Phytochemistry 50 (1999) 297-301

Caffeic acid esters of phenylethanoid glycosides from Fraxinus ornus bark

Tanya Iossifova^a, Bernhard Vogler^b, Iris Klaiber^b, Ivanka Kostova^{a, *}, Wolfgang Kraus^b

^aInstitute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria ^bDepartment of Chemistry, University of Hohenheim, Stuttgart 70593, Germany

Revised 17 July 1998

Abstract

A new phenylethanoid glucoside, 2-(3,4-dihydroxyphenyl)-ethyl-O- β -D-glucopyranosyl- $(1 \rightarrow 6)$ -3-O-trans-caffeoyl- β -D-glucopyranoside, named isolugrandoside, was isolated from *Fraxinus ornus* bark, together with the five known phenylethanoid glycosides 2-(4-hydroxyphenyl)-ethyl-(6-O-caffeoyl)- β -D-glucopyranoside, calceolarioside B, verbascoside, isoacteoside and lugrandoside. Isomerization of lugrandoside to isolugrandoside was not found under the employed conditions of isolation and purification. © 1998 Elsevier Science Ltd. All rights reserved.

Keywords: Fraxinus ornus L; Oleaceae; Phenylethanoid glycosides; 2-(4-Hydroxyphenyl)-ethyl-(6-O-caffeoyl)-β-D-glucopyranoside; Calceolarioside B; Verbascoside; Isoacteoside; Lugrandoside; Isolugrandoside

1. Introduction

It is known that the Oleaceae family is a rich source of secoiridoids and phenylethanoid glycosides (PhGs). Many cinnamic esters of PhGs of diverse structures have been isolated from the genera *Syringa*, *Forsythia*, *Ligustrum*, *Jasminum* and *Osmanthus* (Jimenez & Riguera, 1994). However, only the occurrence of verbascoside and calceolarioside B in *Fraxinus* species has been reported so far (Damtoft, Franzyk, & Jensen, 1992; Shen, Chen, & Lee, 1993; Kostova, Yossifova, Vassileva, & Mikhova, 1993). In a previous work we reported on the isolation of calceolarioside B from *F. ornus* leaves (Kostova et al., 1993). In this paper we describe the isolation of six caffeic acid esters of PhGs 1–6 from *Fraxinus ornus* bark and the structure eluci-

2. Results and discussion

Six caffeic acid esters of PhGs were isolated from the polar part of the EtOH extract of *F. ornus* bark. Five of them were identified as the known 2-(4-hydroxyphenyl)-ethyl-(6-*O*-caffeoyl)-β-D-glucopyranoside (1), calceolarioside B (2), verbascoside (3), isoacteoside (4) and lugrandoside (5) on the basis of their NMR and APCI-MS spectra, and comparison with literature data (Shimomura, Sashida, & Adachi, 1987; Andary, Wylde, Laffite, Privat, & Winternitz, 1982; Mayase et al., 1982; Baudouin, Skaltsounis, Tillequin, & Koch, 1988). The occurrence of 1 and 5 in Oleaceae has not been reported so far.

0031-9422/98/\$ - see front matter \odot 1998 Elsevier Science Ltd. All rights reserved. PII: S0031-9422(98)00538-X

dation of isolugrandoside 6, which is a novel compound.

^{*} Corresponding author.

	$\mathbf{R^1}$	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	\mathbb{R}^5
1	Н	Н	H	Н	Caff
2	Н	ОН	H	Н	Caff
3	Н	OH	Rha	Caff	H
4	Н	ОН	Rha	Н	Caff
5	Н	ОН	Н	Caff	Glc
6	H	ОН	Caff	H	Glc
6a	Ac	OAc	Caff.2Ac	Ac	Glc.4Ac

Rha = α -L-rhamnopyranosyl

Glc = β -D-glucopyranosyl

Caff = caffeoyl

The structure of the novel PhG-ester 6, named isolugrandoside, was deduced by concerted application of 1D and 2D NMR methods and MS studies.

A molecular formula of $C_{29}H_{36}O_{16}$ was established for **6** on the basis of its negative HRFAB-MS ([M-H]⁻ at m/z 639.1950) and the 1H , ^{13}C , and DEPT spectra. The UV spectrum (EtOH) exhibited absorption maxima at 222, 255 (sh), 292 and 328 nm. The IR (KBr) spectrum showed bands at 3398 (hydroxy groups), 1700 (C=O in conjugated esters), 1628 (C=C in α,β-unsaturated acid derivatives) and 1604, 1522 cm⁻¹ (aromatic ring).

The ¹H-NMR spectrum of **6** revealed the signals typical of a *trans*-caffeoyl ester unit, a 3,4-dihydroxy-phenethyl unit and two β -glucose units (anomeric protons at δ 4.51 (d, J = 7.8 Hz) and δ 4.43 (d, J = 7.8

Hz)). The detailed analysis of 1 H-NMR, COSY, 1D-TOCSY, 13 C-NMR, GHSQC and HMBC spectra of **6** fixed the positions of the ester and glucosidic linkages to one central β-glucopyranosyl moiety (Glc-1). The HMBC correlation from H-1 (δ 4.51) to C-8" (δ 72.9) gave evidence for the attachment of the 3,4-dihydroxy-phenethoxy moiety to C-1 of the central glucose unit, as usual in the PhGs (Jimenez & Riguera, 1994).

The position of linkage of the terminal glucopyranosyl moiety (Glc-2) at C-6 of the central glucose unit was deduced from the 13 C NMR spectrum where the resonance of C-6 and C-5 were observed at δ 69.9 and 76.9, respectively. These chemical shifts were in line with literature data for C-6 glycosylated sugars

(Jimenez & Riguera, 1994). The HMBC correlation from the anomeric proton 1" (δ 4.43) to C-6 (δ 69.9) indicated that the interglucosidic linkage is between C-1" of Glc-2 and C-6 of Glc-1.

The downfield triplet at δ 5.06 (1H, J=9.0 Hz), assigned to H-3 on the basis of 1D-TOCSY and COSY spectra, suggested that the position of the *trans*-caffeoyl unit is at C-3 of the central glucose unit. As expected, the acylated carbon C-3 was also deshielded and appeared at δ 79.7 (Jimenez & Riguera, 1994). The position of this ester linkage was further confirmed by the HMBC correlation from H-3 to C-9'.

Acid hydrolysis of a mixture of **5** and **6** produced caffeic acid, 3,4-dihydroxyphenethyl alcohol and D-glucose. The identification of D-glucose including its absolute configuration was conducted according to the

procedure of Oshima, Yamauchi and Kumanotani (1982).

Based on these data the structure of isolugrandoside **6** was unambiguously established as 2-(3,4-dihydroxyphenyl)-ethyl-O- β -D-glucopyranosyl- $(1 \rightarrow 6)$ -3-O-transcaffeoyl- β -D-glucopyranoside.

The proposed structure of **6** was in full agreement with the ¹H NMR spectrum of its decaacetate **6a** which exhibited in particular the singlets of four aromatic and six aliphatic acetyl groups (Table 1).

Our studies showed that the only difference between compounds 5 and 6 is in the position of the caffeoyl ester units i.e. isolugrandoside (6) is a positional isomer of lugrandoside (5) (Baudouin et al., 1988). However, our experimental data excluded the isomerization of 5 to 6 during the isolation and purification procedure and confirmed the natural occurrence of isolugrandoside (6).

Table 1 ¹H and ¹³C NMR data of isolugrandoside **6** and isolugrandoside acetate **6a**

Moiety	Position	6 ^a		$\mathbf{6a}^{\mathrm{b}},\delta_{\mathrm{H}}$ (ppm) (J (Hz))	
		$\delta_{\rm H}$ (ppm) (J (Hz))	$\delta_{\rm C}$ (ppm)	_	
Glc-1	1	4.51 d (7.8)	104.5	4.50 d (8.57)	
	2	3.44 t-like (9.0)	73.6	5.08 t (9.0)	
	3	5.06 t (9.0)	79.7	5.30 t (9.0)	
	4	3.64 m	69.8	4.97 t (9.0)	
	5	3.62 m	76.9	3.72 m	
	6a	3.86 dd (11.3, 4.6)	69.9	3.64 m	
	6b	4.18 br d (11.3)	_	3.89 br d (10.9)	
Caffeoyl	1'	_	128.3	=	
•	2′	7.12 d (1.9)	115.9	7.34 d (2.0)	
	3′	_ ` ` `	146.8	=	
	4′	_	149.6	=	
	5′	6.85 d (8.2)	117.9	7.22 d (8.5)	
	6′	7.02 dd (8.2, 1.9)	123.7	7.38 d (8.5, 2.0)	
	7′	7.62 d (15.9)	147.7	7.58 d (16.0)	
	8′	6.37 d (15.9)	115.8	6.28 d (16.0)	
	9′	_ ` ` `	170.0	=	
Phenethyl alcohol	1"	_	132.2	=	
•	2"	6.76 (2.0)	117.3	7.08 br s	
	3"	_	144.6	=	
	4"	_	146.1	=-	
	5"	6.75 d (8.1)	117.2	7.06 d (8.0)	
	6"	6.64 dd (8.1, 2.0)	122.2	7.06 br d (8.0)	
	7"	2.82 t, 2H, (7.1)	36.6	2.90 m	
	8″a	3.79 dt (9.7, 7.1)	72.9	3.65 m	
	8″b	4.05 dt (9.7, 7.1)		4.12 m	
Glc-2	1‴	4.43 d (7.8)	104.9	4.58 d (8.14)	
	2‴	3.28 t-like (9.0)	75.2	5.00 m	
	3‴	3.42 t (9.0)	78.1	5.21 t (9.0)	
	4‴	3.35 m	71.7	5.08 m	
	5‴	3.30 m	78.0	3.67 m	
	6‴a	3.70 dd (11.6, 5.2)	62.8	4.14 br d (12.6)	
	6‴b	3.89 dd (11.9, 1.9)	_	4.28 dd (12.6, 4.8)	
	CH ₃ COO-Ph	_	_	2.32, 2.31, 2.29, 2.28	
	CH ₃ COO-Glc	_	=	2.10, 2.04, 2.02, 2.00, 1.98, 1.91	

^aMeasured in CD₃OD. ^bMeasured in CDCl₃.

The *trans-cis* isomerization known for caffeoyl esters was also observed for compounds **1–6** leading to an equilibrium at 70% for the *trans* form (Jimenez & Riguera, 1994).

3. Experimental

3.1. General experimental procedures

¹H and ¹³C spectra were obtained on a Varian Unity Inova spectrometer operating at 500 (¹H NMR) and 75 MHz (¹³C NMR). All experiments, HH-DQFCOSY, HH-LR-COSY, GHSQC, HMBC, NOESY, were implemented using the standard Varian pulse library. Spectra were obtained under temperature control at 24.5°C or 25°C with a 5 mm PFG gradient inverse detection probe (500 MHz).

Negative APCI-MS was carried out on a Finnigan TSQ 700. Negative HRFAB-MS was obtained on Jeol MStation JMS-700, NBA as a matrix. Liquid vacuum chromatography (LVC): silica gel LS 5–40 μ (Chemapol). Anal. HPLC: Spherisorb ODS2 (2 μ m, 125×4.6 mm). Prep. HPLC: LiChrospher 100, RP-18 (10 μ m, 250×16 mm), UV detector at 236 nm.

3.2. Plant material

A commercial sample of *Fraxinus ornus* L. bark collected in 1991 in the region of Dragoman, Bulgaria, was investigated. The plant material was authenticated by Dr. A. Mitrev and a voucher specimen (No. SOM 153320) is deposited in the Herbarium of the Institute of Botany, BAS, Sofia.

3.3. Extraction and isolation

Dried and well-ground bark (1 kg) was extracted with hot EtOH $(3 \times 7 \text{ l})$. The insoluble material was removed by filtration and the extract was concentrated under reduced pressure at temperature 40°C to a small volume (200 ml). After filtration of the deposited esculin (30.0 g), the mother liquor was concentrated (40°C, reduced pressure) and subjected to a solvent-solvent partitioning using petroleum ether and EtOAc to afford R-1 (20.0 g) and R-2 (50.0 g), respectively. R-2 (6.2 g) was further worked up by LVC over 70 g silica gel, using dichloroethane (DCE) and DCE-MeOH with increasing polarity (10:1, 5:1, 3:1). Fractions eluted with DCE:MeOH (5:1) were combined and concentrated under reduced pressure to give subfractions R-3 (840 mg), R-4 (940 mg) and R-5 (320 mg). Fractions eluted with DCE:MeOH (3:1) were combined to give subfractions R-6 (130 mg) and R-7 (90 mg). R-5 (160 mg) was subjected to prep. HPLC using a gradient MeOH–H₂O (20 min 30% MeOH, 10 min to 40% MeOH, 15 min 40% MeOH) to give esculin (47.0 mg), fraxin (10.0 mg), 2-(4-hydroxyphenyl)-ethyl-(6-O-caffeoyl)-β-D-glucopyranoside (1, 4.5 mg) and calceolarioside B (2, 45.0 mg). R-6 subjected to prep. HPLC with 40% MeOH gave verbascoside (3, 25.0 mg) and isoacteoside (4, 18.0 mg). R-7 was subjected to prep. HPLC with 28% MeOH to give isolugrandoside (6, 5.6 mg) and lugrandoside (5, 4.8 mg).

3.4. Isolugrandoside (6)

Amorphous powder, $[\alpha]_{\rm D}^{25^{\circ}{\rm C}}$ –16.6° (c 0.06, MeOH). IR $\nu_{\rm max}^{\rm KBr}$ (cm $^{-1}$): 3398, 1700, 1628, 1604, 1522, UV: $\lambda_{\rm max}^{\rm MeOH}$ (log ε) (nm): 222 (4.44), 255 (sh, 4.00), 292 (4.01), 328 (4.05); negative ion HRFAB-MS: m/z 639.1950 [M $-{\rm H}$] $^-$; C₂₉H₃₅O₁₆ requires 639.1914. $^1{\rm H}$ and $^{13}{\rm C}$ NMR see Table 1.

Lugrandoside (5) was subjected to the above described procedure used for isolation of 5 and 6. No isomerization from 5 to 6 was found at any experimental step – boiling with EtOH, solvent–solvent partitioning, treatment with silica gel and HPLC using RP18 column.

3.5. Isolugrandoside acetate (6a)

Isolugrandoside (6) (2 mg) was acetylated with pyridine– Ac_2O (1:1) at room temperature for 24 h. The product was purified on silica gel using Et_2O –toluene (2:1) to give **6a** (1.2 mg). ¹H NMR see Table 1.

3.6. Acid hydrolysis of mixture of 5 and 6

A soln of a mixture of **5** and **6** (8 mg) in 3 ml 2 N TFA was refluxed at 100°C for 3 h. The reaction mixture was extracted with EtOAc. The EtOAc extract was proven to contain caffeic acid and 3,4-dihydroxyphenethyl alcohol by direct TLC comparison with authentic samples. D-Glucose was found as the only sugar in the water part following the procedure of Oshima, Yamauchi and Kumanotani (1982).

Acknowledgements

T. Iossifova thanks Deutscher Akademischer Austauschdienst (DAAD) for a scholarship. We are obliged to Ms. S. Reeb, University of Hohenheim, Stuttgart, Germany, for the NMR measurements and to Mr. Norbert Nieth, University of Heidelberg, Germany, for the HR-MS.

References

- Andary, C., Wylde, R., Laffite, C., Privat, G., & Winternitz, F. (1982). *Phytochemistry*, 21, 1123.
- Baudouin, G., Skaltsounis, A.-L., Tillequin, F., & Koch, M. (1988). *Planta Medica*, 54, 321.
- Damtoft, S., Franzyk, H., & Jensen, S. R. (1992). *Phytochemistry*, 31, 4197.

- Jimenez, C. & Riguera, R. (1994). Natural Product Reports, 591.
- Kostova, I., Yossifova, T., Vassileva, E., & Mikhova, B. (1993). *Planta Medica*, 59 (Suppl. Issue), A705.
- Mayase, T., Koizumi, A., Ueno, A., Noro, T., Kuroyanagi, M., Fukushima, S., Akiyama, Y., & Takemoto, T. (1982). Chemical and Pharmaceutical Bulletin, 30, 2732.
- Oshima, R., Yamauchi, Y., & Kumanotani, J. (1982). Carbohydrate Research, 107, 169.
- Shen, Y.-S., Chen, C.-H., & Lee, K.-H. (1993). *Phytochemistry*, 33, 1531.
- Shimomura, H., Sashida, Y., & Adachi, T. (1987). *Phytochemistry*, 26, 249.