

Phytochemistry 50 (1999) 1205-1208

1H-Indole-3 acetonitrile glycosides from Capparis spinosa fruits

İhsan Çaliş^{a,*}, Ayşe Kuruüzüm^a, Peter Rüedi^b

^aDepartment of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey ^bOrganisch-Chemisches Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

Received in revised form 9 September 1998

Abstract

Two new glucose-containing 1*H*-indole-3-acetonitrile compounds, capparilosides A and B, were isolated from mature fruits of *Capparis spinosa*. On the basis of spectral and chemical evidence, they were shown to be 1*H*-indole-3-acetonitrile 4-O- β -glucopyranoside and 1*H*-indole-3-acetonitrile 4-O- β -glucopyranosyl)-glucopyranoside, respectively. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Capparis spinosa; Capparidaceae; Fruits; Indole acetonitrile glycosides; Capparilosides A and B

1. Introduction

Capparis spinosa is a wide spread plant in the flora of Turkey (Davis, 1965). It is used under the names of 'kapari and kebere' in folk medicine as a diuretic, constipant, antihypertensive, poultice and tonic. The floral buttons of *C. spinosa* are also used as a flavouring in cooking and for making pickles (Baytop, 1984).

Previous studies have shown the presence of indole and aliphatic glucosinolates, polyprenols, flavonoids and alkaloids in *C. spinosa* (Ahmed, Rızk, Hammouda, & Seif El-Nasr, 1972; Sadykov & Khodzhimatov, 1981; Al-Said, Abdelsattar, Khalifa, & El-Feraly, 1988; Schraudolf, 1989; Türköz, Toker, & Şener, 1995; Benkinouar, Rhouati, & Jay, 1996). There are only a few reports on the fruits of this species. The present paper reports on the isolation and structural elucidation of two indole-3-acetonitrile glycosides.

2. Result and discussion

The methanolic extract of the mature fruits of *C. spinosa* was separated into several fractions, which were subjected to repeated column chromatography on reverse and normal phase silica gel, affording the indole-3-acetonitrile glycosides, capparilosides A (1) and B (2). Their structures were established from spectral (UV, IR, 1D-

and 2D-NMR, ESI and FAB-mass spectrometry) and chemical evidence.

The molecular formula of **1** was established as $C_{16}H_{18}N_2O_6$ on the basis of FAB $(m/z\ 357\ [M+Na]^+)$, positive ion-ESI $(m/z\ 357\ [M+Na]^+,\ 691\ [2M+Na]^+)$ and negative ion-ESI $(m/z\ 333\ [M-H]^-,\ 667\ [2M-H]^-)$ mass spectrometry (calcd for 334.328), in combination with 1H and ^{13}C NMR data (Table 1).

The UV spectrum (λ_{max} (MeOH): 267, 278 (sh) and 289 nm) of 1 was characteristic of a 3-substituted-indole chromophore. The IR absorption at 2250 cm⁻¹ implied the presence of a nitrile (CN) function in its structure. Additionally, absorptions were observed at 3525, 3495, 3400 and 3359 (OH, NH), 1625, 1590 and 1508 (aromatic), 1170 and 1084 cm⁻¹ (C-O-C). The ¹H NMR spectrum showed the following significant aromatic proton signals Table 1: a 1,2,3-trisubstituted benzene (δ 6.69 dd, J = 7.4 and 1.1 Hz, H-5; δ 7.00 and 6.99 overlapped, H-6 and H-7) and a methine proton (δ 7.20 d, J=1.3 Hz, H-2), which was coupled to a one proton signal at δ 11.1 (d, J=1.3 Hz). The latter was assigned to NH (H-1) resonance, since it showed no correlation to the carbon resonances in a HSQC experiment. The signals observed as an AB-system at δ 4.17 (J_{AB} = 18.5 Hz) were indicative of the isolated protons of a methylene group. However, these signals showed correlation with the carbon resonance at the high-field region of the spectrum (δ 15.7) in a HSQC experiment. On the other hand, a quaternary carbon resonance observed at δ 121.0 (C-9) showed longrange correlations to the methylene protons. Thus, these ¹H and ¹³C NMR spectral data were indicative for the presence of a -CH₂-CN group on the indole moiety.

^{*} Corresponding author. Tel.: +90-312-3103545/1089; fax: +90-312-3114777; e-mail: acalis@dominet.in.com.tr

Table 1 1 H and 13 C NMR data for compounds 1, 1a and 2 (1 H = 600 MHz; 13 C = 150 MHz, 1 and 2 in DMSO-d₆, 1a in CDCl₃)^a

Position		1		1 a	2	
		$\delta_{\mathrm{H}}, J (\mathrm{Hz})$	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{\mathrm{H}}, J (\mathrm{Hz})$	$\delta_{ m C}$
1	NH	11.1 d (1.3)	_	8.19 d (1.2)	11.0 d (1.3)	_
2	CH	7.20 d (1.3)	123.6	7.20 d (1.2)	7.17 d (1.3)	123.4
3	C	_	104.6	_	_	104.2
3a	C	_	117.5	_	_	116.9
4	C	_	152.7	_	_	151.9
5	CH	6.69 dd (7.4/1.1)	104.2	6.62 dd (6.3/2.3)	6.77 dd (6/2.6)	104.1
6	CH	7.00 ^b	123.3	7.10 ^b	7.01 ^b	123.4
7	CH	6.99 ^b	106.9	7.10 ^b	7.01 ^b	106.6
7a	C	_	138.8	_	_	138.4
8	CH_2	4.17 AB system $(J_{AB} = 18.5)$	15.7	4.00 dd (3.5/1.0)	4.12 AB system $(J_{AB} = 18.4)$	15.4
9	C	_	121.0	_	_	120.9
Glucos	ie					
1′	CH	4.89 d (7.8)	102.1	5.42-5.33	4.89 d (7.8)	101.3
2′	CH	3.35 ^b	74.4	5.42-5.33	3.40^{b}	72.5
3′	CH	3.33 ^b	77.5	5.42-5.33	2.98 ^b	74.0
4′	CH	3.23 t (9.3)	70.6	5.22 dd (9.9/9.2)	3.02^{b}	70.6
5′	CH	3.29 ^b	77.9	3.92 m	$3.60^{\rm b}$	76.3
6′	CH_2	3.73 dd (11.8/1.9)	61.6	4.16 dd (12.3/2.4)	4.0 br d (10.6)	68.7
		3.50 dd (11.8/5.8)		4.30 dd (12.3/5.3)	3.63 ^b	
	nal glucose					
1"	CH				4.26 d (7.8)	103.5
2"	CH				3.39 ^b	73.9
3"	CH				3.10 ^b	76.9
4"	CH				3.22^{b}	70.1
5"	CH				$3.00^{\rm b}$	77.1
6"	CH_2				3.64^{b}	61.5
					3.40 ^b	
Alipha	tic					
OAc				2.09 (3H)		
				2.07 (6H)		
				2.04 (3H)		

^a Assignments are based on DEPT, COSY, HSQC and HMBC.

Furthermore, the proton and carbon resonances at δ 4.89 (d, J=7.8 Hz) and δ 102.1, together with the other resonances in the same spin-system, indicated the presence of a glucose moiety. The positions of these two substituents were determined by a HMBC experiment. Long-range correlations were observed from methylene protons (δ 4.17 (H₂-8)) to carbons at δ 123.6 (C-2), 104.6 (C-3), 117.5 (C-3a) and from the anomeric proton of glucose (δ 4.89, H-1') to an oxygenated aromatic carbon at δ 152.7 (C-4). The doublet of the methine proton at δ 7.20 (d, J=1.3 Hz, H-2) was also long-range coupled to carbons at δ 104.6 (C-3), 15.7 (C-9), 117.5 (C-3a) and 138.8 (C-7a). Furthermore, correlations were observed from the proton resonance assigned as H-1 (δ 11.1, d, J=1.3 Hz) to the sp² quaternary carbons at δ 104.6 (C-3), 117.5 (C-3a) and 138.8 (C-7a) and to the carbon at δ 123.6 (C-2). All other significant long-range correlations are shown on Fig. 1. These HMBC data indicated that the acetonitrile and glucose units should be attached at C-3 and C-4, respectively. This observation was also supported by a NOESY experiment; NOE correlations were observed from H-1 to H-2 and H-7, and from H-1' (anomeric proton of glucose) to H-5 (δ 6.69 dd, J=7.4 and 1.1 Hz).

Acetylation of 1 yielded a tetra-O-acetyl derivative (1a). The ¹H NMR spectrum of 1a exhibited only four aliphatic acetoxyl resonances arising from the glucose moiety. All the other resonances supported the proposed structure for 1 Table 1. Thus, the structure of 1 was determined to be 1H-indole-3-acetonitrile 4-O- β -glucopyranoside.

Compound **2** was obtained as an amorphous colourless powder. The ESI-mass spectrum exhibited a $[M+Na]^+$ peak at m/z 519 corresponding to a molecular formula of

^b Signal pattern unclear due to overlapping.

$$\begin{array}{c|c}
 & O & OR \\
 & OR \\$$

1: R = R₁ = H 1a: R = R₁ = COCH₃ 2: R = H, R₁ = glucose

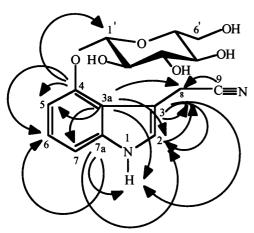


Fig. 1. HMBC od Cappariloside A.

 $C_{22}H_{28}N_2O_{11}$. The UV (λ_{max} (MeOH): 272, 279 (sh) and 289 nm) and IR (v_{max} (KBr): 3390, 2855, 2255, 1625, 1540, 1510 and 1120 cm $^{-1}$) spectra were similar to those of 1. The ¹H and ¹³C NMR spectra of 2 Table 1 displayed many similarities with those of 1, especially for the resonances assigned to the indole-3-acetonitrile moiety and the glucose unit. However, the set of additional protons, apart from the β -anomeric proton at δ 4.26 (d, J=7.8 Hz) and the corresponding carbon signals, were in agreement with the presence of another hexose unit, which was identified as β -glucose by COSY and HSQC experiments. In the ¹³C NMR spectrum of 2, the presence of a typical carbon signal at δ 68.7 (CH₂) suggested that the additional glucose unit was attached to C-6' of the other glucose unit, since the down-field shift (7.1 ppm) in comparison to that of 1 is due to the α -effect of glycosidation. Furthermore, in the ¹H NMR spectrum of 2, the chemical shift values for the anomeric protons of two glucose units at δ 4.89 (H-1') and 4.26 (H-1") suggested the sites of glycosidation of the sugar units should be on the aromatic and aliphatic hydroxyl groups, respectively. Thus, these data supported the presence of a biosidic unit, 6-O- β -glucopyranosyl-glucose, on the indole moiety. This observation was further confirmed by an HMBC experiment, which showed long-range correlations between C-6' (δ 68.7) and H-1" (δ 4.26, d, J=7.8 Hz, anomeric proton of terminal glucose) and C-4 (δ 151.9) of the indole moiety and H-1' (δ 4.89, d, J=7.8 Hz, anomeric proton of the inner glucose). Consequently, compound 2 was established as 1H-indole-3-acetonitrile 4-O- β -(6'-O- β -glucopyranosyl)-glucopyranoside.

Eventhough indoleacetonitriles are known as thermal degradation products of indole glucosinolates (Slominski & Campbell, 1988), compounds 1 and 2, 1*H*-indole-3-acetonitrile glycosides were isolated from nature for the first time, for which capparilosides A and B are proposed as trivial names, respectively.

3. Experimental

3.1. General

UV were determined in MeOH and IR in KBr disks. NMR spectra were recorded in DMSO-d₆ at 600 MHz for ^1H and 150 MHz for ^{13}C . Chemical shifts are given in δ relative to TMS as int. ref. Complete proton and carbon assignments were based on 1D (^1H , ^{13}C and DEPT) and 2D ($^1\text{H}-^1\text{H}$ COSY, $^1\text{H}-^{13}\text{C}$ HSQC and $^1\text{H}-^{13}\text{C}$ HMBC) NMR experiments. TLC was carried out on pre-coated silica gel 60F-254 aluminium sheets (Merck). For CC, silica gel 60 (0.063–0.200 mm, Merck) was used. Compounds were detected by UV fluorescence and/or after spraying with vanillin–H₂SO₄ followed by heating at 100°C for 5–10 min.

3.2. Plant material

Mature fruits of *C. spinosa* L. were collected from Mut-Içel, Turkey in September, 1993. A voucher specimen has been deposited in the Herbarium of Pharmaceutical Botany, Faculty of Pharmacy, Hacettepe University (HUEF 94-008).

3.3. Extraction and isolation

Plant material was stored frozen at -20° C. Freezedried (1.2 kg) and sliced plant material was homogenized in MeOH (2×2.5 l) and kept overnight at room temp. The combined MeOH extracts were concd to dryness in vacuo. The H₂O-sol. part of the MeOH extract was chromatographed over LiChroprep RP-18 (VLC) using a H₂O-MeOH gradient. The frs eluted with 50% MeOH

were purified repeatedly by CC on silica gel using CHCl₃–MeOH– H_2O mix. (85:15:1–80:20:2–70:30:3) to yield compounds 1 (80 mg) and 2 (28 mg).

3.4. Cappariloside A (1)

Amorphous $[\alpha]^{20}_{D}$ – 58.8° (c 0.4, MeOH). FAB-MS m/z 357 [M+Na]⁺, positive ion-ESI-MS m/z 357 [M+Na]⁺, 691 [2M+Na]⁺, negative ion-ESI-MS m/z 333 [M-H]⁻, 667 [2M-H]⁻ (calcd for $C_{16}H_{18}N_2O_6$: 334.32). UV λ_{max} (MeOH) nm: 267, 278, 289. IR ν_{max} (KBr) cm⁻¹: 3525, 3495, 3400, 3359 (OH, NH), 2250 (CN), 1625, 1590, 1508 (arom.), 1170, 1084 (C–O–C). ¹H and ¹³C NMR (DMSO-d₆): Table 1.

3.5. Acetylation of 1

Treatment of **1** (8 mg) with Ac₂O (1 ml) and pyridine (1 ml) at room temp. overnight, followed by the usual work-up, yielded **1a**. ¹H NMR (CDCl₃): Table 1.

3.6. Cappariloside B (2)

Amorphous $[\alpha]_{D}^{20} - 23.7^{\circ}$ (c 0.3, MeOH). ESI-MS m/z 519 [M+Na]⁺. UV λ_{max} (MeOH) nm: 272, 279, 289. IR ν_{max} (KBr) cm⁻¹: 3390 (OH, NH), 2855, 2255 (CN), 1625, 1540, 1510 (arom.), 1120. 1 H and 13 C NMR (DMSO-d₆): Table 1.

References

Ahmed, Z. F., Rızk, A. M., Hammouda, F. M., & Seif El-Nasr, M. M. (1972). *Phytochemistry*, 11, 251.

Al-Said, M. S., Abdelsattar, E. A., Khalifa, S. I., & El-Feraly, F. S. (1988). *Pharmazie*, 43, 640.

Baytop, T. (1984). *Therapy with medicinal plants (past and present)*. Istanbul: Istanbul University Publications.

Benkinouar, R., Rhouati, S., & Jay, M. (1996) *J. Soc. Alger. Chim.*, 6, 137 and 140; C.A. 125: 248259e.

Davis, P. H. (1965). Flora of Turkey and the East Aegean Islands (Vol. 1). Edinburgh: University Press.

Sadykov, Y. D. & Khodzhimatov, M. (1981). *Dokl. Akad. Nauk Tadzh. SSR*, *24*, 617–620; C.A. 96: 101016x.

Schraudolf, H. (1989). Phytochemistry, 28, 259.

Slominski, B. A., & Campbell, L. D. (1988). *J. Chromatogr.*, 454, 285. Türköz, S., Toker, G., & Şener, B. (1995). *J. Fac. Pharm. Gazi*, 12, 17.