Phytochemistry 52 (1999) 1681-1685

Dihydroflavonols and flavanones from Lonchocarpus atropurpureus roots

Aderbal F. Magalhães^a,*, Ana Lucia T.G. Ruiz^a, Ana Maria G.A. Tozzi^b, Eva G. Magalhães^a

^aOrganic Chemistry Department of Chemistry Institute, UNICAMP, P.O. Box 6154, 13081-970, Campinas, São Paulo, Brazil ^bBotany Department of Biology Institute, UNICAMP, P.O. Box 6154, 13081-970 Campinas, São Paulo, Brazil

Received 1 December 1998; received in revised form 3 April 1999

Abstract

From the petroleum extract of *Lonchocarpus atropurpureus* Benth. roots, 5,2'-dihydroxy-3-methoxy-6,7-(2",2"-dimethylchromene)-8-(3"',3"'-dimethylallyl)-flavanone and 2',3,5-trihydroxy-6,7-(2",2"-dimethylchromene)-8-(3"',3"'-dimethylallyl)-flavanone were isolated, together with three known flavanoids and a mixture of two pentacyclic triterpenes. Their molecular structures were determined by spectral analyses (UV, IR, MS and 1D- and 2D-NMR experiments). © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Leguminosae; Lonchocarpus atropurpureus; Flavonoids; Flavanones; Dihydroflavonols; Minimiflorin; Mundulinol; Mundulin

1. Introduction

The genus *Lonchocarpus* belongs to the subfamily Papilionoideae of the Leguminosae. *Lonchocarpus atropurpureus* Benth. is native to Mexico (Pittier, 1917) and is cultivated in the Ecological Park of Campinas State University (UNICAMP). It belongs to *Lonchocarpus* subgenus *Lonchocarpus*, section *Lonchocarpus*.

As part of a chemosystematic study of the genus *Lonchocarpus* (Magalhães, Tozzi, Sales & Magalhães, 1996; Magalhães, Tozzi, Magalhães & Nogueria, 1997) the root extract of *L. atropurpureus* was subjected to a detailed laboratory investigation. We report herein five prenylated flavonoids (1–5) and a mixture of two pentacyclic triterpenes (6). Two of these compounds (2 and 3) are described for the first time.

2. Results and discussion

Two flavanones (1 and 5), three dihydroflavonols (2–4) and a mixture of pentacyclic triterpenes (6) (Fig. 1) were isolated through chromatographic fractionation techniques (column, TLC and preparative TLC) from the petroleum extract of L. atropurpureus roots.

Compounds 1 ($C_{25}H_{26}O_5$), 4 ($C_{25}H_{26}O_5$) and 5 ($C_{25}H_{26}O_4$) were identified as the known minimiflorin (Mahmoud & Waterman, 1985) mundulinol and mundulin (van Zyl, Rall & Roux, 1979) respectively, by comparison of their spectral data with those previously published. The mixture of pentacyclic triterpenes was analyzed by 1H -NMR, ^{13}C -NMR data (Olea & Roque, 1990; Seo, Tomita & Tori, 1975; Wenkert, Baddeley, Burfitt & Moreno, 1978) and GC/MS (Shannon, 1963; Muccino & Djerassi, 1974) to reveal a mixture of β -amyrin and lupeol.

Compound **2**, obtained as the major constituent, was deduced as having an elemental formula of $C_{26}H_{28}O_6$ by HREI-MS (observed. $M^+ = 436.1886$; required $M^+ = 436.1886$). It showed characteristic signals for a dihydroflavonol at δH 5.43 (1H, d, J = 11

0031-9422/99/\$ - see front matter \odot 1999 Elsevier Science Ltd. All rights reserved. PII: S0031-9422(99)00401-X

^{*} Corresponding author.

Fig. 1. Compounds isolated from Lonchocarpus atropurpureus Benth.

Hz, H-3) and 4.15 (1H, d, J = 11 Hz, H-2) in the 1 H-NMR spectrum and at $\delta_{\rm C}$ 81.8 (C-3) and 77.8 (C-2) in the 13 C-NMR spectrum (Agrawal, 1989). This was supported in the UV spectrum by the maximum absorption at 276 nm (benzoyl chromophore). The carbonyl group at C-4 was hydrogen-bonded with the C-5 OH group, as evidenced by a singlet at $\delta_{\rm H}$ 11.95 in the 1 H-NMR spectrum. A singlet at $\delta_{\rm H}$ 3.60 (3H, s, OCH₃) in the 1 H-NMR spectrum, correlated with the signal at $\delta_{\rm C}$ 61.9 (OCH₃) in the 13 C-NMR and was compatible with the expected resonance for a 3-methoxy-dihydroflavonol (Agrawal, 1989).

Fig. 2. Most important fragment ions of 2 and 3.

Signals at $\delta_{\rm H}$ 7.00 (1H, d, J = 8 Hz, H-3'), 7.03 (1H, t, J = 8 Hz, H-5'), 7.52 (1H, d, J = 8 Hz, H-6') and 7.31 (1H, t, J = 8 Hz, H-4'), in the ¹H-NMR

Table 1 ¹H-NMR (500 MHz, CDCl₃) spectral assignments for compounds 2 and 3

	2	3
2	$5.43 (1H, d, J = 11 Hz)^a$	$5.39 (1H, d, J = 11 Hz)^a$
3	$4.15 (1H, d, J = 11 Hz)^{i}$	$4.53 (1H, d, J = 11 Hz)^{i}$
3'	$7.00 \text{ (1H, } dd, J = 1^{\text{c}} \text{ e } 8^{\text{j}} \text{ Hz)}$	$7.02 (1H, dl, J = 7.5 Hz)^{j}$
4'	7.31 (1H, td , $J = 1^{e} e 8^{d} Hz$)	$7.30 (1H, tl, J = 7.5 Hz)^{d}$
5'	7.03 (1H, td , $J = 1^{c} e 8^{b} Hz$)	$7.05 (1H, tl, J = 7.5 Hz)^{b}$
6'	$7.52 \text{ (1H, } dd, J = 1^{e} \text{ e } 8^{f} \text{ Hz)}$	$7.57 (1H, dl, J = 7.5 Hz)^{f}$
CH ₃ -2"	$1.45^{\rm h}$ (3H, s)	$1.46^{\rm h}$ (3H, s)
CH ₃ -2"	$1.47^{\rm h}$ (3H, s)	$1.47^{\rm h}$ (3H, s)
3"	$5.54 (1H, d, J = 10 \text{ Hz})^g$	$5.55 (1H, d, J = 10 \text{ Hz})^g$
4"	$6.65 (1H, d, J = 10 \text{ Hz})^g$	$6.64 (1H, d, J = 10 Hz)^g$
1′″	$3.23 \text{ (2H, } dd, J = 6^{1} \text{ e } 10^{k} \text{ Hz)}$	$3.23 \text{ (2H, } dd, J = 7^{l}e \ 10^{k} \text{ Hz)}$
2′″	$5.12 (1H, t, J = 6 Hz)^{1}$	$5.12 (1H, tl, J = 7 Hz)^{1}$
4′″	1.66 (3H, s)	1.66 (6H, s)
5"'	1.67 (3H, s)	=
C-3-OR	3.60 (3H, s, O-CH ₃ =R)	4.18 (1H, sl, OH=R)
C-5-OH	11.95 (1H, s)	11.29 (1H, s)
C-2′–O <u>H</u>	6.73 (1H, s)	6.86 (1H, sl)

 $^{1}J_{1'''-2'''}$.

 $^{^{\}rm h}$ interchangeable.

 $^{^{\}mathrm{i}}_{J_{3,\,2}.}$ $^{\mathrm{j}}_{J_{3',\,4'}.}$ $^{\mathrm{k}}_{J_{1'''a-1'''b}.}$

Table 2 ¹³C-NMR (CDCl₃) spectral assignments for compounds 2 and 3

C	2 ^a	3 ^b
CH ₃ -4"'	17.8	17.9
CH ₂ -1"	21.3	21.3
CH ₃ -5'"	25.7	25.8
CH ₃ -2"	28.3	28.4
CH ₃ -2"	28.4	28.4
CH ₃ -O-3	61.9	_
CH-2	77.8	78.6
C ₀ -2"	78.5	78.0
C-3	81.8 (CH)	73.2 (CH)
C_0 -10	101.3	100.1
C_0 -6	103.5	103.5
C ₀ -8	109.1	109.6
CH-3"	115.4	115.3
CH-3'	117.8	118.1
CH-5'	121.1	121.3
CH-2"	122.2	122.0
C ₀ -1'	124.2	124.2
CH-6'	126.3	126.5
CH-4"	127.1	126.8
CH-4'	129.9	129.9
C ₀ -3'"	131.6	131.7
C ₀ -2'	154.0	153.9
C_0 -5	156.7	156.0
C ₀ -7	158.3	158.9
C ₀ -9	160.3	161.0
C ₀ -4	195.7	195.0

^a 125 MHz.

spectrum, which exhibited ${}^{1}J$ -coupling with the ${}^{13}C$ -NMR resonances at δ_{C} 117.8 (C-3'), 121.1 (C-5'), 126.3 (C-6') and 129.9 (C-4'), respectively, in the ${}^{1}H$ - ${}^{13}C$ HSQC NMR spectrum, gave evidence for a 2'-

Table 4
Observed correlation in HSQC (vicinal C-H) and in HMBC (long-range C-H) spectra (CDCl³, 11 Tesla) of 3

$H(\delta)$	$C(\delta, J^1)$	$C(\delta, J^n)$
2 (5.39)	2 (78.6)	_
3 (4.53)	3 (73.2)	_
<u>H</u> O-3 (4.17)	=	_
<u>H</u> O-5 (11.29)		_
3' (7.02)	3' (118.1)	_
4' (7.30)	4' (129.9)	_
5' (7.05)	5' (121.3)	_
6' (7.57)	6'(126.5)	2' (153.9)
CH ₃ -2"a (1.46)	<u>C</u> H3-2"a (28.4)	2" (78.7), 4" (126.8)
C <u>H</u> ₃ -2"b (1.47)	<u>C</u> H3-2"b (28.4)	2" (78.7), 4" (126.8)
3" (5.55)	3" (115.3)	6 (103.5), 2" (78.7)
4" (6.64)	4" (126.8)	7 (158.9), 2" (78.7)
1"' (3.23)	1"' (21.3)	8 (109.6), 9 (161.0), 3"' (131.7)
2"' (5.12)	2"' (122.0)	_
4"' (1.66)	4"' (17.9)	3" (131.7), 2" (122.0)
5"' (1.66)	5"' (25,8)	3" (131.7), 2" (122.0)

hydroxy B-ring, which is not a very frequent substitution position (Iinuma & Mizuno, 1989). A 3,3-dimethylallyl and a 2,2-dimethylchromene substituent were apparent from observed $^1\text{H-}$ and $^{13}\text{C-NMR}$ signals (Tables 1 and 2). Since the B-ring was identified as 2'-hydroxy, both 2,2-dimethylchromene and 3,3-dimethylallyl groups were connected to the A-ring, which was confirmed by the fragment ion at m/z=271 (2a) in its mass spectrum (Fig. 2).

An HMBC NMR experiment was used to confirm the position of the 2,2-dimethylchromene and 3,3-dimethylallyl groups. The correlation of H-1"' ($\delta_{\rm H}$ 3.23) with carbons C-8 ($\delta_{\rm C}$ 109.1) and C-9 ($\delta_{\rm C}$ 160.3),

Table 3 Observed correlation in HSQC (vicinal C-H) and in HMBC (long-range C-H) spectra (CDCl₃, 11 Tesla) of 2

$H(\delta)$	$C(\delta, J^1)$	$C(\delta, J^n)$
2 (5.45)	2 (77.8)	3 (81.8), 4 (195.7), 2'(154.0), 6'(126.3)
3 (4.16)	3 (81.8)	2 (77.8), 3-OCH ₃ (61.9), 4 (195.7), 1'(124.2)
H ₃ CO-3 (3.60)	3-OCH ₃ (61.9)	=
<u>H</u> O-5 (11.95)	_	5 (156.7), 6 (103.5), 7 (158.3), 10 (101.3)
<u>H</u> O-2′ (6.76)	=	3' (117.8)
3' (7.00)	3' (117.8)	5' (121.1)
4' (7.31)	4' (129.9)	2'(154.0), 3' (117.8), 6'(126.3)
5' (7.04)	5' (121.1)	1'(124.2), 2'(154.0), 3' (117.8)
6' (7.51)	6′(126.3)	2'(154.0), 4' (129.9)
CH ₃ -2"a (1.45)	<u>C</u> H ₃ -2"a (28.3)	2" (78.5), 3" (115.4), 4" (127.1)
$\overline{\text{CH}_3}$ -2"b (1.47)	<u>C</u> H ₃ -2"b (28.4)	2" (78.5), 3" (115.4), 4" (127.1)
3" (5.54)	3" (115.4)	6 (103.5), 2" (78.5), 4" (127.1)
4" (6.65)	4" (127.1)	5 (156.7), 7 (158.3), 2" (78.5)
1"' (3.23)	1"' (21.3)	8 (109.1), 9 (160.3), 2"' (122.2), 3"' (131.6)
2"' (5.13)	2"' (122,2)	4"' (17.8), 5"' (25.7)
4"' (1.67)	4"' (17.8)	3"' (131.6), 5"' (25.7)
5"' (1.67)	5"' (25.7)	3"' (131.6), 4"' (17.8)

^b 75 MHz.

and those of H-4" ($\delta_{\rm H}$ 6.65) with carbons C-5 ($\delta_{\rm C}$ 156.7) and C-7 ($\delta_{\rm C}$ 158.3) required that the 2,2-dimethylchromene group was linearly connected to the A-ring with the 3,3-dimethylallyl group at C-8. In the EIMS spectrum, the fragment ion at m/z=421 (**2b**) must be the molecular ion losing a methyl group; a fragmentation by retro Diels-Alder (RDA) could explain fragment ions at m/z=271 (**2a**), m/z=286 (**2c**) and m/z=150 (**2d**) (Fig. 2). The higher abundance of the fragment 2a (m/z=271) suggested that C-ring RDA cleavage occurs preferentially from the fragment ion m/z=421, which was further confirmed by an MS/MS experiment. All ¹H- and ¹³C-NMR assignments for **2** were performed using appropriate HSQC and HMBC NMR experiments (Table 3).

The molecular formula of compound 3 was established in turn as $C_{25}H_{26}O_6$ by HREI mass spectrometry (observed $M^{++}=422.1729$, required $M^{++}=422.1729$). Analysis of its 1H -NMR (Table 1), ^{13}C -NMR (Table 2) and mass spectral data (Fig. 2) indicated that 3 was very closely related with compound 2, but this time was the corresponding dihydroflavonol. All 1H - and ^{13}C -NMR assignments for 3 were performed using appropriate HSQC and HMBC NMR experiments (Table 4).

3. Experimental

IR: film or KBr; ¹H- and ¹³C-NMR: in CDCl₃, at 7 or 11 Tesla instruments with TMS as int. standard; EIMS: 70 eV, direct probe; GC-MS: programmed 50–290° at 15°/min⁻¹, injector at 290°, interface with detector EI (70 eV) at 285°, column DB-5.

3.1. Plant material

Roots of *L. atropurpureus* Benth. were collected at the UNICAMP Ecological Park in Campinas, Brazil in March 1997, and were identified by one of the authors (A.M.G.A.T.). A voucher specimen (AMGA Tozzi 98-04) has been deposited in the Herbarium of the Biology Institute (UNICAMP).

3.2. Extraction and isolation

Dry, milled roots (130 g) were successively extracted in a Soxhlet apparatus for 154 hour with petrol, dichloromethane and methanol. After solvent evaporation, the petrol extract gave a yellow oil (2.2 g), part of which (100 mg) was fractionated by preparative TLC (silicagel 60 GF₂₅₄) run with CH₂Cl₂. This furnished six fractions which were numbered according to increasing polarity. The fifth fraction (20 mg) was further fractionated by preparatory TLC (hereafter, prep. TLC) continuously eluted with Hex–CH₂Cl₂–

EtOAc (30:10:4) during 100 min to afford 3 (7.1 mg). Fr. 3 (30 mg) was submitted to the same method, but with a longer development time (150 min), furnishing 1 (8 mg) and 2 (11 mg).

Another part of the petrol extract (2.0 g) was subjected to flash CC over silica gel (Still, Kahn & Mitra, 1978); eluted with dichloromethane with increasing eluent polarity from the gradual addition of methanol until reaching 100% methanol, furnishing 325 fractions (30 ml) which were reduced to 20 groups after TLC. The second group (459.5 mg, fr. 6-23) was fractionated by prep. TLC continuously run with Hex-EtOAc (9:1) during 100 min to afford 4 (30.3 mg) and 5 (5.3 mg), which were then submitted to prep. TLC run with Hex-EtOAc (9 : 1) (three developments) and Hex-CH₂Cl₂-EtOAc (30 : 10 : 4) (two developments), respectively. Group 3 (75.1 mg, fr. 24-30), after prep. TLC run with Hex-EtOAc (9:1) and CH_2Cl_2 , furnished a mixture 6 and 7 (lupeol + β amirin, 16.7 mg).

3.3. Minimiflorin (1)

Viscous yellowish oil, $[\alpha]_D^{20}$, UV, IR, ¹H-NMR, ¹³C-NMR and EIMS data (Mahmoud & Waterman, 1985).

3.4. 5,2'-dihydroxy-3-methoxy-6, 7-(2",2"-dimethylchromene)-8-(3"', 3"'-dimethylallyl)-flavanone (2)

Pale yellow crystals (methanol), mp 128.8–129.2°. $[\alpha]_D^{20}$ -12.69° (CH₂Cl₂, c 0.670). UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 276 (4.52), 318 (4.06), 374 (3.29). IR $\nu_{\rm max}^{\rm CH_2Cl_2}$ cm⁻¹ (KBr): 3368, 2966, 2924, 1643, 1620, 1583, 1500, 1457, 1381, 1338, 1290, 1266, 1233, 1188, 1138, 1127, 1094, 1027, 983, 947, 750, 727. ¹H-NMR (500 MHz, CDCl₃/TMS) (see Table 1). ¹³C-NMR (125 MHz, CDCl₃) (see Table 2). EIMS (70 eV), m/z (rel. int): 436 [M]⁺ (100), 421 (80), 403 (6), 389 (16), 285 (10), 271 (44), 243 (27), 231 (21), 215 (42), 150 (9), 107 (11), 91 (12), 77 (10), 69 (14). HR-EIMS m/z: found 436.18856 [M⁺] (C₂₆H₂₈O₆ requires 436.18859).

 $3.5.\ 2',3,5$ -trihydroxy-6,7-(2'',2''-dimethylchromene)-8-(3''',3'''- dimethylallyl)-flavanone (3)

Viscous yellowish oil, $[α]_D^{20}$ -54.43° (CH₂Cl₂, c 0.625). UV $λ_{\text{max}}^{\text{MeOH}}$ nm (log ε): 276 (4.80), 316 (4.35), 372 (3.81). IR $ν_{\text{max}}^{\text{CH}_2\text{Cl}_2}$ cm⁻¹ (KBr): 3406, 2966, 2923, 1644, 1627, 1460, 1381, 1290, 1233, 1188, 1022, 938, 905, 844, 748. ¹H-NMR (500 MHz, CDCl₃/TMS) (see Table 1). ¹³C-NMR (75 MHz, CDCl₃) (see Table 2). EIMS (70 eV), m/z (rel. int): 422 [M]⁺ (100), 407 (65), 405 (13), 404 (17), 389 (26), 285 (7), 271 (29), 243 (17), 231 (29), 215

(32), 107 (15), 91 (7), 77 (7). HR-EIMS m/z: found 422.17292 [M⁺] (C₂₅H₂₆O₆ requires 422.17294).

3.6. *Mundulinol* (4)

Viscous yellowish oil, $[\alpha]_D^{20}$, UV, IR, ¹H-NMR, ¹³C-NMR and HR-EIMS data (van Zyl et al., 1979). EIMS (70 eV), m/z (rel.int): 406 [M]⁺ (81), 391 (100), 363 (7), 285 (8), 271 (24), 243 (14), 231 (11), 215 (13), 189 (10), 91 (14).

3.7. Mundulin (5)

Viscous yellowish oil. $[\alpha]_D^{20}$, UV, IR, ¹H-NMR, ¹³C-NMR and HR-EIMS data (van Zyl et al., 1979).

3.8. β-Amyrin and lupeol

¹H-NMR, ¹³C-NMR and MS data (Olea & Roque, 1990; Seo et al., 1975; Wenkert et al., 1978; Shannon, 1963; Muccino & Djerassi, 1974).

Acknowledgements

The authors are grateful to CAPES for the scholar-

ship awarded to Dr. Ana Lucia T.G. Ruiz and to FAPESP for financial support.

References

- Pittier, H. (1917). Contributions from the United States National Herbarium, 20, 37.
- Magalhães, A. F., Tozzi, A. M. A., Sales, B. H. L. N., & Magalhães, E. G. (1996). Phytochemistry, 42, 1459.
- Magalhães, A. F., Tozzi, A. M. A., Magalhães, E. G., & Nogueria, M. A. (1997). Phytochemistry, 46, 1029.
- Mahmoud, E-H. N., & Waterman, P. G. (1985). Journal of Natural Products, 48, 648.
- Van Zyl, J.J., Rall, G.J.H., and Roux, D.G. (1979). Journal of Chemical Research, M: 1301; S: 97.
- Olea, R. S. G., & Roque, N. F. (1990). Química Nova, 13, 278.
- Seo, S., Tomita, Y., & Tori, K. (1975). Tetrahedron Letters, 1, 7.
- Wenkert, E., Baddeley, G. V., Burfitt, I. R., & Moreno, L. N. (1978). Organic Magnetic Resonance, 11, 337.
- Shannon, J. S. (1963). Australian Journal of Chemistry, 16, 683.
- Muccino, R. R., & Djerassi, C. (1974). Journal of the American Chemical Society, 96, 556.
- Agrawal, P.K. (Ed.).(1989). ¹³C- NMR of flavonoids. Amsterdam: Elsevier.
- Iinuma, M., & Mizuno, M. (1989). Phytochemistry, 28, 681.
- Still, W. C., Kahn, M., & Mitra, A. (1978). Journal of Organic Chemistry, 43, 2923.