Phytochemistry 52 (1999) 311-319

Antioxidants from Lespedeza homoloba (II)

Toshio Miyase^{a,*}, Mitsuaki Sano^a, Kyoji Yoshino^b, Kazuhiko Nonaka^b

^aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan ^bDepartment of Chemistry and Biochemistry, Numazu College of Technology, 3600 Ooka, Numazu, Shizuoka, 410-8501, Japan

Received 30 June 1998; received in revised form 29 September 1998

Abstract

The stems of Lespedeza homoloba yielded fifteen new isoflavonoids and a new stilbenoid having antioxidative activity. Their structures were determined by analysis of spectroscopic evidence. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Lespedeza homoloba; Leguminosae; Antioxidant; Isoflavonoid

1. Introduction

Lespedeza species (Leguminosae) grow in North America and Eastern Asia and hybridize with each other easily. Woody Lespedeza have many unique isoflavonoids, like pterocarp-6a-en and isoflav-3-en (Miyase et al., 1999; Ueno, Ichikawa, Miyase et al., 1973; Ueno, Ichikawa & Fukushima, 1973; Miyase, Ueno, Noro & Fukushima, 1980; Ueno, Ichikawa, Fukushima et al., 1973; Miyase, Ueno, Noro & Fukushima, 1981). In the preceding paper (Miyase et al., 1999), we reported the isolation of seven isoflavonoids and four stilbenoids and their antioxidative and antiallergic activity. As a continuation of the investigation of antioxidants from Lespedeza homoloba Nakai, the ether soluble fraction afforded fifteen new isoflavonoids and a new stilbenoid.

2. Results and discussion

Fractions C-K [see Experimental and preceding paper (Miyase et al., 1999)] were separated by preparative HPLC on a reversed phase column (ODS, PhA)

E-mail address: miyase@ys7.u-shizuoka-ken.ac.jp (T. Miyase)

to afford fifteen new isoflavonoids and a new stilbenoid.

Lespedezol A₄ (1) showed a molecular ion peak at m/z: 284 in the FAB-MS. The UV and the ¹H NMR spectra suggested that 1 had a pterocarp-6a-en skeleton showing absorption maxima at 243 sh and 338 nm and a characteristic proton signal at δ 5.53 (2H, s) due to H₂-2 (Miyase et al., 1999). The ¹H NMR spectrum revealed a methoxyl proton signal at δ 3.79 (3H, s), two singlet aromatic proton signals at δ 6.91 and 7.05 and ABX-type aromatic proton signals at δ 6.48 (1H, S, J = 2 Hz; 6.56 (1H, dd, J = 8, 2 Hz); 7.33 (1H, d, d) J = 8.5 Hz). In the NOE experiment, an irradiation of a methylene proton signal at δ 5.53 enhanced the proton signal at δ 6.91 and an irradiation of a methoxyl proton signal at δ 3.79 enhanced the proton signals at δ 6.48 and 6.56. From these data, the structure of lespedezol A₄ was determined to be 1.

The NMR data of lespedezol A_5 (2) were similar to those of lespedezol A_2 (Miyase et al., 1999) except for the presence of a carbomethoxyl signal [δ 3.99 (3H, s); 52.5 171.5] in the place of a singlet aromatic proton signal. ABX-type proton signals at δ 6.38 (1H, d, J=2 Hz); 6.49 (1H, dd, J=8.5, 2 Hz); 7.30 (1H, d, J=8.5 Hz) were assigned to H-4, H-2 and H-1, respectively, by comparing with those of lespedezol A_2 . Irradiation of a methylene proton signal at δ 5.60 due to H_2 -6 enhanced the carbomethoxyl proton signal.

^{*} Corresponding author. Tel.: +81-54-264-5661; fax: +81-54-264-5661.

These results led us to conclude the structure of lespedezol A_4 to be 2.

Lespedezol A_6 (3) showed a pseudo-molecular ion peak at m/z: 421 [M+H]⁺ in the FAB-MS and a geranyl side chain like lespedezols A_2 and A_5 (2) in the NMR spectra. An unsaturated ester carbonyl carbon was observed in the ¹³C NMR spectrum at δ 158.6 which was assigned to C-2 of a coumestan skeleton (Shiozawa, Urata, Kinoshita & Saitoh, 1989). The ¹H NMR spectrum revealed a singlet proton signal at δ 7.31 (1H, s) and ABX-type proton signals at δ 6.93

(1H, d, J = 2 Hz); 7.00 (1H, dd, J = 8.5, 2 Hz); 7.88 (1H, d, J = 8.5 Hz) in the aromatic proton region. HMBC correlations were observed between the singlet proton (δ 7.31) and the carbons at δ 104.1, 144.0, and 149.9 due to C-6a, C-9 and C-10a, respectively, and between the methylene proton signal at δ 3.73 (2H, br d, J = 7 Hz) due to H₂-1 of the geranyl side chain, and the carbons at δ 144.0 and 149.9 due to C-9 and C-10a, respectively. Therefore, the structure of lespedezol A_6 deduced to be 3.

The ¹H NMR spectrum of lespedezol D₁ (4) showed

characteristic proton signals of a pterocarpan skeleton at δ 3.54 (1H, m), 3.60 (1H, dd, J = 10, 10 Hz); 4.26 (1H, dd, J = 10, 4 Hz); 5.43 (1H, br d, J = 6.5 Hz) due to H-6a, H₂-6 and H-11a), respectively, and a methoxyl proton signal at δ 3.80 (3H, s), two singlet aromatic proton signals at δ 6.33 and 7.01 and ABX-type proton signals at δ 6.36 (1H, d, d) = 2.5 Hz); 6.55 (1H, dd, d) = 8.5, 2.5 Hz); 7.30 (1H, d), d) = 8.5 Hz) due to the A ring protons. In NOE experiments, irradiation at the singlet aromatic proton signal at δ 7.01 enhanced the methoxyl proton signal at δ 3.80

16

and the proton signals at δ 3.54, 3.60 and 4.26 due to H-6a, H-6 β and H-6 α , respectively. Compound 4 showed a positive Cotton effect at 292 nm and a negative Cotton effect at 284 nm. These results led to the structure of lespedezol D_1 as 4 (Tanaka H, Tanaka T & Etoh, 1997).

The FAB-MS of lespedezol D_2 (5) showed a pseudo molecular ion peak at m/z: 325 $[M+H]^+$. The ¹H NMR spectrum was similar to that of lespein (Ueno et al., 1973) except for the absence of a set of isopentenyl proton signals, and showed two sets of ABX-type pro-

ton signals [δ 6.36 (1H, d, J = 2.5 Hz); 6.54 (1H, dd, J = 8.5, 2.5 Hz); 7.28 (1H, d, J = 8.5 Hz) and δ 6.26 (1H, d, J = 2 Hz); 6.38 (1H, dd, J = 8, 2 Hz); 7.07 (1H, d, J = 8 Hz)] in the aromatic region. Irradiation of a proton signal at δ 7.28 enhanced the proton signal at δ 5.12 (1H, δ δ δ due to H-11a. The CD spectrum showed a positive Cotton effect at 288 nm and negative Cotton effects at 274 and 235 nm. Therefore, the structure of lespedezol D₂ was deduced to be 5 (Tanaka et al., 1997).

Lespedezols D_3 (6) and D_4 (7) showed similar NMR data to those of 5. The ¹H NMR spectrum of 6 showed two singlet aromatic proton signals at δ 6.32 (1H, s) and 6.78 (1H, s) due to H-10 and H-7, respectively, by comparing the chemical shifts with those of 5. The ¹H NMR spectrum of 7 showed a methoxyl proton signal at δ 3.80 (3H, s). NOEs were observed at the singlet aromatic proton signal at δ 6.47 (1H, s) on irradiation at the methoxyl proton signal. These results led us to conclude the structures of lespedezols D_3 and D_4 to be 6, and 7, respectively.

Lespedezols D_5 (8) and D_6 (9) had the same molecular ion peak at m/z: 424 [M]⁺ in the FAB-MS and showed similar NMR data except for the signals due to a C10-side chain. Lespedezol D_5 (8) afforded triacetate (8a) on acetylation with acetic anhydride and pyridine. Compound 8a revealed an aliphatic acetoxyl signal at δ 2.05 (3H, s) and two aromatic acetoxyl signals at δ 2.27 and 2.29 (each 3H, s) in the ¹H NMR spectrum. By comparing the NMR data with those of lespedezols A_1 (Miyase et al., 1999) and D_1 (4), the structure of lespedezols D_5 and D_6 were elucidated to be 8 and 9, respectively. These two compounds were assumed to be steroisomers at C-2 and C-3 in the side chain.

The ${}^{1}H$ NMR spectra of lespedezols E_{1} (10) and E_{2} (11) revealed a characteristic olefinic proton signal at δ 8.24 and 8.21, respectively, due to H-2 of an isoflavone and signals due to a geranyl side chain. Lespedezol E₁ (10) showed A_2B_2 -type proton signals at δ 6.90 (2H, d, J = 8.5 Hz); 7.47 (2H, d, J = 8.5 Hz) due to the Bring protons and a singlet aromatic proton at δ 6.37 (1H, s). In the ¹³C NMR spectrum of lespedezol E₁ (10), a protonated aromatic carbon was observed at δ 99.5, which was assigned to C-6 by comparing the chemical shifts of C-6 and C-8 of 5,7-dihydroxy isoflavones (Agrawal & Rastogi, 1981). The ¹H NMR spectrum of lespedezol E₂ (11) showed ABX-type aromatic proton signals at δ 6.99 (1H, d, J = 2 Hz); 7.09 (1H, dd, J = 9, 2 Hz); 8.15 (1H, d, J = 9 Hz) due to H-8, H-6 and H-5, respectively, and a singlet aromatic proton signal at δ 6.65 (1H, s). The singlet signal at δ 6.65 was enhanced on irradiation of the signal at δ 8.21 and was assigned to H-6'. Therefore, the structures of these isoflavones were concluded to be 10 and 11.

The ¹H NMR spectrum of lespedol D (**12**) showed ABX-type proton signals at δ 4.16 (1H, dd, J = 10, 5 Hz); 4.54 (1H, dd, J = 11, 5 Hz); 4.68 (1H, dd, J = 11, 10 Hz) which were characteristic of an isoflavanone (Miyase et al., 1981). In an aromatic proton region, ABX-type proton signals [δ 6.41 (1H, d, J = 2 Hz); 6.58 (1H, dd, J = 8.5, 2 Hz); 7.77 (1H, d, J = 8.5 Hz)] and two singlet proton signals at δ 6.46 (1H, s) and 6.78 (1H, s) were observed. On irradiation of the latter singlet signal, NOEs were observed at the methoxyl signal at δ 3.71 and at the ABX-type proton signals in the aliphatic proton region.

The ¹H NMR spectrum of lespedol E (13) suggested that 13 had the same substitution pattern in the B-ring as 12 and a singlet aromatic and methyl proton signals at δ 6.03 (1H, br s) and 1.97 (3H, br s). The methyl proton signal had correlation peaks with carbon signals at δ 162.8 and 103.9 in the HMBC spectrum. The two carbon signals were also correlated with a hydrogen-bonded hydroxyl proton signal at δ 12.62 (1H, s). So the position of the vinyl methyl group was deduced to be C-6.

The ${}^{1}H$ NMR spectrum of lespedezol F_1 (14) revealed the presence of an olefinic proton signal at δ 6.87 (1H, dd, J = 1.5, 1.5 Hz) and an equivalent methylene proton signal at δ 3.61 (2H, br s), which were coupled to each other, and two sets of ABX-type proton signals [δ 6.38 (1H, d, J = 2.5 Hz); 6.53 (1H, dd, J = 8, 2.5 Hz); 6.94 (1H, br d, J = 8 Hz), δ 6.37 (1H, dd, J = 8, 2.5 Hz); 6.45 (1H, d, J = 2.5 Hz); 7.01 (1H, d, J = 8 Hz)]. Irradiation of the aromatic proton signal at δ 7.01 enhanced the olefinic proton signal (δ 6.87) and the methylene proton signal (δ 3.61). Irradiation of the methylene proton signal (δ 3.61) enhanced the aromatic proton signal at δ 6.94. In the HMQC spectrum, the olefinic proton signal was correlated to the carbon signal at δ 139.2 and the methylene proton signal was correlated to the carbon signal at δ 27.5. These results led the structure of lespedezol F_1 to be 14. This is the first report on an isoflav-2-en as a natural product to our knowledge.

Lespedezol G_1 (15) was assumed to be an isoflavan from the ¹H NMR spectrum. In the aromatic proton region, ABX-type [δ 6.28 (1H, d, J = 2.5 Hz); 6.36 (1H, dd, J = 8, 2.5 Hz); 6.89 (1H, br d, J = 8 Hz)] and two singlet proton signals [δ 6.48 (1H, s); 6.78 (1H, s)] were observed. On irradiation of the singlet proton signal at δ 6.78, NOEs were observed at δ 3.74 (3H, s) due to a methoxyl proton, a methine proton signal at δ 3.48 (1H, m) and two sets of methylene proton signals at δ 4.00 (1H, dd, J = 10, 10 Hz); 4.22 (1H, ddd, J = 10, 4, 2 Hz); 2.79 (1H, ddd, J = 15.5, 5, 2 Hz); 2.98 (1H, ddd, J = 15.5, 11, 1 Hz). The CD spectrum showed a positive Cotton effect at 288 nm and a negative one at 233 nm, suggesting that lespede-

Table 1 ¹H NMR spectral data of compounds **1–9**

	1	2	3	4	5	6	7	8	9
6	5.53 s	5.60 s		3.60	3.68 d (11)	3.66 d (11)	3.70 d (11)	3.57	3.58
				dd (10, 10)				dd (10.5, 10.5)	dd (10.5, 10.5)
6				4.26	4.02	4.01	4.03	4.24	4.24
6a				dd (10, 4) 3.54 m	dd (11, 1)	dd (11, 1)	dd (11, 1)	dd (10.5, 4.5) 3.50 m	<i>dd</i> (10.5, 4.5) 3.51
ou				5.54 m				5.50 m	ddd (10.5, 7, 4.5)
11a				5.43	5.12	5.03	5.08	5.40 d (7)	5.42 <i>d</i> (7)
				<i>br d</i> (6.5)	br s	br s	br s	()	. ,
1	7.33 d (8.5)	7.30 d (8.5)	7.88 d (8.5)	7.30 d (8.5)	7.28 d (8.5)	7.26 d (8.5)	7.27 br d (8)	7.31 <i>d</i> (8.5)	7.31 <i>d</i> (8.5)
2	6.56	6.49	7.00	6.55	6.54	6.54	6.54	6.55	6.54
	dd (8.5, 2)	dd (8.5, 2)	dd (8.5, 2)	dd (8.5, 2.5)	dd (8.5, 2.5)	dd (8.5, 2.5)	dd (8, 2.5)	dd (8.5, 2.5)	dd (8.5, 2.5)
4	6.48 d (2)	6.38 d (2)	6.93 d (2)	6.36 d (2.5)	6.36 d (2.5)	6.36 d (2.5)	6.35 d (2.5)	6.36 d (2.5)	6.35 d (2.5)
7	6.91 s		7.31 <i>s</i>	7.01 s	7.07 d(8)	6.78 s	6.78 s	6.68 s	6.68 s
8					6.38				
					dd (8, 2)				
10	7.05 s			6.33 s	6.26 d(2)	6.32 s	6.47 s		
OMe	3.79 s			3.80 s			3.80 s		
COOMe		3.99 s							
Me									
Side chain									
1		3.65	3.73		2.46	2.43	2.45	2.52	2.61
		<i>br d</i> (7.5)	br d (7)		$br\ d\ (7.5)$	<i>br d</i> (7.5)	br d (7)	dd (16.5, 7.5)	dd (17, 8)
1								2.94	2.84
								dd (16.5, 5.5)	dd (17, 5.5)
2		5.38 m	5.46 m		5.24 m	5.25 m	5.24 m	3.91 <i>dd</i> (7.5, 5.5)	3.88 m
4		1.99 m	$2.01 \ m$		1.66 d (10)	1.67	1.67 d (1)	1.72 m	1.71 m
						br s			
5		$2.06 \ m$	$2.09 \ m$		1.49	1.50	$1.50 \ d(1)$	2.21 m	2.19 m
					br s	br s			
6		5.03 m	5.04 m					5.13 m	5.11 m
8		1.55	$1.52 \ d(1)$					1.66 d (1)	$1.64 \ d \ (1)$
		br s							
9		1.50	1.50					1.60	1.57
		br s	br s					br s	br s
10		1.89 <i>br s</i>	1.93 d (1)					1.23 s	1.26 s

zol G_1 had a 3S-isoflavan skeleton (Zeng, Li, Xu & Zhu, 1996).

Lespedezol H₁ (16) showed a pseudo-molecular ion peak at m/z: 275 [M+H]⁺ in the FAB-MS. The ¹H NMR spectrum showed three aromatic protons as an ABX-type at δ 6.47 (1H, d, J = 2 Hz); 6.50 (1H, dd, J = 9, 2 Hz); 7.47 (1H, d, J = 9 Hz). The ¹³C NMR spectrum revealed a carbonyl carbon signal at δ 195.6 which was correlated to the proton signal at δ 7.47 in the HMBC spectrum. These results suggested a symmetrical structure as shown.

The antioxidative activities against lipid peroxidation in rat brain homogenate, chelating and O_2^- radical scavenging of these compounds are listed in Table 5. In general, catechol-type compounds showed a strong antioxidative activity against lipid peroxidation in the rat brain homogenate and a superoxide anion radical scavenging activity. Most compounds had a

weak or no ability to form a Fe²⁺-complex and the effect of geranyl and isoprenyl side chain in these activities was unclear.

3. Experimental

General instrumentation and plant material [see preceding paper (Miyase et al., 1999)] with the following exception a: JASCO J-20A automatic recording spectropolarimeter for CD spectra.

3.1. Extraction and isolation: see preceding paper (Miyase et al., 1999)

Fr. C (1.770 g) afforded compounds **2** (28 mg) and **7** (16 mg) after repeated preparative HPLC on a reverse phase (ODS, PhA) column using acetonitrile—water

Table 2 ¹H NMR spectral data of compounds **10–15**

	10	11	12	13	14	15
2	8.24 s	8.21 s	4.54 dd (11, 5)	4.43 dd (10.5, 5.5)	6.87 dd (1.5, 1.5)	4.00 dd (10, 10)
2			4.68 dd (11,10)	4.58 dd (10.5, 10.5)		4.22 ddd (10, 4, 2)
3			4.16 dd (10, 5)	4.25 dd (10.5, 5.5)		3.48 m
4					3.61 <i>br s</i>	2.79 ddd (15.5, 5, 2)
4						2.98 ddd (15.5, 11, 1)
5		8.15 d (9)	7.77 d (8.5)		6.94 br d (8)	6.89 br d (8)
6	6.37 s	7.09 dd (9, 2)	6.58 dd (8.5, 2)		6.53 dd (8, 2.5)	6.36 dd (8, 2.5)
8		6.99 d (2)	6.41 d (2)	6.03 br s	6.38 d (2.5)	6.28 d (2.5)
2'	7.47 d (8.5)					
3′	$6.90 \ d \ (8.5)$		6.46 s	6.47 s	6.45 d (2.5)	6.48 s
5'	7.47 d (8.5)				6.37 dd (8, 2.5)	
6′	$6.90 \ d \ (8.5)$	6.65 s	6.78 s	6.79 br s	7.01 d (8)	6.78 s
OMe			3.71 s	3.72 s		3.74 s
Me				1.97 br s		
C ₅ -OH				12.62 s		
Side chain						
1	3.46 br d (7)	$3.48 \ br \ d \ (7)$				
2	5.27 m	5.37 m				
4	1.98 m	$1.97 \ m$				
5	$2.03 \ m$	$2.08 \ m$				
6	5.05 m	5.11 m				
8	1.58 br s	1.62 d(1)				
9	1.54 <i>br s</i>	1.57 br s				
10	1.82 br s	1.81 d (1)				

system as a solvent and UV detection (280 nm). Fr. E (3.992 g) afforded compounds 1 (18 mg), 4 (9 mg), 8 (38 mg) and 10 (17 mg), fr. G (3.549 g) afforded compounds 3 (51 mg), 5 (133 mg), 9 (21 mg) and 11 (8 mg), fr. H (1.961 g) afforded compound 16 (138 mg), fr. I (2.690 g) afforded compounds 6 (35 mg) and 13 (14 mg), fr. J (717 mg) afforded compound 15 (20 mg), fr. K (3.817 g) afforded compounds 12 (8 mg) and 14 (34 mg), following treatment similar to that for fr. C. The Rf values in TLC [Silicagel GF₂₅₄, CHCl₃–MeOH–AcOH (94:5:1), coloring agent: 50% H₂SO₄] were as follows: 1 (0.57), 2 (0.60), 3 (0.43), 4 (0.48), 5 (0.43), 6 (0.33), 7 (0.53), 8 (0.47), 9 (0.49), 10 (0.48), 11 (0.43), 12 (0.27), 13 (0.26), 14 (0.23), 15 (0.35), 16 (0.53).

3.2. Lespedezol A_4 (1)

Amorphous powder, UV $\lambda_{\rm max}$ nm (log ϵ): 243 sh (4.09), 338 (4.36). FAB-MS m/z: 284 [M]⁺. ¹H and ¹³C NMR spectra: Tables 1 and 3.

3.3. Lespedezol A_5 (2)

Amorphous powder UV $\lambda_{\rm max}$ nm (log ϵ): 275 (4.14), 389 (4.16). FAB-MS m/z: 464 [M]⁺. ¹H and ¹³C NMR spectra: Tables 1 and 3.

3.4. Lespedezol A_6 (3)

Amorphous powder, UV λ_{max} nm (log ϵ): 254.5 (4.30), 355 (4.36). FAB-MS m/z: 421 [M+H]⁺. ¹H and ¹³C NMR spectra: Tables 1 and 3.

3.5. Lespedezol D_1 (4)

Amorphous powder, UV $\lambda_{\rm max}$ nm (log ϵ): 227 sh (4.16), 287.5 (3.82), 2.99 (3.80), 329.5 sh (3.49). $[\alpha]_{\rm D}$ –97.1° (MeOH; c 0.46). CD $[\theta]_{284}$ –24,280, $[\theta]_{292}$ +6480 (MeOH; c 0.0106). FAB-MS m/z: 286 $[{\rm M}]^+$. ¹H and ¹³C NMR spectra: Tables 1 and 3.

3.6. Lespedezol D_2 (5)

Amorphous powder, UV $\lambda_{\rm max}$ nm (log ϵ): 228 sh (4.17), 282 sh (3.92), 287 (3.96), 305 sh (3.37). $[\alpha]_{\rm D}$ –136.9° (MeOH; c 0.16). CD $[\theta]_{235}$ –76,400, $[\theta]_{274}$ –7360, $[\theta]_{288}$ +12,450 (MeOH; c 0.0229). FAB-MS m/z: 324 $[{\rm M}]^+$, 325 $[{\rm M}+{\rm H}]^+$. $^1{\rm H}$ and $^{13}{\rm C}$ NMR spectra: Tables 1 and 3.

3.7. Lespedezol D_3 (6)

Amorphous powder, UV $\lambda_{\rm max}$ nm (log ϵ): 225 sh (4.06), 281 (3.69), 301 (3.65). $[\alpha]_{\rm D}$ –113.2° (MeOH; c 0.70). CD $[\theta]_{233}$ –48,500, $[\theta]_{291}$ +3630 (MeOH; c 0.0150). FAB-MS m/z: 340 $[{\rm M}]^+$. $^1{\rm H}$ and $^{13}{\rm C}$ NMR spectra: Tables 1 and 3.

Table 3 ¹³C NMR spectral data of compounds 1–9^a

	1	2	3	4	5	6	7	8	9
6	66.1	68.5	158.5	67.2	70.8	70.7	70.7	67.3	67.2
6a	107.3	107.1	104.1	41.2	47.2	47.6	47.9	41.4	41.4
11a	147.2	149.4	160.2	78.9	83.0	82.4	82.5	78.7	78.6
1a	110.9	109.2	106.4	113.1	112.4	112.5	112.6	113.3	113.3
1	121.4	122.1	123.3	133.0	133.5	133.5	133.5	133.0	133.0
2	107.9	109.4	114.3	110.4	110.5	110.4	110.5	110.4	110.4
3	161.8	160.3	161.6	159.6	159.8	159.7	159.8	159.5	159.5
4	103.3	104.1	104.2	103.9	103.8	103.7	103.8	103.9	103.9
4a	155.9	156.4	156.0	157.7	157.1	157.0	157.1	157.7	157.7
7a	118.6	116.8	115.4	117.9	122.3	121.4	122.3	117.4	117.4
7	104.4	101.3	103.5	110.5	125.0	111.7	111.1	109.4	109.4
8	143.6	141.4	144.3	148.6	108.3	139.7	141.6	140.7	140.7
9	144.7	149.3	144.0	142.8	161.8	146.3	148.6	141.5	141.5
10	99.2	119.8	113.6	98.7	98.7	98.8	96.1	105.3	105.2
10a	150.6	148.6	149.9	155.1	159.8	153.9	153.3	151.1	151.2
OMe	55.7			57.6					
CO		171.5							
COOMe		52.5							
Side chain									
1		24.0	23.7		31.5	31.3	31.5	27.2	27.2
2		121.6	122.4		120.0	120.0	120.0	67.6	67.4
3		136.8	136.4		135.3	135.2	135.3	80.1	80.0
4		40.4	40.4		26.0	26.0	26.0	38.3	38.4
5		27.3	27.3		18.0	18.0	18.0	22.3	22.3
6		125.0	125.0					125.6	125.6
7		131.7	131.7					131.7	131.7
8		25.7	25.7					25.8	25.8
9		17.7	17.6					17.7	17.7
10		16.4	16.4					18.6	18.5

^a Assigned by HMQC and HMBC spectra.

3.8. Lespedezol D_4 (7)

Amorphous powder, UV $\lambda_{\rm max}$ nm (log ϵ): 231 sh (4.05), 302.5 (3.86), 330.5 sh (3.12). [α]_D -156.9° (MeOH; c 0.88). CD [θ]₂₃₃ -89,000, [θ]₂₇₇ -11,100, [θ]₂₉₀ +6670 (MeOH; c 0.0191). FAB-MS m/z: 354 [M]⁺. ¹H and ¹³C NMR spectra: Tables 1 and 3.

3.9. Lespedezol D_5 (8)

Amorphous powder, UV $\lambda_{\rm max}$ nm (log ϵ): 226.5 sh (4.24), 281.5 (3.87), 330.5 (3.92), 335 (3.79), 350.5 sh (3.66). [α]_D -49.9° (MeOH; c 1.03). CD [θ]₂₃₉ -41,370, [θ]₂₉₀ +12,180 (MeOH; c 0.0369). FAB-MS m/z: 424 [M]⁺. ¹H and ¹³C NMR spectra: Tables 1 and 3.

3.10. Lespedezol D_6 (9)

Amorphous powder, UV $\lambda_{\rm max}$ nm (log ϵ): 228 sh (4.14), 282.5 (3.75), 300 (3.86), 335.5 sh (3.30). [α]_D -120.9° (MeOH; c 1.23). CD [θ]₂₃₅ -42,400, [θ]₂₈₉ +10,100 (MeOH; c 0.0126). FAB-MS m/z: 424 [M] $^+$. ¹H and ¹³C NMR spectra: Tables 1 and 3.

3.11. Lespedezol E_1 (10)

Amorphous powder, UV λ_{max} nm (log ϵ): 264.5 (4.30), 341 (4.01). FAB-MS m/z: 407 [M+H]⁺. ¹H and ¹³C NMR spectra: Tables 2, 3 and 4.

3.12. Lespedezol E_2 (11)

Amorphous powder, UV λ_{max} nm (log ϵ): 260 (4.29), 288 (4.26). FAB-MS m/z: 422 [M]⁺, 423 [M+H]⁺. ¹H and ¹³C NMR spectra: Tables 2 and 4.

3.13. Lespedol D (12)

Amorphous powder, UV $\lambda_{\rm max}$ nm (log ϵ): 226 sh (4.23), 278 (4.13), 315 sh (3.92). [α]_D 0° (MeOH; c 0.71). CD no Cotton effect (MeOH; c 0.016). FAB-MS m/z: 302 [M]⁺. ¹H and ¹³C NMR spectra: Tables 2 and 4.

3.14. Lespedol E (13)

Amorphous powder, UV λ_{max} nm (log ϵ): 226.5 sh (4.27), 295 (4.26), 330 sh (3.85). $[\alpha]_D$ 0° (MeOH; c

Table 4

13C NMR spectral data of compounds 10–15

	10	11	12	13	14	15
2	154.3	156.3	71.7	71.0	139.2	70.6
3	123.2	111.7	47.8	47.4	112.4	32.9
4	182.0	179.0	191.6	198.1	27.5	31.2
4a	106.3	117.3	115.5	103.4	111.9	114.4
5	156.4	128.7	130.1	162.8	130.6	131.0
6	99.5	116.7	111.3	103.9	111.6	108.8
7	162.2	164.1	165.2	164.8	157.6	157.5
8	107.3	103.0	103.5	95.2	103.4	103.7
8a	161.5	158.8	164.7	162.0	152.2	156.2
1	123.7	125.6	113.5	113.1	117.6	118.8
2	131.1	149.6	150.8	150.8	156.9	150.2
3	116.0	119.1	104.6	104.5	104.0	104.3
4	158.4	146.2	147.8	148.0	158.4	146.9
5	116.0	138.9	141.9	142.0	107.8	142.0
6	131.1	114.3	115.2	115.0	130.2	113.1
OMe			57.4	57.4		57.4
Me				7.1		
Side Chain						
1	22.0	23.9				
2	123.1	124.2				
3	135.7	134.7				
4	40.4	40.6				
5	27.3	27.5				
6	125.1	125.6				
7	131.6	131.6				
8	25.8	25.8				
9	17.7	17.7				
10	16.2	16.3				

1.21). CD no Cotton effect (MeOH; c 0.0103). FAB-MS m/z: 333 [M+H]⁺. ¹H and ¹³C NMR spectra: Tables 2 and 4.

3.15. Lespedezol F_1 (14)

Amorphous powder, UV $\lambda_{\rm max}$ nm (log ϵ): 272 (3.85). FAB-MS m/z: 256 [M] $^+$. 1 H and 13 C NMR spectra: Tables 2 and 4.

3.16. Lespedezol G_1 (15)

Amorphous powder, UV $\lambda_{\rm max}$ nm (log ϵ): 221 sh (4.13), 287 (3.89). [α]_D -16.7° (MeOH; c 0.98). CD [θ]₂₃₃ -10,030, [θ]₂₈₈ +1000 (MeOH; c 0.0402). FAB-MS m/z: 288 [M]⁺. ¹H and ¹³C NMR spectra: Tables 2 and 4.

3.17. Lespedezol H_1 (16)

Amorphous powder, UV λ_{max} nm (log ϵ): 232 (4.25), 287 (4.24), 332.5 (4.31). FAB-MS m/z: 275 [M+H]⁺. ¹H NMR δ : 6.47 (2H, d, J = 2 Hz, H-3), 6.50 (2H, dd, J = 9, 2 Hz, H-5), 7.47 (2H, d, J = 9 Hz, H-6). ¹³C NMR δ : 104.0 (C-3), 110.2 (C-5), 111.5 (C-1), 135.7 (C-6), 167.2 (C-4), 167.4 (C-2), 195.6 (C-α).

3.18. Acetylation of lespedezol D_5 (8)

Compound 8 (2 mg) was acetylated with pyridine and acetic anhydride (each 0.2 ml) at room tempera-

Table 5
Antioxidative activities of isoflavonoids and stilbenoid from *Lespedeza homoloba*^c

Compound	Anti-oxidative activity $IC_{50} (\mu M)^a$	Fe ²⁺ -complex % vs EGCg ^b	O ₂ radical scavenging activity (%)		
1	0.2	22.9	85.1		
2	0.4	-26.0	66.8		
3	0.4	-5.4	24.2		
4	_d	0.1	-15.5		
5	_d	5.3	2.5		
6	0.5	0.7	98.6		
7	0.1	3.4	14.7		
8	0.2	3.9	-5.9		
9	0.1	-9.3	-12.7		
10	_d	6.5	89.1		
11	0.4	12.6	54.7		
12	_d	-0.4	-14.7		
13	_d	2.3	11.7		
14	0.4	1.1	54.9		
15	_d	6.1	9.2		
16	$_^{d}$	5.2	61.4		
EGCg ^e	0.07	100.0	83.7		

^a Suppression of autooxidation of rat brain homogenates.

^b Ferrous tartrate-method, the final concentration of all fractions was 0.033 mg/ml.

^c Phenazine methosulfate (PMS)-nitro blue tetrazolium (NBT)-method, the final concentration of all fractions was 0.020 mg/ml.

^d -: Not determined.

^e EGCg: epigallocatechin gallate.

ture overnight. The reagents were evaporated and the acetate **8a** (2 mg) was obtained. ¹H NMR δ : 2.05 (3H, s, OAc), 2.27 (3H, s, OAc), 2.29 (3H, s, OAc).

3.19. Antioxidative activities

Antioxidative activity in rat brain homogenate, formation and determination of the Fe²⁺ complex and determination of superoxide anion radical scavenging activity were by the methods in the previous paper (Miyase et al., 1999) Table 5.

Acknowledgements

This work was supported by a grant from the Program for Promotion of Basic Research Activities for Innovative Biosciences.

References

- Agrawal, P. K., & Rastogi, R. P. (1981). Heterocycles, 16, 2181.
- Miyase, T., Ueno, A., Noro, T., & Fukushima, S. (1980). *Chemical and Pharmaceutical Bulletin*, 28, 1172.
- Miyase, T., Ueno, A., Noro, T., & Fukushima, S. (1981). *Chemical and Pharmaceutical Bulletin*, 29, 2205.
- Miyase T., Sano M., Nakai H., Muraoka M., Nakazawa M., Suzuki M., Yoshino K., Nishihara Y., Tanai J. 1999 Phytochemistry, submitted.
- Shiozawa, T., Urata, S., Kinoshita, T., & Saitoh, T. (1989). Chemical and Pharmaceutical Bulletin, 37, 2239.
- Tanaka, H., Tanaka, T., & Etoh, H. (1997). Phytochemistry, 45, 835.
 Ueno, A., Ichikawa, M., & Fukushima, S. (1973). Chemical and Pharmaceutical Bulletin, 21, 2712.
- Ueno, A., Ichikawa, M., Miyase, T., Fukushima, S., Saiki, Y., & Morinaga, K. (1973). Chemical and Pharmaceutical Bulletin, 21, 1734
- Ueno, A., Ichikawa, M., Fukushima, S., Saiki, Y., Noro, T., Morinaga, K., & Kuwano, H. (1973). Chemical and Pharmaceutical Bulletin, 21, 2715.
- Zeng, J-F., Li, G-L., Xu, X., & Zhu, D-Y. (1996). *Phytochemistry*, 43, 893.