Phytochemistry 52 (1999) 113-115

Sesquiterpene lactones from Carpesium triste var. manshuricum

Mi Ran Kim^a, Bo Ram Suh^a, Jae Gil Kim^a, Young Ho Kim^b, Dae Keun Kim^c, Dong Cheul Moon^{a,*}

^aCollege of Pharmacy, Chungbuk National University, Cheongju, 361-763, South Korea ^bCollege of Pharmacy, Chungnam National University, Taejon, 305-764, South Korea ^cCollege of Pharmacy, Woosuk University, Chonju, 565-800, South Korea

Received 14 July 1998; received in revised form 10 November 1998; accepted 10 November 1998

Abstract

The whole plants of *Carpesium triste* var. *manshuricum* afforded two known and two new germacranolides, 2α ,5-epoxy-5,10-dihydroxy-6 α -angeloyloxy-9 β -(2-methylbutyloxy)-germacran-8 α , 12-olide and 2α ,5-epoxy-5,10-dihydroxy-6 α -angeloyloxy-9 β -(3-methylbutyloxy)-germacran-8 α , 12-olide. Their structures were established by physicochemical and spectroscopic methods. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Carpesium triste var. manshuricum; Compositae; Sesquiterpene lactones; Germacranolides

1. Introduction

Carpesium triste var. manshuricum K. is a plant which is rare in Korea, and it has long been used as traditional medicinal herb for its antipyretic, analgesic, vermifugic, insecticidal, pain-relief, and antiinflammatory properties (Lee, 1993; Zhu, Wu & Li, 1989). Several sesquiterpene lactones were isolated from the genus Carpesium; granilin (Maruyama & Shibata, 1975), carabrone (Maruyama & Omura, 1977), carabrol. ivaxillin. eriolin. 11(13)-dehydroivaxillin (Maruyama, Karube & Sato, 1983), and ivalin from Carpesium abrotanoides; divaricin A, B and C (Maruyama, 1990) and the 2β , 5β isomer of divaricin B (Kim, Lee & Zee, 1997) from Carpesium divaricatum; ineupatorolide A and B (Maruyama et al., 1995) from Carpesium glossophyllum; nepalolide A, B, C and D (Lin, Ou, Kuo, Lin & Lee, 1996) from Carpesium nepalense. However there are no reports on the components of Carpesium triste var. manshuricum.

In the course of our systematic phytochemical investigation of the Korean genus *Carpesium*, four sesqui-

2. Results and discussion

Repeated column chromatography of the CHCl₃ fraction of the MeOH extract of the plant yielded four sesquiterpene lactones. The structures of compounds 1 (Kim et al., 1997) and 2 (Maruyama, 1990) were established by comparison of their mps, UV, IR and NMR spectral data with those reported in the literature.

Compound **3** was assigned the molecular formula $C_{25}H_{37}O_9$ [M+H]⁺ (m/z 481.2438) by HRFAB-mass spectrometry. Its IR spectrum revealed the presence of an α -methylene- γ -lactone moiety (1773 cm⁻¹) and hydroxyl groups (3502 cm⁻¹) (Baruah, Sharma & Thyagarajan, 1980; Baruah, Baruah, Sharma & Baruah, 1982). The ¹H NMR and ¹³C NMR spectra (Table 1) were very similar to those of **2** except for the presence of the signals of a 2-methylbutanoyl group. 2-

0031-9422/99/\$ - see front matter \odot 1999 Elsevier Science Ltd. All rights reserved. PII: S0031-9422(99)00173-9

terpene lactones were isolated from the CHCl₃ extract of *Carpesium triste* var. *manshuricum*. This paper reports the isolation of two known (1 and 2) sesquiterpene lactones (Maruyama, 1990; Kim et al., 1997) along with the isolation and structural elucidation of two new ones (3 and 4).

^{*} Corresponding author.

Table 1 ¹H NMR and ¹³C NMR chemical shifts of compounds **3** and **4** (**3**: CD₃OD, **4**: CDCl₃, ¹H: 600 MHz, ¹³C: 150 MHz) (values in parentheses are coupling constants in Hz)

	[3]		[4]	
	¹ H	¹³ C	¹ H	¹³ C
1a	2.09 dd (15.7, 12.2)	45.3	1.83 m	43.8
1b	1.65 dd (15.7, 4.1)		1.73 m	
2	4.59 m	75.2	4.71 m	73.9
3a	1.95 m	38.7	2.02 m	37.4
3b	1.80 m		1.76 m	
4	2.75 m	37.3	2.56 m	36.6
5	_	107.2	_	106.1
6	5.19 d (10.8)	77.2	5.25 d (10.6)	75.6
7	3.36 dd (10.8, 1.1)	46.5	3.09 d (10.6)	45.0
8	5.28 dd (9.9, 1.1)	79.4	5.23 d (10.1)	77.4
9	4.62 d (10.0)	79.6	4.62 d (10.1)	77.9
10	_ ` ′	72.7	_ ` ` ′	72.0
11	=	136.1	=	133.1
12	_	171.4	_	168.4
13a	6.13 d (1.5)	126.9	6.32 d (1.6)	127.2
13b	5.70 d (1.5)	_	5.66 d (1.6)	
14	1.23 s	30.8	1.24 s	30.8
15	1.16 d (7.0)	15.1	1.16 d (6.5)	14.4
1′	_ ` ` ′	178.1	-	172.5
2′	2.49 m	42.6	2.37 dd (15.2, 7.2)	43.0
	_	_	2.27 dd (15.2, 7.2)	_
3′	1.78 m	27.7	2.15 m	25.3
	1.50 m	_	_	
4′	$0.98 \ t$	12.1	$0.99 \ d \ (6.7)$	22.3
5′	1.16 d (6.5)	17.2	$0.97 \ d \ (6.7)$	22.3
1"	= '	167.8	=	166.4
2"	=	128.6	=	126.2
3"	6.13 q	140.9	$6.13 \; q$	141.5
4"	$1.93 \stackrel{1}{d} (7.3)$	16.0	$1.95 \stackrel{1}{d} (7.2)$	15.8
5"	1.91 s	20.7	1.91 s	20.3

methylbutanoate appeared at δ 178.1, 42.6, 27.7, 17.2 and 12.1 in the ¹³C NMR spectrum. HMBC, HMOC and DEPT experiments confirmed the 2-methylbutanoyl group as well as the angelate group. The position of the two groups was confirmed by an HMBC experiment; ¹H-¹³C long-range correlation between the C-9 proton signal (δ 4.62, d, J = 10.0 Hz) and the C-1' carbon signal (δ 178.1) of the 2-methylbutanovl group, and the correlation between C-6 proton signal (δ 5.19, d, J = 10.8 Hz) and the C-1" carbon signal (δ 167.8) of angelate group were observed. The stereochemistry of 3 was shown to be identical to that of 2 on the basis of similar coupling constants observed in the ¹H NMR spectrum. Thus, the structure of 3 was established as 2α , 5-epoxy-5,10-dihydroxy- 6α -angeloyloxy- 9β -(2-methylbutyloxy)-germacran- 8α ,12-olide.

The molecular formula of **4** was assigned $C_{25}H_{36}O_9$ (m/z 480.2353) by HREI-mass spectrometry. Its IR spectrum showed the presence of an α -methylene- γ -lactone moiety (1758 cm⁻¹) and hydroxyl groups (3460 cm⁻¹) (Maruyama, 1990). Except for the pre-

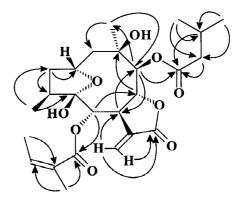


Fig. 1. HMBC correlations of compound 4

sence of the signals of the 3-methylbutanovl group (δ 172.5, 43.0, 25.3 and 22.3), the patterns of the ¹H NMR and ¹³C NMR spectra (Table 1) were very similar to 1. By DEPT and HMBC experiments the positions of the 3-methylbutanoate and angelate groups were confirmed; ¹H-¹³C long-range correlation between the C-9 proton signal (δ 4.62, d, J = 10.1 Hz) and the C-1' carbon signal (δ 172.5) of the 3-methylbutanoate group, and the correlation between the C-6 proton signal (δ 5.25, d, J = 10.6 Hz) and the C-1" carbon signal (δ 166.4) of the angelate group were observed in the HMBC spectrum (Fig. 1). The stereochemistry of 4 was also determined to be identical to that of 1 on the basis of the very similar coupling constants observed in the ¹H NMR spectrum. Thus, the structure of 4 was established as 2α ,5-epoxy-5,10-dihydroxy- 6α -angeloyloxy-9 β -(3-methylbutyloxy)-germacran-8 α ,12-olide.

3. Experimental

3.1. General

Mps: uncorr. NMR: 600 MHz (1 H) and 150 MHz (13 C). EI-MS: 70 eV. FAB-MS: Double focusing MS. FT-IR: KBr. CC: silica gel (40–63 µm). semi-preparative HPLC: Hichrom RPB (250 × 10 mm). Polarimeter: AUTOPOL (31 III.

3.2. Plant material

Carpesium triste var. manshuricum was collected in August 1995 in the Sobaeksan, Chungbuk, South Korea. A voucher specimen is deposited in the herbarium of College of Pharmacy, Chungbuk National University, Cheongju, South Korea (CBNU-95-008).

3.3. Extraction and isolation

The air-dried whole plant material (950 g) was finely ground and extracted at room temperature with 90%

aqueous MeOH. The resultant MeOH extract (98 g) was successively partitioned to give *n*-hexane (12 g), CHCl₃ (10.7 g), EtOAc (6.3 g), *n*-BuOH (23 g) and H₂O (43 g) soluble frs.

The CHCl₃ soluble fr. was chromatographed over silica gel using a step-wise solvent system of CHCl₃ and MeOH as eluent to give six sub-frs. The first one was rechromatographed on silica gel using a gradient solvent system of hexane–EtOAc $(3:1 \rightarrow 1:2, \text{ v/v})$ and CHCl₃–MeOH $(19:1 \rightarrow 0:1, \text{ v/v})$ to give ten sub-frs. Fr. 9 was rechromatographed on silica gel eluting with CHCl₃–MeOH $(40:1 \rightarrow 1:1, \text{ v/v})$ to give four frs. The sub-fr. 9-3 was rechromatographed on semi-preparative HPLC (CH₃CN-H₂O, 50:50, v/v) to yield 19 mg 1, and the sub-fr. 9-2 afforded 19 mg 2, 30 mg 3 and 50 mg 4 by semi-preparative HPLC (MeOH–H₂O, 57:43, v/v).

3.4. $2\alpha,5$ -epoxy-5,10-dihydroxy- 6α -angeloyloxy- 9β -(2-methylbutyloxy)-germacran- $8\alpha,12$ -olide (3)

White crystals; mp 160–164°; $[\alpha]_D^{25}$ + 1.13° (MeOH, c 1.0); HRFAB-MS m/z 481.2438; FT-IR $V_{\rm max}({\rm KBr})$ cm⁻¹: 3502, 1773, 1723, 1647; $^{1}{\rm H}$ and $^{13}{\rm C}$ NMR spectra: Table 1.

3.5. 2α ,5-epoxy-5,10-dihydroxy-6 α -angeloyloxy-9 β -(3-methylbutyloxy)-germacran-8 α ,12-olide (4)

White crystals; mp 190–193°; $[\alpha]_D^{25}$ –4.3° (MeOH, *c* 1.0); HREI-MS m/z 480.2353 calcd for $C_{25}H_{36}O_9$

480.2360; FT-IR $V_{\rm max}({\rm KBr})~{\rm cm}^{-1}$: 3460, 1758, 1723, 1650; $^{1}{\rm H}$ and $^{13}{\rm C}$ NMR spectra: Table 1

Acknowledgements

The authors would like to thank Dr J.J. Jung of the Korea Basic Science Institute for his expert assistance in NMR measurements according to a program of collaborative uses of scientific instruments.

References

Baruah, R. N., Sharma, R. P., & Thyagarajan, G. (1980). Journal of Organic Chemistry, 45, 4838.

Baruah, N. C., Baruah, R. N., Sharma, R. P., & Baruah, J. N. (1982). *Journal of Organic Chemistry*, 47, 137.

Kim, D. K., Lee, K. R., & Zee, O. P. (1997). *Phytochemistry*, 46, 1245.

Lee, T. B. (1993). Illustrated Flora of Korea, HyangmoonSa, Seoul. Lin, Y. L., Ou, J. C., Kuo, Y. H., Lin, J. K., & Lee, K. H. (1996). Journal of Natural Products, 59, 991.

Maruyama, M. (1990). Phytochemistry, 29(2), 547.

Maruyama, M., & Omura, S. (1977). Phytochemistry, 16, 782.

Maruyama, M., & Shibata, F. (1975). Phytochemistry, 14, 2247.

Maruyama, M., Karube, A., & Sato, K. (1983). *Phytochemistry*, 22, 2773.

Maruyama, M., Watanabe, K., Kawakami, T., Maeda, M., Kato, M., Nozoe, S., & Ohta, T. (1995). *Planta Medica*, 61, 388.

Zhu, Y. C., Wu, D. C., & Li, J. F. (1989). In *Plantae Medicinales Chinae Boreali-Orientalis* (p. 1152). Harbin: Heilongjiang Sci. & Technol. Publishing House.