ^a			Sugar moiety 1 ^a		
С	¹³ C (δ, ppm)	DEPT	С	¹³ C (δ, ppm)	DEPT
1	36.04	CH ₂	Xyl I, 1	104.44	СН
2	26.84	CH_2	2	81.69	CH
3	89.19	CH	3	76.15	CH
4	39.47	C	4	76.30	CH
5	47.90	CH	5	64.18	CH_2
6	24.10	CH_2			-
7	120.41	CH	Qui, 1	102.20	CH
8	145.91	C	2	82.66	CH
9	47.71	СН	3	75.12	CH
10	35.43	C	4	85.23	CH
11	23.27	CH_2	5	71.20	CH
12	31.54	CH	6	17.99	CH_3
13	59.30	C			- 3
14	47.31	C	Xyl II, 1	104.66	CH
15	44.35	CH_2	2	73.59	СН
16	75.20	CH	3	86.07	CH
17	55.27	СН	4	68.89	CH
18	180.87	C	5	65.90	CH_2
19	24.30	CH_3			
20	86.42	C	MGlc, 1	104.36	CH
21	30.33	CH_3	2	74.58	CH
22	46.78	CH_2	3	86.91	CH
23	66.24	CH	4	70.52	СН
24	48.49	CH_2	5	77.45	CH
25	28.10	CH	6	61.85	CH_2
26	21.77	CH_3	•	60.97	OCH ₃
27	23.93	CH ₃			,
28	32.79	CH ₃	Xyl III, 1	105.33	CH
29	17.46	CH ₃	2	74.90	CH
30	28.78		3	76.54	CH
					СН
					CH ₂
30 31 32	28.78 171.09 21.60	CH ₃ C CH ₃	3 4 5	76.54 70.09 66.54	

^a Chemical shifts (ppm) are relative to internal TMS.

CH₃COCH₃-MeOH-H₂0 (2:2:3-2:2:4) solvent system to give 42 fractions (1-3 ml each) which were combined on the basis of TLC analysis to provide 5 subfractions. Sub-fraction cc (9-19, 0.320 mg) was further purified on a reversed-phase silica column (6 g, LiChroprep RP-18) eluting with CH₃COCH₃-MeOH- H_2O (2:2:4) to give 74 fractions (1-3 ml each). On the basis of TLC, fractions were combined to provide 7 subfractions. Sub-fraction ccc (17-29, 121 mg wet) was chromatographed by prep. TLC (1 mm, 20×20 cm, 2 plates) using CHCl₃-MeOH-H₂O (3:2.5:0.5) solvent system to give 3 major bands. The least polar band ccca (13.4 mg, $R_f = 0.64$) was finally purified by a reversed-phase silica column (5 g, LiChroprep RP-18) eluting with CH₃COCH₃-CH₃OH-H₂0 (2:2:5) to give frondoside D [7.0 mg, $R_f = 0.25$, rpTLC, CH₃COCH₃-MeOH-H₂O (2:3:4)]; m.p. 217-220°, $[\alpha]_D^{23} = -22.9^{\circ}$ [c = 0.0013, pyridine-H₂0 (1:4)]; ¹H NMR d (ppm) [pyridine-d₅-D₂O (5:2), 500 MHz] 0.92 (H-27), 0.95 (H-26), 1.12 (H-29), 1.20 (H-19), 1.27 (H-

28), 1.29 (H-30), 1.68 (H-21), 2.10 (H-32), 3.30 (H-3), 3.72 (H-23), 4.89 ($J=7.0\,\mathrm{Hz}$, Xyl I H-1), 4.90 ($J=7.6\,\mathrm{Hz}$, Xyl II H-1), 5.31 ($J=7.7\,\mathrm{Hz}$, Qui H-1), 5.32 ($J=7.3\,\mathrm{Hz}$, Xyl III H-1), 5.38 ($J=7.6\,\mathrm{Hz}$, MGlc H-1), 5.70 (H-7), 5.95 (H-16); ¹³C NMR [pyridine- d_5 –D₂O (5:2), 125 MHz] d (ppm) see Table 1; positive FAB-mass (MNBA) m/z (rel. int): 1373 (1.8) [M + Na]⁺, 1351 (0.9) [M + H]⁺, 838 (1.2) [sugar moiety + H]⁺, 609 (23) [MGlc–O-Xyl II–O-Qui–O-Xyl III]⁺, 530 (09) [M-aglycone + H]⁺, 493 (8.6) [MGlc–O-Xyl II–O-Qui(O)-O]⁺, 325 (9.2) [MGlc–O-Xyl II]⁺, 177 (100) [MGlc]⁺.

Acknowledgements

Thanks are due to Donald M. Leek, Institute for Marine Biosciences, MRC of Canada, for recording NMR data to process, Professor Isao Kitagawa for supplying the ¹³C NMR spectrum of stichlorogenol

and to Dan Drummond for assistance with FAB-Mass spectra. This study was supported by a grant from the Natural Sciences and Engineering Research Council of Canada and the Turkish Government through a grant via Karadeniz Technical University to N.Y.

References

- Avilov, S. A., Kalinin, V. I., Drozdova, O. A., Kalinovskii, A. I., Stonik, V. A., & Gudimova, E. N. (1993). Khimiya Prirodnykh Soedinenii, 2, 260.
- Findlay, J. A., Yayli, N., & Radics, L. (1992). *Journal of Natural Products*, 55, 93.

- Girard, M., Hélanger, J., ApSimon, J. W., Garneau, F. X., Narvey, C., & Brisson, J. R. (1990). *Canadian Journal of Chemistry*, 68, 11.
- Kalinin, V. I., Stonik, V. A., Kalinovskii, A. I., & Isakov, V. V. (1989). Khimiya Prirodnykh Soedinenii, 5, 678.
- Kitagawa, I., Kobayashi, M., Inamoto, T., Yasuzawa, T., Kyogoku, Y., & Kodo, M. (1981). Chemical and Pharmaceutical Bulletin, 29, 1189.
- Stonik, V. A., Mal'tsev, I. I., Kalinovskii, A. I., Conde, C., & Elyakov, G. B. (1982). *Khimiya Prirodnykh Soedinenii*, 2, 194.
- Stonik, V. A., Mal'tsev, I. I., Kalinovskii, A. I., & Elyakov, G. B. (1982). *Khimiya Prirodnykh Soedinenii*, 2, 200.
- Yayli, N. (1993). Ph.D. Thesis, University of New Brunswick, Fredericton, NB.