

Phytochemistry 50 (1999) 423-433

11-Oxygenated cytotoxic 8,9-secokauranes from a New Zealand liverwort, *Lepidolaena taylorii*

Nigel B. Perry,^{a,*} Elaine J. Burgess,^a Seung-Hwa Baek,^b Rex T. Weavers,^a Wolfgang Geis,^c Anthony B. Mauger^d

^aPlant Extracts Research Unit, New Zealand Institute for Crop and Food Research Ltd, Department of Chemistry, University of Otago, Box 56, Dunedin, New Zealand

^bDepartment of Chemistry, Wonkwang University, Iksan 570-749, South Korea
^cPharmakognosie und Analytische Phytochemie, Universitaet des Saarlandes, 66041 Saarbruecken, Germany
^dDrug Synthesis and Chemistry Branch, National Cancer Institute, Bethesda, MD 20892-7448, USA

Received 9 July 1998

Abstract

Four new cytotoxic 8,9-secokauranes have been identified from the liverwort *Lepidolaena taylorii*. The 11-oxygenation found in three of these has not been encountered in the 8,9-secokauranes known from higher plants. NMR studies were combined with molecular modelling to determine the preferred conformations. Six structurally related kauren-15-ones were also found, including three new compounds. Some of these compounds showed differential cytotoxic activity against human tumor cell lines. The probable mode of cytotoxic action was supported by Michael addition of a thiol. Two 8,9-secokauranes were the main cytotoxins in another New Zealand liverwort, *L. palpebrifolia*. © 1998 Elsevier Science Ltd. All rights reserved.

Keywords: Lepidolaena taylorii; L. palpebrifolia; Liverworts; Bioactive plant products; Cytotoxicity; Diterpenes; 8,9-Secokauranes; Kauren-15-ones

1. Introduction

Liverworts are the structurally simplest of the terrestrial plants, but they contain a complex array of secondary metabolites (Asakawa, 1995). Diterpenes are often found, including a range of oxygenated kauranes (Buchanan, Connolly, Kadir, & Rycroft, 1996; Nagashima, Tanaka, Takaoka, & Asakawa, 1996; Lorimer, Perry, Burgess, & Foster, 1997). We recently reported the bioactivity-directed isolation of three cytotoxic diterpenes from the leafy liverwort *Lepidolaena taylorii* (Gott.) Trev. 8,9-Secokaurane (1) was the main cytotoxin, with the less toxic dihydro and epoxy derivatives 2 and 3 present at lower concentrations (Perry, Burgess, & Tangney, 1996).

The only other reported source of 8,9-secokauranes is the higher plant genus *Rabdosia* (or *Isodon*, Labiatae) (Fujita & Node, 1984; Takeda & Otsuka, 1995). Rabdoumbrosanin 1 was first isolated from *Rabdosia umbrosa* (Maxim.) Hara, along with other 8,9-secokauranes and the 7,9,14-trihydroxykauren-15-one shikoccidin 4 (Takeda, Ichihara, Fujita, & Ueno, 1989). The 8,9-seco-

kauranes are thought to be derived biosynthetically from 7,9,14-trihydroxykauren-15-ones by a retrograde aldol reaction cleaving the 8,9 bonds and loss of H₂O to give the 8,14-double bond (Fujita & Node, 1984). The reverse 8,9 cyclization was achieved by Backhaus and Paquette (1997), as an adjunct to their synthesis of 8,9-seco-kauranes (Paquette, Backhaus, & Braun, 1996).

Eight liverwort species have been assigned to the genus Lepidolaena (family Lepidolaenaceae), with L. taylorii being the most common of these in New Zealand (Grolle, 1967). This endemic species is widely distributed throughout the country, especially in wet forest (Allison & Child, 1975). The only other report on *Lepidolaena* chemistry is of several sesquiterpenes, including a new bergamotane diacetate, from another New Zealand species L. clavigera (Hook.) Dum. ex Trev. (Asakawa, Toyota, Nakaishi, & Tada, 1996). We now report the isolation of four new 8,9-secokauranes from L. taylorii, plus a series of kauren-15-ones. The cytotoxic activities of all these compounds are described, and related to their structures. Results are presented showing differential cytotoxicity in the human disease oriented in vitro assays of the US National Cancer Institute (NCI) (Boyd & Paull, 1995). The presumed mode of cytotoxic action, Michael addition of biological nucleophiles (Fujita, Nagao, Kaneko, Nakazawa, &

^{*} Corresponding author. E-mail: perryn@crop.cri.nz.

7 | H 14 | 16 | R | 15 | H | 7 | R | O | R | H | 18 | H | 15 | H |

- 5 R=Ac, R'=R"=H
- 6 R=Ac, R'=OH, R"=H
- 7 R=Ac, R'=H, R"=OH
- 8 R=H, R'=OAc, R"=H
- 9 R=H, R'=OH, R"=H
- **10** R=R'=OH, R"=H
- 11 R=R'=R"=OH
- 12 R=R'=R"=H
- 13 R=OH, R'=OAc, R"=H
- 14 R=OAc, R'=OH, R"=H
- 15 R=R"=H, R'=OH
- 16 R=OH, R'=R"=H

20 R=H, R'=Ph 21 R=OH, R'=Me

Kuroda, 1976), is discussed in relation to the addition of thiophenol to 1. 8,9-Secokauranes 1 and 3 were found to be the main cytotoxins in another New Zealand endemic liverwort, *L. palpebrifolia* (Hook.) Dum. ex Trev.

2. Results and discussion

2.1. NMR assignments and conformation of 1

The ¹H and ¹³C NMR spectra of rabdoumbrosanin 1 were fully assigned in order to assist with the structure determination of new 8,9-secokauranes (Takeda et al. assigned the 13C NMR spectrum and the absolute configuration of 1 by comparison with other 8,9-secokauranes (Takeda et al., 1989)). ¹H-¹H (COSY) and one bond (HMOC) and two/three bond (HMBC) ¹H-¹³C correlation spectra were combined to give the assignments in Tables 1 and 2. Assignments of the diastereotopic proton signals at C-6, C-11 and C-12 were assisted by molecular modelling. Molecular mechanic calculations (MM2 force field (Allinger, 1977)) and conformational searching (MacroModel Monte Carlo method (Mohamadi et al., 1990)) were used to predict the solution conformation of 1. The two most stable conformers, predicted to be >98% populated in the gas phase, differed only in orientation of the C-7 hydroxyl group. They had the same skeletal conformation as found in the crystal structure of another 8,9-secokaurane, shikoccin monoacetate (Fujita et al., 1979), with the sixmembered ring in a chair conformation and the C-9 carbonyl oxygen syn with the C-10 methyl (Fig. 1). H-7 had a dihedral angle of about 180° to the pro-R H-6 (Fig. 1), so the H-6 signal with two 12 Hz couplings was assigned as pro-R (Table 1). Likewise, the pro-S H-11 was predicted to have a dihedral angle of about 180° to one proton on C-12 (H* in Fig. 1), so the H-11 signal at 2.30 ppm and the H-12 signal at 2.58 ppm with 12 Hz vicinal coupling were assigned to these protons (Table 1). The modelling also suggested that these same protons would be in the plane of the C-9 carbonyl group (Fig. 1), which explained their deshielding relative to their geminal partners. Our ¹³C NMR assignments (Table 2) matched those of Takeda et al. (1989), except for a reversal of the C-8 and C-16 assignments based on HMBC correlations.

2.2. Other 8,9-secokauranes

Four new 8,9-secokauranes were discovered during the isolation of larger quantities of 1 and 3 for in vivo antitumour testing at the NCI (see below). We found that a

Table 1 ¹H NMR data for 8,9-secokauranes^a

Proton	1	5	6	8	9 ^d
1 (ax)	1.66 (tm) ^b	1.65 (NR°) ^b	2.55 (td, 12, 4)	NR	2.90 (td, 13, 5)
1 (eq)	1.24 (d) ^b	1.28 (NR) ^b	1.2 (d) ^b	NR	1.30 (NR)
2	1.46 (NR ^c) ^b	$1.46 (NR)^{b}$	1.3-1.5 (NR)	NR	1.5-1.9 (NR)
3 (eq)	1.42 (dm) ^b	1.44 (dm) ^b	1.2-1.4 (NR) ^b	NR	NR
3 (ax)	$1.2 (t)^{b}$	$1.2 (NR)^{b}$	1.2-1.4 (NR) ^b	NR	NR
5	0.88 (dd, 6, 2)	$0.93 (NR)^{b}$	1.9 (NR) ^b	1.73 (dd, 6, 2)	2.22 (NR)
6S	1.86 (dt, 14, 6)	1.94 (ddd, 13, 6, 5)	1.9 (ddd, 12, 6, 4)	1.90 (ddd, 13, 6, 5)	1.96 (ddd, 14, 7, 5)
6R	1.27 (td, 12, 2)	$1.3 (NR)^{b}$	1.4 (br t, 12)	1.45 (NR)	1.55 (NR)
7	4.68 (dd, 12, 5)	5.51 (dd, 12, 5)	5.47 (dd, 12, 4)	4.71 (dd, 12, 4)	4.69 (dd, 12, 5)
11R	1.75 (d) ^b	$1.8 (NR)^{b}$	4.40 (ddd, 5, 3, 1)	5.23 (dd, 5, 1)	4.52 (dd, 5, 1)
11S	2.30 (ddm, 17, 12)	2.34 (NR) ^b	_	_	-
12R	2.58 (td, 12, 4)	2.61 (td, 12, 4)	2.99 (ddd, 15, 5, 1)	2.91 (ddd, 15, 5, 2)	2.98 (ddd, 14, 5, 2)
12S	$1.74 (NR)^{b}$	1.79 (dm, 15)	2.07 (ddd, 15, 5, 3)	2.32 (ddd, 15, 6, 3)	2.30 (ddd, 14, 5, 3)
13	3.59 (br m)	3.62 (br m)	3.60 (br m)	3.57 (br m)	3.70 (br m)
14	7.24 (br d, 2)	7.19 (br d, 3)	7.13 (br d, 2)	7.25 (br d, 3)	7.20 (br d, 3)
17 (E)	5.43 (br s)	5.45 (br s)	5.35 (br s)	5.24 (br s)	5.41 (t, 1)
17 (Z)	6.12 (br s)	6.16 (br s)	5.95 (br s)	5.88 (br s)	5.83 (q, 1)
18 (eq)	1.00 (s)	1.10 (s)	1.05 (s)	1.03 (s)	1.13 (s) ^e
19 (ax)	0.92 (s)	0.93 (s)	0.91 (s)	0.95 (s)	1.090 (s) ^e
20	0.94(s)	0.96 (s)	0.99 (s)	1.01 (s)	1.094 (s) ^e
7-OAc	_	2.00 (s)	1.97 (s)	_	
11-OAc	_	_	-	2.00 (s)	_
11-OH	_	_	1.39 (d, 3)	=	_

^aIn CDCl₃ unless otherwise stated; shift in ppm (multiplicity, coupling in Hz).

^bShift and multiplicity from HMQC spectrum.

^cNot resolved.

dIn (CD₂)₂CO

^eAssignments interchangeable within column.

Table 2 ¹³C NMR data for 8,9-secokauranes^a

Carbon	1 ^b	5 ^b	6 ^b	8	9 °
1	34.1	34.1	32.1	31.8	33.3
2	18.1	18.1	18.1	17.9	19.3
3	41.4	41.3	40.7	41.5	42.0
4	34.7	34.7	34.2	34.3	35.2
5	43.5	43.2	39.6	40.6	42.5
6	36.7	33.1	33.5	32.4	36.4
7	64.4	67.0	66.6	63.8	64.3
8	148.5	144.9	145.1	148.5	150.1
9	215.3	215.4	215.2	212.2	216.7
10	53.9	53.9	54.9	54.7	55.6
11	30.8	30.9	78.1	77.7	78.4
12	25.9	25.9	35.6	37.1	38.6
13	42.4	42.5	41.2	41.0	40.8
14	159.7	159.8	158.4	159.1	158.2
15	195.2	194.2	193.6	194.7	195.2
16	146.0	145.6	149.1	148.2	151.2
17	116.9	117.2	112.9	113.0	111.4
18 (eq)	33.7	33.5	33.6	34.1	34.5
19 (ax)	22.4	22.4	22.2	22.2	23.0
20	16.6	16.6	18.1	18.3	19.0
OCOCH ₃	_	169.9	169.9	169.1	_
$OCOCH_3$	_	21.1	21.1	20.8	_

^aIn CDCl₃ unless otherwise stated; shift in ppm.

Soxhlet extraction with CHCl₃ gave improved recovery of 1 and 3 from plant material, compared to our previous extraction with cold EtOH (Perry et al., 1996). Analytical reversed-phase (RP) HPLC revealed the presence of a range of other UV-active compounds. These were purified by further chromatography, especially preparative

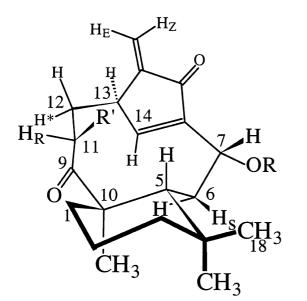


Fig. 1. Conformations of 1 (R = R' = H) and 6 (R = Ac, R' = OH) from molecular modelling.

HPLC. Four compounds were recognised as 8,9-seco-kauranes by the characteristic ¹H NMR signal of H-14, a 2–3 Hz doublet at 7.13–7.25 ppm (Table 1).

One of these compounds was readily identified as acetate 5, since its ${}^{1}H$ NMR spectrum was very similar to that of 1, apart from an acetate signal and deshielding of the signal of H-7 to δ 5.51 (δ 4.68 in 1; see Table 1). Acetylation of 1 confirmed the assignment of structure 5, previously unreported.

A second new compound 6 gave a ¹H NMR spectrum which also contained an acetate signal and a signal appropriate for H-7 at δ 5.47. However, the ¹H NMR and ¹³C NMR spectra showed the presence of an additional oxygenated methyne and one less sp³ methylene, compared to 5 (Tables 1-2). The mass spectrum of 6 supported the molecular formula $C_{22}H_{30}O_5$ (5 is $C_{22}H_{30}O_4$). Several of the known 8,9-secokauranes have acetate or hydroxyl groups at C-1 or C-3 (Fujita & Node, 1984; Takeda & Otsuka, 1995), but mass spectral and ¹³C NMR evidence suggested that this was not the case in 6. The mass spectra of 1, 2 and 3 showed strong ions at m/z 138 and 123 (Perry et al., 1996), due to cleavage of the 9,10bond and either the 6,7-bond to give C₁₀H₁₈, or the 5,6bond to give C₉H₁₅. These same ions were present in the mass spectrum of 6, suggesting a non-oxygenated 6membered ring. In addition, all the signals assigned to this ring in 1 and 5 were closely matched in the ¹³C NMR spectrum of 6 (Table 2). The structure was fully determined by NMR spectroscopy, using COSY, HMQC and HMBC experiments. Two particularly important HMBC correlations were from one oxygenated methyne proton signal (δ 4.40, assigned to H-11) to carbon signals at δ 41.2 (C-13) and δ 215.2 (C-9). Analysis of the full set of correlations showed 6 to be an 8,9-secokaurane with a C-7 acetate and a C-11 hydroxyl. None of the previously reported 8,9-secokauranes are oxygenated at C-11 (Fujita & Node, 1984; Takeda & Otsuka, 1995).

The relative stereochemistry of 6 was determined by a combination of NMR spectroscopy and molecular modelling (the absolute stereochemistry at C-1 was assumed to be the same as for rabdoumbrosanin 1). The similarities in the NMR spectra of 1, 5 and 6 (Tables 1–2) suggested that these compounds had the same configurations at C-5, C-7 and C-13. Both R- and S-configurations have been reported for ent-kauranes oxygenated at C-11 (Fujita & Node, 1984; Takeda & Otsuka, 1995), so two structures were modelled: 11S-6 and 11R-7. The most stable conformations predicted for both 6 and 7 had the same skeletal conformation as found for 1 (Fig. 1). The predicted proton-proton couplings and distances for 6 and 7 were compared with the experimental couplings and NOE interaction data. These were consistent with the proposed configurations at C-5, C-7 and C-13. The R-configuration at C-11, i.e. 7, would place H-11 anti to one of the C-12 protons, leading to one predicted proton-proton coupling of 12 Hz for H-

^bAssigned by HMQC and HMBC experiments.

[°]In (CD₃)₂CO.

11. In fact, H-11 of the natural product showed couplings of 1 and 5 Hz to the C-12 protons (Table 1), consistent with the predicted conformation of 6, with H-11 almost at a 90° dihedral angle to one C-12 proton (Fig. 1). Structure 6 was further supported by the observed NOE interactions between H-11 and both C-12 protons, whereas structure 7 would only lead to an NOE interaction between H-11 and the one C-12 proton in a *gauche* relationship.

A third new compound **8** had a similar mass spectrum to **6**, with the same $C_{22}H_{30}O_5$ molecular ion and prominent losses of H_2O and AcOH. The ¹³C NMR spectra of **6** and **8** were also similar (Table 2), so **8** was an isomeric 11-oxygenated 8,9-secokaurane. The ¹H NMR spectrum of **8** showed a signal appropriate for H-7 at δ 4.71 very similar to the signal of H-7 in **1** (Table 1). The H-11 signal of **8** (δ 5.23) was deshielded relative to H-7 in **6** (δ 4.40). Therefore **8** had a C-7 hydroxyl and a C-11 acetate. The H-11 coupling constants showed the *S*-configuration at C-11.

The most polar compound **9** purified from *L. taylorii* had NMR and mass spectra consistent with the molecular formula $C_{20}H_{28}O_4$. The NMR spectra, of a $(CD_3)_2CO$ solution, were very similar to those of the other 8,9-secokauranes (Tables 1–2). A signal at δ 4.69 closely matched the H-7 signals of **1** and **8** and a signal at δ 4.52 closely matched the H-11 signal of **6**. Therefore **9** had hydroxyls at both C-11 and C-7, again with the *S*-configuration at C-11.

2.3. Kauren-15-ones

In view of the co-occurrence of 8,9-secokauranes with kauren-15-ones in *Rabdosia* species (Fujita & Node, 1984; Takeda et al., 1989; Takeda & Otsuka, 1995), we searched for these possible biosynthetic intermediates in L. taylorii. Several of our liverwort metabolites showed ¹H NMR signals typical of a C=CH₂ group conjugated to a carbonyl, but lacked the characteristic low field H-14 signal of the 8,9-secokauranes (Table 3). The most polar of these compounds, 10, had NMR and mass spectra consistent with the molecular formula $C_{20}H_{30}O_3$. The ¹³C NMR spectrum (Table 3) showed only one carbonyl signal, plus the expected C=CH₂ group, so four rings were indicated. The DEPT spectra showed 28 protons attached to carbons, so 10 was a diol. Therefore, it seemed likely that 10 was a dihydroxykauren-15-one, with the same carbon skeleton as shikoccidin 4. A combination of COSY, HMQC and HMBC spectra confirmed this skeleton, with CHOH groups at C-7 and C-14. A search of the Chemical Abstracts registry file retrieved some 7,14-dihydroxykauren-15-ones with further oxygenation, which are often found in Rabdosia species (Fujita & Node, 1984; Takeda & Otsuka, 1995). The close similarity of our ¹H NMR and ¹³C NMR data on **10** (Table 3) with published data on compounds such as excisanin C (11) (Takeda & Otsuka, 1995) showed that the relative stereochemistry was the same. The absolute stereochemistry of this new compound 10 was assumed to be *ent*, on the basis of the co-occurrence with *ent*-kauren-15-one (12).

We first detected kauren-15-one in *L. taylorii* by GC–MS analysis of a crude extract. A range of common plant volatiles, especially sesquiterpenes, were also detected, along with kaurene. The main GC–MS peak had a mass spectrum appropriate for kauren-15-one (12), which has been found in several other liverwort species (Asakawa, 1995). Compound 12 was purified from a bulk extract of *L. taylorii* and its identity confirmed by direct comparison of its ¹H NMR spectrum with that of a sample isolated from the liverwort *Jungermannia exsertifolia* ssp. *cordifolia* (Nagashima et al., 1996). The ¹³C NMR spectrum of 12 matched that recently published (Fraga, Gonzalez, Guillermo, Hernandez, & Perales, 1995) and the optical rotation confirmed the *ent* absolute stereochemistry.

Two further kauren-15-ones were not well separated on RP HPLC, but silica gel HPLC gave pure samples. Both compounds showed single acetate signals in their ¹H NMR spectra, and mass spectra supported the same molecular formula, C₂₂H₃₂O₄. These mass spectra showed quite strong ions due to the loss of CH₂=C=O. Compound 13 was readily assigned as the 7-acetate of 10 (previously unreported) because of the similarity of their ¹H and ¹³C NMR spectra (Table 3), apart from the diagnostic downfield shift for H-7 in 13. The isomeric compound was tentatively assigned as the 14-acetate 14, but it could not be fully characterised because it gradually isomerised to 13 in CDCl₃ solution. Molecular modelling was used to predict the most stable conformations of structures 13 and 14. The lowest energy conformation of 13 included an intramolecular hydrogen bond from 14-OH to 7-O, which explained the observation of a sharp singlet for 14-OH in the ¹H NMR spectrum of 13 (Table 3). The lowest energy conformation of **14** had 7-O only 2.9 Å from the carbonyl carbon of the C-14 acetate, which explained the facile trans-esterification of 14 to 13. The lowest energy conformation of 13 was calculated (MM2* force field (Allinger, 1977; Mohamadi et al., 1990) to be about 2 kJ/mol more stable than the lowest energy conformation of 14.

Two monohydroxykauren-15-ones, $C_{20}H_{30}O_2$, were obtained pure. One of these compounds showed a secondary carbinol signal at δ 4.06 (dd, 12 and 4 Hz) appropriate for 7-hydroxykauren-15-one **15** (compare **10**, Table 3). This compound has been reported once before, from the liverwort *Jungermannia truncata*, with spectroscopic data and optical rotation matching ours (Buchanan et al., 1996). The other monohydroxy compound showed a secondary carbinol signal at δ 4.55 (br s) appropriate for 14-hydroxy-kauren-15-one (**16**) (compare **10** and **13**, Table 3). This structure, previously unreported, was confirmed by comparison of its ¹³C NMR spectrum with the spectra of **10** and **13** (Table 3) and of **12** (Fraga et al., 1995).

Table 3 ¹H and ¹³C NMR data for kauren-15-ones^a

Position	10 (¹ H)	10 (¹³ C)	13 (¹H)	13 (¹³ C)	16 (¹ H)	16 (¹³ C)
1 (ax)	0.69 (td, 14, 4)	39.6	0.74 (td, 13, 4)	39.5	0.76 (td, 13, 4)	39.7
1 (eq)	1.7 (NR ^c) ^b	_	1.74 (NR)	_	1.7 (NR)	_
2	0.79, 1.43 (NR) ^b	18.6e	NR	18.5 ^e	NR	18.6e
3	1.13, 1.40 (NR) ^b	41.6	NR	41.5	NR	41.7
4	_	33.3	_	33.3	_	33.3
5	0.92 (dd, 12, 2)	53.7	NR	53.3	0.95 (dd, 12, 2)	55.1 ^f
6	1.92, 1.98 (NR) ^b	28.0	1.6, 2.04 (NR)	25.3	NR	25.3
7	4.35 (dd, 12, 4)	75.3	5.42 (dd, 12, 4)	76.8	NR	18.3
3	-	62.1	-	61.6	_	59.0
)	1.18 (dd, 15, 8)	54.4	NR	55.0	NR	55.4 ^f
10	-	40.1	_	40.1	_	40.2
11	$0.93 (NR)^{b}$	17.5 ^e	NR	17.3 ^e	NR	17.8e
12	1.77, 1.97 (NR)b	31.2	NR	31.2	1.8, 2.05 (NR)	32.4
13	3.05 (br m)	46.1	3.06 (br m)	45.9	3.04 (br m)	46.5
14	4.88 (d, 0.5)	75.0	4.88 (br s)	74.5	4.55 (br s)	73.7
15	-	208.1	- ` ′	205.2	_ ` ′	209.2
16	_	147.7	_	147.1	_	146.9
17 (E)	5.39 (br s)	118.0	5.39 (br s)	118.2	5.34 (br t,1)	117.2
17 (Z)	6.16 (br s)	_	6.14 (br s)	_	6.10 (br s)	_
18 (eq)	0.90 (s)	33.6	0.91 (s)	33.4	0.88 (s)	33.6
19 (ax)	0.84 (s)	21.7	0.82 (s)	21.7	0.81 (s)	21.6
20	1.05 (s)	18.2	1.07 (s)	18.2	1.02 (s)	17.9
7-OAc	=	=	2.00 (s)	168.2, 21.4	=	_
14-OH	NO^d	_	4.03 (s)	_	NO	_

^aIn CDCl₃; shift in ppm (multiplicity, coupling in Hz).

2.4. Cytotoxic activity

We have tested all the 8,9-secokauranes and kaurenes obtained pure from *L. taylorii* against P388 leukemia cells (Table 4). The results on two related kaurene derivatives 17 and 18, purified by Nagashima et al. (1996) from the liverwort *Jungermannia exsertifolia* ssp. *cordifolia*, are also included.

Our in vitro P388 results (Table 4) compare well with the results of Fuji et al. (1985) on a series of 8,9-seco-kauranes and kauren-15-ones from a *Rabdosia* species, tested against HeLa cells. Their most active compound was shikoccin (19), with a GI_{50} of 0.08 μ g/ml. 7-Methoxy and 8,14-epoxy derivatives of 19 were less cytotoxic (GI_{50} 8 of 0.30 and 0.25 μ g/ml), as were our 7-acetoxy 5 and 8,14-epoxy 3 derivatives of 1 (Table 4). Fuji et al. (1985) also found that kauren-15-ones hydroxylated at C-7 and C-14, such as shikoccidin (4) (GI_{50} 0.10 μ g/ml), were only a little less cytotoxic than 8,9-secokauranes.

The results of testing five of the *L. taylorii* 8,9-seco-kauranes against the NCI's panel of cell lines are also summarised in Table 4. This panel contains 60 human tumor cell lines, including six leukemia cell lines and a range of organ-specific cancers (Boyd & Paull, 1995).

Table 4 Cytotoxicity of 8,9-secokauranes and kauren-15-ones^a

	Mouse P388 leuk				
Compound	$\overline{\mu g/m l^b}$	μM ^b	Human tumors μM ^c		
1	0.10 (0.05)	0.3	1.2 (0.11 to 7.44)		
20	0.156 (0.002)	0.4	NT^{d}		
9	0.165 (0.002)	0.5	1.5 (0.04 to 16.2)		
13	0.22 (0.03)	0.6	NT		
3	0.27 (0.06)	0.8	2.5 (0.29 to 20.2)		
10	0.3 (0.1)	0.9	NT		
8	0.345 (0.006)	0.9	NT		
15	0.37 (0.07)	1.2	NT		
17	0.48 (0.06)	1.6	NT		
5	0.7 (0.5)	1.9	NT		
16	0.8 (0.2)	2.6	NT		
12	1.1 (0.5)	3.7	NT		
6	1.2 (0.6)	3.2	11.0 (4 to > 25)		
2	1.9 (1.3)	5.9	21.4 (0.99 to > 100)		
18	>25	>72	NT		

 $^{^{\}rm a}$ Values are ${\rm GI}_{50}{\rm s},$ i.e. concentration that inhibited growth to 50% of control.

^bShift and multiplicity from HMQC spectrum.

^cNot resolved.

^dNot observed.

^eAssignments interchangeable within column.

^fAssignments interchangeable within column.

^bMean from at least two separate assays (standard deviation).

^cMean from 60 different human tumor cell lines (range).

dNot tested.

There was a good correlation between the activity against mouse P388 leukemia cells and the mean activity against the NCI cell lines (r = 0.99 for log-transformed data). However, the 8,9-secokauranes were not indiscriminant cell poisons, since they showed quite wide ranges of cytotoxic activity against the different human tumor cell lines (Table 4). For example, compound 9 was most active against the leukemia cell lines (mean GI₅₀ 0.3 µM) and least active against the central nervous system cancer cell lines (mean GI_{50} 6 μ M). The activity profiles (GI_{50} data) of compounds 1 and 3 against the 60 human tumor cell lines were searched against the NCI database of active compounds, using the 'COMPARE' algorithm. The aim was to look for compounds that might have similar mechanisms of cytotoxic action (for a detailed discussion, see Boyd and Paull (1995)). The usefulness of this approach was supported when the profile of 1 showed high COM-PARE correlations with both 3 and with another 8,9secokaurane submitted independently, shikoccin (19) from Rabdosia species (Takeda et al., 1989). The other classes of natural products that showed high COMPARE correlations with 1 and 3 were α -methylene lactones (both sesquiterpenes and diterpenes) and quinones, plus some α,β -unsaturated or α,β -epoxy ketones. These compounds are known Michael acceptors, which probably act by alkylating cellular thiols (Kupchan, Fessler, Eakin, & Giacobbe, 1970; Ahn & Sok, 1996). Therefore this is likely to be the mode of cytotoxic action for the 8,9secokauranes.

Fujita et al. (1976) found that a cytotoxic kauren-15one from Rabdosia reacted with butane thiol to give a 17-S-Bu derivative that was not cytotoxic. However, no such model reactions have been done with 8,9-secokauranes, which have two possible sites for thiol addition: the 16,17exocyclic double bond; and the 8,14 endocyclic double bond. Thiophenol reacted immediately with 1, at room temperature in the presence of a base, to give a single product 20 in good yield. The NMR spectra of 20 showed that the thiol addition had occurred only at the 16,17exocyclic double bond, since there were no C=CH₂ signals in the ¹H NMR spectrum and the ¹³C NMR spectrum showed that the characteristic low field signal of C-14 (δ 163.1) was still present. In order to determine the stereochemistry at C-16, the ¹H NMR spectrum had to be run in $(CD_3)_2CO$ solution (the signals of H-16 and one H-17 overlapped in CDCl₃). The H-16 to H-13 coupling was 6 Hz, very similar to the corresponding coupling in the 16,17-dihydro derivative 2 (Perry et al., 1996) and these two protons also showed a strong NOE interaction. Therefore the stereochemistry at C-16 of **20** was R, corresponding to thiol addition to the less hindered 'outer' face of the macrocycle (see Fig. 1). Treatment of the 16,17-dihydro derivative 2 with thiophenol under the conditions used to form 20 gave no reaction, and heating had no effect.

These results show that the 16,17 exocyclic double

bond of the 8,9-secokauranes is the most reactive site for thiol addition, and could explain the relative cytotoxicities of 8,14-epoxy derivative 3 and 16,17-dihydro derivative 2 (Table 4). Oxygenation at C-11 leads to reduced cytotoxicity (compare 8 and 9 with 1, Table 4). This may be because of some steric crowding of 11-O and 17-CH₂ destabilising the proposed thiol adducts. Molecular modelling of a hypothetical thiol adduct 21 suggested an 11-O to 17-C distance of 3.2 Å. Acetylation at C-7 also leads to reduced cytotoxicity (compare 5 with 1, and 6 with 9, Table 4). This is not thought to be due to an intramolecular 7-OH to 15=O hydrogen bond in 1 promoting Michael addition, since molecular modelling showed no such hydrogen bond (see above and Fig. 1). Instead, we assume that 7-OH assists attack at biologically important nucleophiles in tumor cells, as suggested by Fujita and Nagao (1977). This would also explain why kauren-15-ones with C-7 and/or C-14 hydroxyl groups were more cytotoxic than the simple kauren-15-one (12). Compound 18 was inactive because of the absence of a carbonyl group to allow Michael addition. One surprising result in Table 4 was the cytotoxic activity of thiophenol adduct 20, only slightly less than that of the parent compound 1. We postulate that this was due to elimination of thiophenol under cellular conditions.

Compounds 1 and 3 were tested in an in vivo model system for antitumor activity. This involves implanting human tumor cells, encapsulated in hollow fibres, in mice, which are then treated with compounds intra-peritoneally or sub-cutaneously (Hollingshead et al., 1995). Unfortunately neither compound was active at the doses tested (150 and 100 mg/kg for 1 and 18 and 12 mg/kg for 3).

2.5. Lepidolaena palpebrifolia

Crude extracts of another *Lepidolaena* species, *L. pal-pebrifolia*, also showed strong cytotoxic activity in P388 leukemia assays. This species is closely related to *L. taylo-rii*, from which it differs only in having ciliate toothed branches and partly ciliated leaves (Hodgson, 1959). Bioactivity-directed fractionation led to rabdoumbrosanin 1 and epoxide 3 as the main cytotoxins.

3. Conclusions

8,9-Secokaurane (1) is the main cytotoxic compound in *L. taylorii*, with a purified yield of about 0.5 mg of 1 per g of dried liverwort. Six new 8,9-secokauranes are present at lower levels, representing a significant jump in the number of compounds known in this class from the nine (including 1) reported from *Rabdosia* species (Fujita & Node, 1984; Takeda & Otsuka, 1995). Also present in *L. taylorii* are kaurene, *ent*-kauren-15-one (12) and a series of C-7 and/or C-14 oxygenated derivatives of 12.

No C-9 oxygenated kauren-15-ones, possible precursors of the 8,9-secokauranes, were detected. However, only one such compound, shikoccidin 4, has been reported in the many papers on Rabdosia diterpenes (Fujita & Node, 1984; Takeda & Otsuka, 1995). 8,9-Secokauranes 1 and 3 showed some selective toxicity amongst human tumor cell lines, in a pattern similar to other natural products known to act as Michael acceptors for biological nucleophiles. This mode of action was supported by the facile addition of a thiol to the 16,17 double bond of 1, but the 8,14 double bond of 2 was relatively unreactive. The occurrence of 8,9-secokauranes in both L. taylorii and L. palpebrifolia reflects their morphological similarity (Hodgson, 1959) and their placement together in the same section of Lepidolaena by Grolle (1967). We have found completely different bioactive compounds in two other New Zealand liverworts from different sections of Lepidolaena (unpublished results).

4. Experimental

4.1. General

All solvents were distilled before use and were removed by rotary evaporation at temperatures up to 35°C. Octadecyl functionalised silica gel (C18) was used for reversedphase (RP) flash chromatography and Davisil, 35-70 μm, 150 Å was used for silica gel flash chromatography. Analytical HPLC was done on a RP column (Merck LiChroCART 100 RP-18, 250×4 mm, 5 µm) with a guard column (Merck LiChroCART 100 RP-18, 4×4 mm, 5 µm), a mobile phase of 3:2 CH₃CN:H₂O at 1 ml/min and detection at 235 nm. Preparative (prep.) HPLC was done on either a RP column (Merck LiChroCART 100 RP-18, 250×10 mm, $10 \mu m$) with a guard column (Merck LiChroCART 100 RP-18, 25 × 4 mm, 5 μm) or a silica gel column (Merck LiChroCART Si 60, 250×10 mm, $10 \mu m$) with a guard column (Merck LiChroCART Si 60, 25×4 mm, 5 µm), both with 5 ml/min of an appropriate mobile phase (see below) and detection at 206 nm. Optical rotations were measured on a Perkin-Elmer 241 polarimeter. Mass, UV and IR spectra were recorded on Kratos MS-80, Shimadzu UV 240 and Perkin-Elmer 1600 FTIR instruments, respectively. NMR spectra, at 25°C, were recorded at 300 MHz for ¹H and 75 MHz for ¹³C on a Varian VXR-300 spectrometer. Chemical shifts are given in ppm on the δ scale referenced to the solvent peak CHCl₃ at 7.25 and CDCl₃ at 77.0 or $(CHD_2)_2CO$ at 2.20 and $(CD_3)_2CO$ at 30.2. Parameters in HMQC experiments were optimised for one bond ¹H-¹³C couplings of 145 Hz and in HMBC experiments for two/three bond ¹H-¹³C couplings of 8 Hz. Conformational searching and molecular modelling methods are described by Hinkley, Perry, and Weavers (1994).

4.2. Plant material

L. taylorii was collected from tree trunks in the Cascade Valley, on the West Coast of the South Island of New Zealand, in March 1997. A voucher specimen, collection code 970321-07, has been deposited in the University of Otago Herbarium (OTA). A collection from the same area in June 1995 (OTA046804) was the source of compound 16 (see below) and a collection from November 1995 (OTA046824) was used for GC–MS analysis. L. palpebrifolia was collected from near Lake Brunner, on the West Coast of the South Island, in June 1995 (950630-01). Collections were air dried (30°C) then stored at room temperature.

4.3. GC-MS analyses

These were carried out as described by Asakawa et al. (1996). In addition to kauren-15-one (12), the following compounds were identified by matching with a mass spectral library: α-pinene; 3-acetoxyoct-1-ene; two isomers of bicyclogermacrene; caryophyllene; caryophyllene oxide and kaurene.

4.4. Extraction and purification

Ground material (80 g) was extracted with CHCl₃ (1 l) in a Soxhlet apparatus for 24 h, then the extract was dried to give a green gum (4 g). Two further 24 h extractions yielded a total crude extract of 13 g. This was coated onto C_{18} (39 g), packed onto a C_{18} column (200 g) and subjected to RP flash chromatography using an $H_2O\rightarrow CH_3CN\rightarrow CHCl_3$ gradient. Twelve fractions were collected and analysed by RP HPLC. Compounds 1 and 2 predominated in the fractions eluted with $H_2O-MeCN$ (1:1) and 1 was purified from these fractions by the method previously reported (Perry et al., 1996) to provide material for in vivo antitumor testing.

The next fraction from RP flash chromatography, eluted with H₂O–MeCN (1:3), was further fractionated by prep. RP HPLC with H₂O–MeCN (2:3) (total 1000 mg injected) to give a series of fractions with peaks at 4.5, 6.8, 7.5, 9.8 and 11.2 min. The 4.5 min fraction (19 mg) was further purified by prep. RP HPLC with H₂O–MeOH (3:7) to give compound **9** (6 mg). The 6.8 min fraction (17 mg) was further purified by prep. RP HPLC with 3:7 H₂O–MeOH to give compound **8** (4 mg). The 7.5 min fraction (106 mg) contained further amounts of compounds **1** and **2**. The 9.8 min fraction was compound **3** (150 mg), previously reported (Perry et al., 1996). The 11.2 min fraction (42 mg) was further purified by prep. RP HPLC with H₂O–MeOH (3:7) to give compound **6** (16 mg).

A further fraction from RP flash chromatography, also eluted with H₂O-MeCN (1:3), was further fractionated by prep. RP HPLC with H₂O-MeCN (2:3) (total 80 mg

injected) to give a series of fractions with peaks at 16.1, 20.2, 21.6, 22.3 and 31.0 min. The 16.1 min fraction was compound **10** (7 mg). The 20.2 min fraction was compound **5** (5 mg). The 21.6 min (9 mg) and 22.3 min (27 mg) fractions were mostly compounds **13** and **14**. The 22.3 min fraction was further purified by prep. silica gel HPLC with hexane–isopropyl alcohol (4:1) to give compounds **14** (4 mg, 4.1 min) and **13** (8 mg, 5.4 min). The 31.0 min fraction (13 mg) was further purified by prep. silica gel HPLC with hexane–isopropyl alcohol (4:1) to give compound **15** (5 mg, 3.5 min).

The later fractions from RP flash chromatography, eluted with MeCN \rightarrow CHCl₃, were combined and a subsample (1 g) was further fractionated by silica gel CC (sample coated on 2 g silica gel, on a 10 g column) using an cyclohexane \rightarrow cyclohexane–EtOAc (9:1) gradient. Fractions eluted with cyclohexane–EtOAc (19:1) were combined (370 mg) and subjected to RP (sample coated on 1.2 g C₁₈, on a 8 g column) using an H₂O–MeOH (1:4) \rightarrow H₂O–MeOH (1:19) gradient. Fractions eluted with 1:9 and 1:19 H₂O–MeOH were combined to give compound 12 (36 mg).

Compound **16** was obtained from a cold EtOH extract of an earlier collection of *L. taylorii* (see above) by a similar combination of RP flash chromatography and HPLC. Final purification was by prep. silica gel HPLC with hexane–isopropyl alcohol (4:1) to give more of compound **15** (3 mg, 3.5 min) plus compound **16** (3 mg, 4.0 min).

4.5. ent-8,9-Seco-7α-acetoxykaura-8(14),16-dien-9,15-dione (5)

Colourless oil: $[\alpha]_{589}^{20} - 72^{\circ}$, $[\alpha]_{577} - 82^{\circ}$, $[\alpha]_{546} - 98^{\circ}$, $[\alpha]_{435} - 173^{\circ}$, $[\alpha]_{405} - 111^{\circ}$ (c 0.2, CHCl₃); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 244 (3.8). IR $\nu_{\text{max}}^{\text{film}}$ cm⁻¹: 2930 (CH), 1736 (C=O), 1697 (C=O), 1236. ^{1}H NMR and ^{13}C NMR in Tabs. 1–2. EIMS (70 eV) m/z (rel. int.): 358.2138 (M⁺, <1%, C₂₂H₃₀O₄ req. 358.2144), 298 (35), 221 (15), 179 (100), 138 (13), 123 (35).

4.6. ent-8,9-Seco-7α-acetoxy-11β-hydroxykaura-8(14), 16-dien-9,15-dione (**6**)

Colourless oil: $[\alpha]_{589}^{25} + 2^{\circ}$, $[\alpha]_{578} + 3^{\circ}$, $[\alpha]_{546} + 6^{\circ}$, $[\alpha]_{435} + 50^{\circ}$ (c 0.46, MeOH); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm ($\log \varepsilon$): 244 (3.62). IR $\nu_{\text{max}}^{\text{film}}$ cm⁻¹: 3470 (br, OH), 2925 (CH), 1735 (C=O), 1700 (C=O), 1368, 1240, 1023, 919, 725. ¹H NMR and ¹³C NMR in Tabs. 1–2. EIMS (70 eV) m/z (rel. int.): 374 (M⁺ (<1), 332.1978 [M⁺–C₂H₂O, C₂₀H₂₈O₄ req. 332.1988] (5), 314.1887 [M⁺–C₂H₄O₂, C₂₀H₂₆O₃ req. 314.1882] (55), 299 [M⁺–C₂H₄O₂–CH₃] (34), 286 [C₁₉H₂₆O₂] (18), 271 (4), 242 [C₁₇H₂₂O] (68), 237 [C₁₂H₁₃O₅] (29), 195 [C₁₀H₁₁O₄] (100), 138 [C₁₀H₁₈] (34), 123 [C₉H₁₅] (73), 109 (43), 91 (26), 81 (29), 69 (30).

4.7. ent-8,9-Seco-7α-hydroxy-11-acetoxykaura-8(14), 16-dien-9,15-dione (**8**)

Colourless oil: $[\alpha]_{589}^{20} - 31^{\circ}$, $[\alpha]_{577} - 42^{\circ}$, $[\alpha]_{546} - 54^{\circ}$, $[\alpha]_{435} - 131^{\circ}$, $[\alpha]_{405} - 126^{\circ}$ (c 0.2, CHCl₃); UV $\lambda_{\max}^{\text{MeOH}}$ nm (log ε): 245 (3.84). IR ν_{\max}^{film} cm⁻¹: 3490 (br, OH), 2950 (CH), 1746 (C=O), 1700 (C=O), 1220, 1027. ¹H NMR and ¹³C NMR in Tabs. 1–2. EIMS (70 eV) m/z (rel. int.): 374.2099 [M+, C₂₂H₃₀O₅ req. 374.2093] (4), 356 (4), 296 (11), 237 (100) 195 (54), 138 (44), 123 (86).

4.8. ent-8,9-Seco-7α,11β-dihydroxykaura-8(14),16-dien-9,15-dione (**9**)

Colourless oil: $[\alpha]_{589}^{19} - 3^{\circ}$, $[\alpha]_{577} - 2^{\circ}$, $[\alpha]_{546} + 1^{\circ}$, $[\alpha]_{435} + 53^{\circ}$, $[\alpha]_{405} + 165^{\circ}$ (c 0.2, CHCl₃); UV $\lambda_{\max}^{\text{MeOH}}$ nm ($\log \epsilon$): 246 (3.87). IR ν_{\max}^{film} cm⁻¹: 3400 (br, OH), 2900 (CH), 1690 (C=O). ¹H NMR and ¹³C NMR in Tables 1–2. EIMS (70 eV) m/z (rel. int.): 332.1991 [M⁺, C₂₀H₂₈O₄ req. 332.1987] (1), 314 (4), 299 (10), 286 (15), 242 (55), 195 (51), 177 (20), 123 (100).

4.9. ent-7α,14β-Dihydroxykaur-16-en-15-one (**10**)

Colourless oil: $[\alpha]_{589}^{20} - 75^{\circ}$, $[\alpha]_{577} - 83^{\circ}$, $[\alpha]_{546} - 100^{\circ}$, $[\alpha]_{435} - 206^{\circ}$, $[\alpha]_{405} - 216^{\circ}$ (c 0.2, CHCl₃); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 232 (3.6). IR $\nu_{\text{max}}^{\text{film}}$ cm⁻¹: 3312 (OH), 2929 (CH), 1729 (C=O), 1649, 1456, 1251, 1091. ¹H NMR and ¹³C NMR in Table 3. EIMS (70 eV) m/z (rel. int.): 318.2196 [M +, C₂₀H₃₀O₃ req. 318.2195] (33), 300 (57), 221 (16), 194 (51), 179 (72), 149 (32), 123 (100), 91 (41).

4.10. ent-Kaur-16-en-15-one (registry No. 14140-75-1) (12)

Colourless oil: $[\alpha]_{589}^{20} - 125^{\circ}$, $[\alpha]_{577} - 141^{\circ}$, $[\alpha]_{546} - 173^{\circ}$, $[\alpha]_{435} - 402^{\circ}$, $[\alpha]_{405} - 545^{\circ}$ (c 0.2, CHCl₃); UV $\lambda_{\max}^{\text{MeOH}}$ nm (log ε): 232 (3.82). IR ν_{\max}^{film} cm⁻¹: 2916, 2864 (CH), 1721 (C=O), 1644, 1442, 930. ¹H NMR and ¹³C NMR match literature (Fraga et al., 1995; Nagashima et al., 1996); EIMS (70 eV) m/z (rel. int.): 286.2294 [M⁺, C₂₀H₃₀O req. 286.2297] (100), 271 (35), 253 (9), 189 (8) 153 (19), 123 (24), 77 (38).

4.11. ent- 7α -Acetoxy- 14β -hydroxykaur-16-en-15-one (13)

Colourless oil: $[\alpha]_{589}^{20} - 79^{\circ}$, $[\alpha]_{577} - 93^{\circ}$, $[\alpha]_{546} - 112^{\circ}$, $[\alpha]_{435} - 239^{\circ}$, $[\alpha]_{405} - 267^{\circ}$ (*c* 0.2, CHCl₃); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 225 (4.2). IR $\nu_{\text{max}}^{\text{film}}$ cm⁻¹: 3550 (OH), 2928 (CH), 1730 (C=O), 1237. ¹H NMR and ¹³C NMR in Table 3. EIMS (70 eV) m/z (rel. int.): 360.2306 [M+, C₂₂H₃₂O₄ req. 360.2301] (2), 318 (23), 300 (100), 285 (22), 244 (7), 217 (22), 143 (33), 109 (36).

4.12. ent-7α-Hydroxykaur-16-en-15-one (registry No. 180050-84-4) (15)

Colourless oil: $[\alpha]_{589}^{20} - 107^{\circ}$, $[\alpha]_{577} - 124^{\circ}$, $[\alpha]_{546} - 154^{\circ}$, $[\alpha]_{435} - 355^{\circ}$, $[\alpha]_{405} - 462^{\circ}$ (c 0.2, CHCl₃); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 227 (3.92). IR $\nu_{\text{max}}^{\text{film}}$ cm⁻¹: 3450 (br, OH), 2927 (CH), 1730 (C=O). ¹H NMR and ¹³C NMR match literature (Buchanan et al., 1996). EIMS (70 eV) m/z (rel. int.): 302.2244 [M +, C₂₀H₃₀O₂ req. 302.2246] (100), 274 (54), 245 (14), 199 (5), 165 (20), 123 (30).

4.13. ent-14β-Hydroxykaur-16-en-15-one (**16**)

Colourless oil: $[\alpha]_{s89}^{19} - 87^{\circ}$, $[\alpha]_{s77} - 100^{\circ}$, $[\alpha]_{s46} - 117^{\circ}$, $[\alpha]_{435} - 269^{\circ}$, $[\alpha]_{405} - 330^{\circ}$ (c 0.2, CHCl₃); UV λ_{max}^{MeOH} nm (log ε): 230 (3.85). IR ν_{max}^{film} cm⁻¹: 3490 (br, OH), 2930 (CH), 1730 (C=O). ¹H NMR and ¹³C NMR in Table 3. EIMS (70 eV) m/z (rel. int.): 302.2245 [M+, C₂₀H₃₀O₂ req. 302.2246] (53), 287 (72), 248 (9), 217 (4), 164 (39), 137 (100).

4.14. Acetylation of 1

Treatment of 1 with acetic anhydride and pyridine gave 5 with ¹H NMR spectrum identical to the natural product (above).

4.15. Reaction of 1 with thiophenol

A sample of 1 (10 mg) was dissolved in CDCl₃ (1 ml) with thiophenol (3 μ l) and Et₃N (4 μ l). The ¹H NMR spectrum showed that complete reaction of 1 had occurred immediately. The reaction mixture was dried down, redissolved in CH₂Cl₂, rinsed with NaOH_{aq} (2 M), dried over MgSO₄ and the solvent removed to give pure 20 (7 mg).

4.16. ent-8,9-Seco-7α-hydroxy-17-thiophenylkaur-8(14)-en-9,15-dione (*20*)

Colourless oil: UV $\lambda_{\max}^{\text{MeOH}}$ nm $(\log \epsilon)$: 247 (3.57). IR $v_{\text{max}}^{\text{film}} \text{ cm}^{-1} 3412 \text{ (OH)}, 2915 \text{ (CH)}, 1696 \text{ (C=O)}. {}^{1}\text{H NMR}$ (CDCl₃): δ 7.39 (dm, J=7 Hz, 3H, S-Ph+H-14), 7.30 (tm, J=7 Hz, 2H, S-Ph), 7.22 (tt, J=7, 1 Hz, 1H, S-Ph),4.56 (dd, J=12, 5 Hz, 1H, H-7), 3.71 (q, J=10 Hz, 1H,H-17), 3.35 (br m, 1H, H-13), 2.7-2.4 (m, 3H), 2.1-1.9 (m, 3H), 1.82 (dt, J=14, 5 Hz, 1H), 1.7-0.9 (various m),1.04 (s, 3H), 0.96 (s, 3H), 0.93 (s, 3H). ¹H NMR $({CD_3}_2CO): \delta 7.43 \text{ (dm, } J=7 \text{ Hz, } 2H, \text{ S-Ph), } 7.35 \text{ (tm, }$ J = 7 Hz, 2H, S-Ph), 7.28 (br d, J = 3 Hz, 1H, H-14), 7.24 (tt, J=7,1.5 Hz, 1H, S-Ph), 4.45 (dd, J=12, 5 Hz, 1H, H-7), 3.61 (dd, J=13, 3 Hz, 1H, H-17), 3.33 (br m, 1H, H-13), 2.81 (dd, J=13, 12 Hz, 1 H, H-17), 2.60 (dddd, J = 12, 6, 4, 1 Hz, 1H, H-16, 2.5-1.1 (various m), 1.02 (s, 3H), 0.98 (dd, J = 6, 2 Hz, 1H, H-5), 0.94 (s, 3H), 0.93 (s, 3H). ¹³C NMR (CDCl₃): δ 214.1 (C-9), 207.2 (C-15), 163.1 (C-14), 145.2 (C-8), 135.2 (S-Ph), 129.7 (2C, S-Ph), 129.2 (2C, S-Ph), 126.6 (S-Ph), 64.3 (C-7), 53.8 (C-10), 49.3 (C-16), 42.8 (C-5), 41.3 (C-3), 40.9 (C-13), 36.8 (C-6), 34.6 (C-4), 34.3 (C-1), 33.4 (C-18), 31.6 (C17), 30.0 (C-11), 22.3 (C-19), 20.8 (C-12), 18.2 (C-2), 16.5 (C-20). EIMS (70 eV) m/z (rel. int.): 426.2239 [M+, C₂₆H₃₄O₃S req 426.2229] (11), 289 (13), 193 (10), 192 (27), 180 (13), 179 (100), 123 (56).

4.17. Cytotoxicity assays

For the P388 assay a two-fold dilution series of the sample was incubated for 72 h with murine leukemia cells (ATCC CCL 46 P388D1). The concentration of the sample required to inhibit cell growth to 50% of the growth of a solvent control was determined using the absorbance obtained upon staining with MTT tetrazolium. As a positive control for this assay, mitomycin C at a concentration of 0.06 μ g/ml inhibited the growth of P388 cells by 43–75%. References to the NCI's in vitro 60 human cell line assays are given by Boyd and Paull (1995). The NCI's in vivo hollow fiber assay is described by Hollingshead et al. (1995).

4.18. L. palpebrifolia extraction and purification

Dried material (6.5 g) was extracted by blending with EtOH (200 ml, then 2×100 ml) and CHCl₃ (2×100 ml) to give after solvent removal a green gum (0.39 g). The purification of **1** (3 mg) and **2** (8 mg) followed the methods described above. These compounds were identified by comparison of their ¹H NMR and ¹³C NMR spectra with the spectra of the compounds isolated from *L. taylorii* (Perry et al., 1996).

Acknowledgements

We thank L. Murdoch and R. Adams for permission to collect; S. Lorimer for collections and supervision of the L. palpebrifolia work; A. Barlow and N. Brennan for collections; R. Tangney for taxonomic identifications; G. Ainge for assistance with isolations; M. Thomas and W. Redman for NMR spectra; B. Clark for MS; M. Toyota for GC-MS analysis; F. Nagashima for samples of compounds 12, 17 and 18; G. Ellis for P388 assays and the Developmental Therapeutics Program of the NCI for in vitro screening against human tumor cell lines. This research was supported by the New Zealand Foundation for Research, Science and Technology; by Wonkwang University; by the NZ/FRG Science and Technology Cooperation Agreement Programme of the International Science and Technology Linkages Fund and by a New Zealand Lottery Health Research Committee grant to R. Smith for an indirect-detection NMR probe.

References

- Ahn, B.-Z., & Sok, D.-E. (1996). Curr. Pharm. Design, 2, 247.
- Allinger, N. L. (1977). J. Am. Chem. Soc., 99, 8127.
- Allison, K. W. & Child, J. (1975). *The liverworts of New Zealand*. University of Otago Press: Dunedin.
- Asakawa, Y. (1995). Progr. Chem. Org. Nat. Prod., 65, 1.
- Asakawa, Y., Toyota, M., Nakaishi, E., & Tada, Y. J. (1996). *J. Hattori Bot. Lab.*, 80, 271.
- Backhaus, D., & Paquette, L. A. (1997). Tetrahedron Lett., 38, 29.
- Boyd, M. R., & Paull, K. D. (1995). Drug Dev. Res., 34, 91.
- Buchanan, M. S., Connolly, J. D., Kadir, A. A., & Rycroft, D. S. (1996). *Phytochemistry*, 42, 1641.
- Fraga, B. M., Gonzalez, P., Guillermo, R., Hernandez, M. G., & Perales, A. (1995). *Tetrahedron*, 51, 10053.
- Fuji, K., Node, M., Ito, N., Fujita, E., Takeda, S., & Unemi, N. (1985). Chem. Pharm. Bull., 33, 1038.
- Fujita, E., Ito, N., Uchida, I., Fuji, K., Taga, T., & Osaki, K. (1979).
 J. Chem. Soc. Chem. Commun., 806.
- Fujita, E., & Nagao, Y. (1977). Bioorg. Chem., 6, 287.
- Fujita, E., & Node, M. (1984). Progr. Chem. Org. Nat. Prod., 46, 77.
- Fujita, E., Nagao, Y., Kaneko, K., Nakazawa, S., & Kuroda, H. (1976).
 Chem. Pharm. Bull., 24, 2118.
- Grolle, R. J. (1967). J. Hattori Bot. Lab., 30, 1.

- Hinkley, S. F., Perry, N. B., & Weavers, R. T. (1994). *Phytochemistry*, 35, 1489.
- Hodgson, E. A. (1959). Trans. R. Soc. New Zealand, 87, 199.
- Hollingshead, M. G., Alley, M. C., Camalier, R. F., Abbott, B. J., Mayo, J. G., Malspeis, L., & Grever, M. R. (1995). Life Sci., 57, 131.
- Kupchan, S. M., Fessler, D. C., Eakin, M. A., & Giacobbe, T. J. (1970). Science, 168, 376.
- Lorimer, S. D., Perry, N. B., Burgess, E. J., & Foster, L. M. J. (1997).
 J. Nat. Prod., 60, 421.
- Mohamadi, F., Richards, N. G. J., Guida, W. C., Liskamp, R., Lipton, M., Caufield, C., Chang, G., Hendrickson, T., & Still, W. C. (1990). J. Comp. Chem., 11, 440.
- Nagashima, F., Tanaka, H., Takaoka, S., & Asakawa, Y. (1996). *Phytochemistry*, 41, 1129.
- Paquette, L. A., Backhaus, D., & Braun, R. J. (1996). J. Am. Chem. Soc., 118, 11990.
- Perry, N. B., Burgess, E. J., & Tangney, R. S. (1996). *Tetrahedron Lett.*, 37, 9387.
- Takeda, Y., Ichihara, T., Fujita, T., & Ueno, A. (1989). Chem. Pharm. Bull., 37, 1213.
- Takeda, Y. & Otsuka, H. (1995). Recent advances in the chemistry of diterpenoids from *Rabdosia* species. In: Atta-ur-Rahman, *Studies in natural products chemistry* (Vol. 15, pp. 111–185), Elsevier.