Phytochemistry 52 (1999) 1351-1355

Two C₂₁-steroidal glycosides isolated from *Cynanchum stauntoi*

Nanqun Zhu^a, Mingfu Wang^a, Hiroe Kikuzaki^b, Nobuji Nakatani^b, Chi-Tang Ho^{a,*}

^aDepartment of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901-8520, USA

^bDepartment of Food & Nutrition, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, Japan

Received 23 March 1999; received in revised form 12 July 1999

Abstract

Studies on the roots of *Cynanchum stauntoi* led to the isolation of two C_{21} -steroidal glycosides, formally named stauntosides A and B. Their structures were elucidated on the basis of spectroscopic evidence, especially that from analysis of 2D-NMR spectra. They were found to possess an unusual skeleton and were identified as stauntogenin $3-O-\alpha$ -L-diginopyranosyl-(1-4)- β -D-digitoxopyranosyl-(1-4)- β -D-thevetopyranoside and stauntogenin $3-O-\alpha$ -L-cymaropyranosyl-(1-4)- β -D-digitoxopyranosyl-(1-4)- β -

Keywords: Cynanchum stauntoi; Ascelepiadaceae; C₂₁-steroidal glycosides; Stauntoside A; Stauntoside B; NMR assignments; Two-dimensional NMR techniques

1. Introduction

 C_{21} -steroids and their glycosides are of considerable interest because of their bioactivities (Miller, 1973), such as hypolipidemic (Satyavati, 1991) and antitumor activity (Luo, Lin, Cordell, Xue & Johnson, 1993). Many such compounds have been isolated from plants, especially from the Asclepiadaceae family. For example, more than 10 C₂₁-steroidal glycosides with a novel 13,14:14,15-disecopregnane-type skeleton have been isolated from Cynanchum glaucescens (Nakagawa, Hayashi & Mitsuhashi, 1982; Nakagawa, Hayashi, Wada & Mitsuhashi, 1983; Tsukamoto, Hayashi & Mitsuhashi, 1985; Nakagawa, Hayashi & Mitsuhashi, 1983a, 1983b). In China, the dried roots of Cynanchum glaucescens and a closely related species, Cynanchum stauntoi (Decne.) Schltr. ex Levl. (Asclepiadaceae) are known as 'Bai-qian', and are used as antitussives and expectorants in traditional Chinese medicine (Jiangsu New Medical College, 1977). C. stauntoi is a perennial herb growing wild in southern China, and no chemical investigation has been reported previously on this

2. Results and discussion

Stauntoside A (1) showed positive Libermann–Burchard and Keller–Kiliani reactions, suggesting it to be a steroidal glycoside with a 2-deoxysugar moiety (Xu and Chen, 1981). The molecular formula $C_{48}H_{72}O_{19}$ was deduced from its negative APCIMS (m/z: 952 [M]⁻) and its ¹³C-NMR spectrum. Its spectral features and physicochemical properties suggested 1 to be a C_{21} -steroidal glycoside. The ¹³C-NMR spectrum of compound 1 showed a total of 48 carbon signals, of which 21 were assigned to the aglycone part and the remaining 27 (including three OCH₃) were assigned to the oligosaccharide moity.

The 13 C-NMR data (see Table 1) obtained for the aglycone of stauntoside A was very similar to those of C_{21} -steroidal glycosides from *Cynanchum glaucescens* (Nakagawa et al., 1983). In the 13 C-NMR spectrum of 1, signals at δ 113.3 (s), 119.7 (d), 140.1 (s), 129.8 (s),

species. This paper describes the isolation and structure elucidation of two C_{21} -steroidal glycosides, stauntosides A and B from the roots of *Cynanchum stauntoi*.

^{*} Corresponding author. Fax: +1-732-932-8004. E-mail address: ho@aesop.rutgers.edu (C.T. Ho).

Table 1 NMR spectral data of the aglycone (Pyridine- d^5 , δ (ppm)), J = Hz)

No.	Stauntoside A (1)		Stauntoside B (2)		$HMBC(H \rightarrow C)$
	1H	¹³ C	¹ H	¹³ C	
1α	1.09 (ddd, 3.9, 13.6,13.6)	37.2	1.09 (ddd, 3.7, 13.6, 13.6)	37.2	19
1β	1.74 (<i>ddd</i> , 3.7, 3.7, 13.6)		1.74 (<i>ddd</i> , 3.7, 3.7, 13.6		
2α	2.05(m)	30.1	2.05(m)	30.1	
2β	1.62 (m)		1.64 (<i>m</i>)		
3	3.80 (m)	77.4	3.75 (m)	76.9	1′
4α	2.63 (<i>dddd</i> , 2.2, 2.2, 2.2, 13.4)	38.8	2.52 (<i>dddd</i> , 2.2, 2.2, 2.2, 13.4)	38.8	2, 3, 5, 10
4β	2.31 (m)		2.30 (m)		
5	. ,	140.1	. ,	140.1	
6	5.22 (m)	119.7	5.28 (m)	119.8	7, 8, 10
7α	2.36 (m)	29.9	2.37(m)	29.9	5, 6, 8, 9, 14
7β	2.14 (m)		2.19 (dddd, 2.9, 5.9, 11.0, 11.0)		9
8	2.48 (m)	40.9	2.51 (<i>m</i>)	40.9	14
9	2.05(m)	52.1	2.05(m)	52.1	7, 8, 10, 11, 19
10	. ,	38.0	. ,	38.0	
11α	2.35(m)	27.1	2.35(m)	27.1	9, 12, 13
11β	4.10 (<i>ddd</i> , 12.0, 12.0, 12.0)		4.10 (<i>ddd</i> , 12.0, 12.0, 12.0)		9, 10, 12, 13
12	6.14 (<i>ddd</i> , 1.7, 4.6, 12.0)	146.9	6.14 (<i>ddd</i> , 1.7, 4.6, 12.0)	146.8	9, 10, 17, 18
13	, , , , ,	129.9		129.8	, , ,
14		179.3		179.3	
15α	4.42 (dd, 7.3, 10.5)	71.2	4.42 (dd, 7.3, 10.5)	71.2	17, 20
15β	4.02 (d, 4.9, 10.5)		4.02 (dd, 4.9, 10.5)		16
16	5.74 (dd, 4.9, 7.3, 7.8)	77.3	5.74 (ddd, 4.9, 7.3, 7.8)	77.3	14, 20
17	3.54 (br d, 7.8)	54.4	3.54 (br d, 7.8)	54.4	12, 13, 18, 21
18	(,)	167.4	(- ··) ··-)	167.5	, -, -,
19	1.02(s)	20.0	1.09(s)	20.0	5, 9, 10,
20		113.3	(-)	113.3	-,-,,
21	1.63 (s)	23.4	1.63 (s)	23.4	17, 20

146.9 (d), 167.5 (s) and 179.3 ppm (s) suggested the presence of two trisubstituted double bonds, two carbonyls and a ketal function. Like glaucogenin C (Nakagawa et al., 1983) (the main aglycone of C₂₁steroidal glycosides from Cynanchum glaucescens), the ¹H-NMR spectrum of 1 showed signals corresponding to an angular methyl at δ 1.02 (s, 3H) and an olefinic proton at δ 5.22 (m, 1H), indicating that 1 is a Δ 5-steroid possessing ordinary A and B rings. In addition, the signal δ 6.14 (*ddd*, J = 1.7, 4.6, 12.0 Hz, 1H)suggest the presence of another trisubstituted double bond. However, as compared to glaucogenin C, the ¹H-NMR spectrum of the aglycone of stauntoside A showed the absence of a proton at δ 6.27 (d, J = 2 Hz, ¹H), and the presence of a new proton at δ 6.14 (*ddd*, J = 1.7, 4.6, 12.0 Hz, 1H). In the ¹³C-NMR spectrum, major differences include the absence of two carbons at δ 118.5 and 143.8 and one carbon in the region δ 20–30, with the appearance of three carbons at δ 146.8, 129.8, and 167.5. Taken together, the NMR evidence suggests differences in the nine-membered lactone ring (C) and in one five-membered ring (D). The structures of rings C and D were confirmed based on the following results: the HMBC spectrum of 1 (Table 1) showed that H-12 was correlated with C-18, C-17, C-9 and C-10; C-12 was correlated with H-17 and H-11; C-13 was correlated with H-17 and H-11; H-17 was correlated with C-12, C-13, C-18 and C-21; C-17 was correlated with H-12, H-15 and H-21, and C-14 was correlated with H-7, H-8 and H-16. Therefore, together with the ¹H- and ¹³C-NMR spectra, the structure of the aglycone of stauntoside A was assigned as shown in Fig. 1.

With the help of a Dreiding stereo model, the stereochemistry of the aglycone of 1 was determined from the ¹H-NMR and NOESY spectra. Observed NOE correlations and deshielding effects of the carbonyl are shown in Fig. 2. Thus, the aglycone of stauntoside A has an unsual skeleton, and was named stauntogenin.

The type of sugar units and the sequence of the oligosaccharide chain of stauntoside A were established by a combination of 2D-NMR experiments and chemical analysis. The presence of L-cymanose, L-diginose, D-digitoxose and D-thevetose in the hydrolyslates of this compound was confirmed by TLC comparison with authentic samples. The $^1\text{H-}$ and $^{13}\text{C-NMR}$ spectra of 1 showed four sugar anomeric protons at δ 4.79 (d,

Stauntoside B: R=

Fig. 1. Structures of stauntoside A (1) and stauntoside B (2).

J = 7.6 Hz), 5.51 (dd, J = 1.7, 9.5 Hz), 5.12 (dd, J = 1.7, 9.8 Hz), 5.18 (br d, J = 3.4 Hz) and carbons at δ 102.0, 98.9, 99.6, 101.7 respectively.

Utilizing the anomeric proton the β -D-thevetopyranosyl unit H-1' at δ 4.79 (d, J=7.6 Hz) as a starting point, H-2' and H-3' signals were assigned by the correlations shown in the $^{1}\text{H}^{-1}\text{H}$ COSY spectrum. Based on the cross peak between H-2' with H-4' in the NOESY spectrum, the H-4' signal was assigned. Then using the HMBC spectrum, the H-5' (correlations of

Table 2 Oligosaccharide unit NMR spectral data of stauntoside A (1)

-	_		
No.	¹ H	¹³ C	HMBC(H →C)
1'	4.79 (d, 7.6)	102.0	3, 5'
2'	3.92 (m)	74.6	1',
3′	3.68 (dd, 8.5, 8.5)	85.8	2', 4', 3'-OCH ₃
4'	3.72 (dd, 8.5, 8.5)	82.9	3', 5', 6', 1"
5'	3.65 (m)	71.6	1'
6'	1.45 (3H, d, 6.3)	18.7	4', 5'
3'-OCH ₃	3.94 (3H, s)	60.5	3'
1"	5.51 (<i>dd</i> , 1.7, 9.5)	98.9	4', 2"
2"a	2.01 (m)	39.1	1"
2"e	2.42 (m)	4"	
3"	4.63 (m)	67.7	1"
4'	3.48 (dd, 2.7, 9.5)	83.2	5", 6", 1"'
5"	4.30 (m)	68.8	1", 4"
6"	1.41(3H, <i>d</i> , 6.3)	18.6	4", 5"
1‴	5.12 (<i>dd</i> , 1.7, 9.8)	99.6	4", 2"'
2‴a	1.67 (ddd, 2.0, 9.8, 13.7)	34.8	1‴
2‴e	2.36 (<i>m</i>)	3"', 4"'	
3‴	3.92(m)	77.4	1‴
4‴	3.38(dd, 2.7, 9.5)	82.2	5"', 6"', 1""
5‴	4.20(<i>dq</i> , 9.5, 6.3)	69.3	1"', 4"'
6‴	1.29(3H, d, 6.3)	18.5	4"', 5"'
3′′′-OCH ₃	3.51(3H, s)	57.3	3‴
1""	5.18(<i>br d</i> , 3.4)	101.7	4"', 3"", 5""
2""a	2.06 (<i>m</i>)	30.9	1"", 3"", 4""
2""e	2.36 (m)		1"", 3""
3""	3.84 (m)	75.7	3""-OCH3
4""	4.06 (<i>m</i>)	67.5	2"", 3""
5""	4.29 (m)	67.7	1"", 4"", 6""
6""	1.55(3H, d, 6.9)	17.7	4""
3′′′′-OCH ₃	3.30(3H, s)	55.0	3""

H-5' with C-1' and of H-4' with C-5') and $-OCH_3$ signals (correlated with C-3') were determined. Finally, H-6' was assigned by the strong $^1H - ^1H$ Cosy correlation with H-5'. Thus, the first sugar unit displayed a doublet proton (H-1', δ 4.79, d, J = 7.6 Hz), two

...... deshielding effect of carbonyl group

NOE

Fig. 2. Deshielding effect of carbonyl group and observed NOE correlations in aglycone.

√ NOE

Fig. 3. Observed NOE correlations in the oligosaccharide unit of stauntoside A (1).

double doublet protons (H-3', δ 3.68, dd, J = 8.5, 8.5 Hz and H-4', δ 3.72, dd, J = 8.5, 8.5 Hz), two multiplet protons (H-2', δ 3.92 and H-5', δ 3.65), a terminal doublet methyl group (δ 1.45, d, J = 6.3 Hz) and a methoxyl group (δ 3.94, s). Their ¹³C-NMR data were determined by HMQC as δ 102.0, 74.6, 85.8, 82.9, 71.6, 71.6, 18.7, respectively and 60.5 (-OCH₃). Therefore, this sugar was identified as β-D-thevetopyranose, based on D-thevetose being affected by glycosidation shifts of C-4 (+7.0), C-3 (-2.2) and c-5 (-1.0) (Nakagawa et al., 1983). In the same way, other sugars were identified as a β-D-digitoxopyranose (Nakagawa et al., 1983), \(\beta\)-cymaropyranose (Tsukamoto et al., 1985) and β-L-diginopyranose (Tsukamoto et al., 1985). Linkage of the sugar units was established from the following HMBC correlations (Table 2): H-4' with C-1" and H-1" with C-4'; H-4" with C-1" and H-1" with C-4"; H-4" with C-1"" and H-1"" with C-4". NOESY correlations (Fig. 3) of the sugar sequence yielded the same conclusions as above.

The attachment of the tetrasaccharide moiety to C-3 of the aglycone was deduced from the HMBC spectrum, in which H-1' (δ 4.79) showed long-range corre-

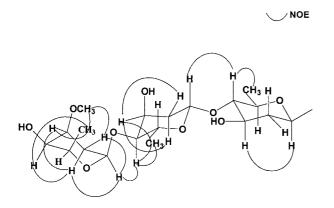


Fig. 4. Observed NOE correlations in the oligosaccharide unit of stauntoside B (2).

lation with C-3 (δ 77.4), while H-3 (δ 3.80) showed a correlation with a signal at δ 102.0 assigned to C-1′. This was confirmed by strong NOESY cross peaks from, H-3 (δ 3.80) and H-4eq (δ 2.63) to H-1′ (δ 4.79). The β linkage of the oligosaccharide was deduced from the anomeric proton signal at δ 4.79 exhibiting a coupling constant of 7.6 Hz in the ¹H-NMR spectrum. Thus, the structure of stauntoside A was established as stauntogenin 3-O- α -L-diginopyranosyl-(1-4)- β -L-cymaropyranosyl-(1-4)- β -D- digitoxopyranosyl-(1-4)- β -D-thevetopyranoside.

Stauntoside B (2), an amorphous powder, has a molecular formula of $C_{40}H_{58}O_{15}$, as determined from its FABMS (m/z: 801 [M+Na]⁺ and m/z: 817 [M+K]⁺), negative APCIMS (m/z: 778 [M]⁻) and

Table 3 Oligosaccharide unit NMR spectral data of stauntoside B (2)

No.	¹ H	¹³ C	$HMBC(H \rightarrow C)$
1'	4.84 (dd, 1.7, 9.5)	98.0	3, 2'
2'a	1.96 (m)	40.1	1', 4'
2'e	2.51 (m)	1', 3', 4'	
3'	3.96 (ddd, 5.3, 8.5, 9.3)	70.0	4′
4'	3.30 (dd, 7.6, 9.3)	88.5	6', 1"
5'	3.51 (<i>m</i>)	70.9	1', 3', 4', 6'
6'	1.34 (3H, d, 6.1)	18.1	4', 5'
1"	5.25 (dd, 1.7, 9.5)	99.8	4′
2"a	1.95 (m)	38.2	1",
2"e	2.42 (m)	3", 4"	
3"	4.48 (m)	67.4	1"
4"	3.42 (dd, 2.9, 9.5)	80.7	5", 6", 1"'
5"	4.18 (dd, 9.5, 6.1)	69.3	1", 4", 6"
6"	1.30 (3H, d, 6.1)	18.1	4", 5"
1‴	5.02 (m)	98.5	4", 3"', 5"'
2‴a	1.82 (<i>ddd</i> , 4.1, 4.1, 14.0)	32.2	1‴,
2‴e	2.31 (ddd, 2.7, 4.9, 14.0)	1"', 3"', 4"'	
3‴	3.68 (m)	76.4	3‴-OCH ₃
4‴	3.62 (m)	72.5	5''', 6'''
5‴	4.45 (m)	67.4	1"', 3"', 4"', 6"'
6'''	1.40 (3H, d, 6.4)	18.3	4"', 5"'
3‴-OCH ₃	3.35 (3H, s)	56.7	3‴

¹³C-NMR spectrum. Stauntoside B also showed positive Liebermann-Burchard and Keller-Liliani reactions and its ¹H- and ¹³C-NMR spectra indicated that 2 possesses the same aglycone as 1, but differs in the sugar component (Tables 1 and 3). The presence of three sugars in 2 was indicated by the three anomeric protons: δ 4.84 (dd, J = 1.7, 9.5 Hz), δ 5.25 (dd, J = 1.7, 9.5 Hz), $\delta 5.02 (m)$ and carbons at $\delta 98.0$, 99.8, and 98.5 respectively. Knowing this, it was apparent that the three sugars are present in one saccharide unit attached to C-3. In the same manner as in 1, the sugar units of 2 were identified as β -D-3demethyl-2-deoxy-thevetopyranose, β-D-digitoxopyranose and β-L-cymaropyranose. The sequence of this trisaccharide was also established using HMBC and NOESY spectra (observed long-range and NOE correlations are shown in Table 3 and Fig. 4, respectively). Thus, stauntoside B was identified as stauntogenin 3-O- α -L-cymaropyranosyl-(1-4)- β -D-digitoxopyranosyl-(1-4)- β-D-3-demethyl-2-deoxy-thevetopyranoside.

3. Experimental

3.1. General

FABMS: MAT-711 mass spectrometer; Negative APCIMS were obtained on a Micromass Platform II system (Micromass, MA) equipped with a Digital DECPC XL560 computer for data analysis; 1 H-NMR, 13 C-NMR, 1 H - 1 H COSY, HMQC, HMBC and NOESY spectra: Varian U-500 Spectrometer with TMS as internal standard and C_5D_5N as solvent; TLC: silica gel HSGF₂₅₄ (Yantai Institute of Chemical Technology, Yantai, China), spots were observed under a UV detector (254 nm) and visualized by 10% H₂SO₄ ethanol solution followed by heating to 110°C; Silica gel H (60μ , Qing Dao) was used for column chromatography; preparative HPLC was performed on an ODS column (10×250 mm).

3.2. Extraction and isolation

Fresh roots of Cynanchum stauntoi were collected in Anhui Province, P.R. China, in October 1996. A voucher specimen has been deposited at the Department Drug Discovery, Shanghai Institute Pharmaceutical Industry. Air-dried roots were extracted with 95% EtOH at room temperature. The extracts were concentrated (220 g) and suspended in water, then partitioned successively by petroleum (10 g), CHCl₃ (100 g) and EtOAc (15 g). The CHC₃ fraction (100 g) was subjected to CC on silica gel, using a CH₂Cl₂-MeOH gradient as eluent. The CH₂Cl₂-MeOH (10:1) fraction was repeatedly separated by CC (silica gel), eluted with cyclohexane-acetone (1:1) to give several fractions. Fraction 5 was purified over silica gel chromatography using CH₂Cl₂–MeOH–H₂O (9:1:0.1) affording stauntoside A (15 mg). Fraction 3 was purified by preparative HPLC (70% MeOH in H₂O), giving stauntoside B (13 mg).

3.3. Acidic hydrolysis of stauntosides A and B

To a solution of 3 mg of each glycoside in 1 ml MeOH, 2 ml of 0.1 N H₂SO₄ was added and kept at 65°C for 25 min, then the solution was diluted with water and concentrated. The solution was kept at 60°C for another 30 min, then neutralized with Ba(OH)₂. The filtrate was evaporated to dryness for TLC with three solvent systems: CHCl₃–MeOH (9:1), CH₂Cl₂–EtOH (9:1) and benzene–acetone (5:3). For comparison with authentic samples (provided by Shanghai Institute of Pharmaceutical Industry, China), stauntoside A afforded cymarose, digitoxose, thevetose and diginose. Stauntoside B afforded cymarose, digitoxose and demethyl-2-deoxythevetose.

3.4. Stauntoside A (*1*)

Amorphous powder, $[\alpha]_D - 63.4^\circ$ (c = 0.88, MeOH); APCIMS: m/z 952 [M]⁻; ¹H- and ¹³C-NMR spectral data (see Tables 1 and 2).

3.5. Stauntoside B (**2**)

Amorphous powder, $[\alpha]_D$ –39.10 (c = 0.585, MeOH); APCIMS: m/z 778 [M]⁻; FABMS: m/z 801 [M+Na]⁺, 817 [M+K]⁺; ¹H- and ¹³C-NMR spectral data (see Tables 1 and 2).

References

Miller, L. P. (1973). In *Phytochemistry* (pp. 171–226). New York: Van Nostrand Reinhold.

Satyavati, G. V. (1991). In *Economic and medicinal plant research* (pp. 47–80). India: Academic Press.

Luo, S. Q., Lin, L. Z., Cordell, G. A., Xue, L., & Johnson, M. E. (1993). Phytochemistry, 34, 1615–1620.

Nakagawa, T., Hayashi, K., & Mitsuhashi, H. (1982). *Tetrahedron Letters*, 23, 757–760.

Nakagawa, T., Hayashi, K., Wada, K., & Mitsuhashi, H. (1983). *Tetrahedron*, 39, 607–612.

Tsukamoto, S., Hayashi, K., & Mitsuhashi, H. (1985). *Tetrahedron*, 41, 927–934.

Nakagawa, T., Hayashi, K., & Mitsuhashi, H. (1983a). *Chem. Pharm. Bull*, 31, 870–878.

Nakagawa, T., Hayashi, K., & Mitsuhashi, H. (1983b). *Chem. Pharm. Bull*, 31, 879–882.

Dictionary of Chinese Materia Medica. Publishing House of Science and Technology of Shanghai, Shanghai, China, pp. 686–687.

Xu, R., & Chen, Z. (1981). In *The extraction and isolation of bioactive components from medicinal plants* (p. 298). Shanghai, China: Publishing House of Science and Technology of Shanghai.