Phytochemistry 53 (2000) 499-501

www.elsevier.com/locate/phytochem

Iridoid glycosides from Lonicera quinquelocularis

S. Kumar^a, O.P. Sati^a, V.D. Semwal^a, M. Nautiyal^a, S. Sati^a, Y. Takeda^b

^aDepartment of Chemistry, H.N.B. Garhwal University, Srinagar, Garhwal 246 174, U.P., India ^bFaculty of Integrated Art and Sciences, The University of Tokushima, Tokushima 770, Japan

Received 27 April 1999; received in revised form 23 June 1999

Abstract

A new iridoid glycoside 6'-O-β-apiofuranosylsweroside was isolated from the ethanolic extract of the roots of *Lonicera quinquelocularis* along with the known compounds loganin and sweroside. © 2000 Published by Elsevier Science Ltd. All rights reserved.

Keywords: Lonicera quinquelocularis; Caprifoliaceae; Iridoid glycoside; Loganin; Sweroside; 6'-O-β-apiofuranosyl sweroside

1. Introduction

Iridoid and secoiridoid glycosides possess hypotensive, sedative, antipyretic and anti-tussive activities (Basaran, Akdemir, Yuruker & Calis, 1988).

Lonicera quinquelocularis (Caprifoliaceae) is an evergreen shrub commonly found in Kumaon and Garhwal Himalayan region of U.P., India (The Wealth of India, 1962). A number of species of the genus Lonicera have been investigated, and different iridoids and bis-iridoids have been isolated (Machida, Asano & Kikuchi, 1995; Bailleal, Leaveau & Durand, 1981). From the aerial parts of L. quinquelocularis 1-inositol, hexacosanol, n-triacontanol, nonacosane and β-sitosterol have been isolated (Rastogi & Mehrotra, 1993). The present study deals with the isolation and structure elucidation of two known iridoids loganin 1, sweroside 2 and new iridoid 6'-O-β-apiofuranosylsweroside 3. Compounds 1 and 2 have been reported from the stem of L. periclymenum (Machida et al., 1995).

2. Results and discussion

Air-dried and powdered roots of L. quinquelocularis

were extracted with aqueous hot EtOH. The EtOH extract on repeated CC over silica gel afforded 1, 2 and 3. Compounds 1 and 2 were identified as loganin and sweroside by comparison of the physical constants, ¹H and ¹³C-NMR data with those of literature (Machida et al., 1995; Calis, Lahloub & Sticher, 1984).

Compound 3, a crystalline colourless solid $[\alpha]_{D}^{19}$ 206°(MeOH) showed molecular ion peak (M + H)⁺ at m/z 491.17 and (M + Na)⁺ at m/z 513.15 in the HR-FAB, and m/z 197 (M + H-162-132) corresponding to the loss of hexose and apiose moieties. FAB-MS was compatible with the molecular formula C₂₁H₃₀O₁₃. The UV spectrum showed absorption at 244 nm, indicating the iridoid nature of the compound. The ¹³C-NMR spectrum of the 3 showed the presence of 21 carbon atoms. The assignment of all proton and carbon resonances of 3 were achieved by ¹H-¹H-homo (DQF-Cosy) and inverse ¹³C-¹H heteronuclear correlated 2DNMR (HMQC) spectra. ¹³C-NMR data showed presence of sweroside moiety (Machida et al., 1995). The ¹H-NMR spectrum of compound 3 exhibited doublet at $\delta 4.66$ (J = 8 Hz) for anomeric proton of β-linked D-glucose. A doublet (J = 3.2 Hz) at $\delta 4.98$ was assigned for ¹H proton of the β-linked apiofuranose. In the ¹³C-NMR spectrum of compound 3 C-6 of the D-glucose moiety showed a downfield shift at δ 68.54 while the slightly shielded C-5 resonance was at δ 77.06. These shifts clearly indicated that C-6 of the

^{*} Corresponding author.

inner glucose moiety was glycosidated by an apiofuranosyl moiety.

3

Acetylation of compound 3 yielded hexaacetate 3a. In the FAB-MS of 3a the molecular ion peak at m/z 743 $(M+H)^+$ and the fragment resulting from the

sugar moiety at m/z 547 were observed supporting the structure of compound 3. The ¹H-NMR of 3a showed six singlet (each for 3H) at δ1.96, 2.01, 2.04, 2.05, 2.09 and 2.11 corroborated with the presence of β-glucose and apiofuranosyl moiety in the molecule. On the basis of above spectral data compound 3 was identified to be 6'-O- β -apiofuranosylsweroside.

3. Experimental

3.1. General

Melting points were incorr., UV were taken in MeOH. 1 H-NMR were obtained at (400 MHz), 13 C-NMR at (100 MHz), TMS as international standard, using CDCl₃ and CD₃OD as solvent. All the signals are expressed as δ values downfield from TMS. CC was carried out on silica gel 60–120 mesh (Merck). TLC was performed on precoated silica gel. The used solvent system were CHCl₃–MeOH (95:5), (90:10) and (85:15). Spots were visualized by 7% H₂SO₄ followed by heating.

3.2. Plant material

The roots of *L. quinquelocularis* were collected from Phata, Chamoli, U.P., India during August. The plant was identified by the Prof. R.D. Gaur, Department of Botany, H.N.B. Garhwal University, Srinagar. A Voucher specimen is deposited in Ethanobotanical Plant Identification Laboratory, Department of Botany, H.N.B. Garhwal University Srinagar, U.P., India.

3.3. Extraction and isolation

The air-dried roots of the plant (3 kg) were exhaustively extracted by boiling with 90% aqueos EtOH for 72 h. The ethanolic extract was concentrated to dryness. Repeated CC afforded compounds 1 (1.5 gm), 2 (0.92 gm) and 3 (0.37 gm). Compound 1 and 2 were identified as loganin and sweroside, respectively by comparison of their spectral data with those reported in the literature (Machida et al., 1995; Calis et al., 1984).

3.4. Compound 3

Colourless crystalline solid mp — 115-119, $[\alpha]_D^{19}$ — 206° (MeOH, c=1.21) UV (MeOH) λ_{max} (log ε) 244 (1.01) nm; FAB–MS m/z 513 (M + Na)⁺, 491 (M+H)⁺, 197 (M+H)⁺, ¹H-NMR (400 MHz, CD₃OD), (aglycone), δ 5.45 (d, J=1.2 Hz), 7.60 (d, J=2.4 Hz) 3.13 (H, m), 1.74 (m) 4.40 (2H, m), 5.53 (m), 2.72 (m), 5.31 (2H, m), (glycone–hexose) δ 4.66 (d, J=8 Hz), 3.19 (m), 3.37 (m), 3.30 (m), 3.46 (m),

3.63 (dd, J = 5.6, 6H, 6-H), 4.01 (dd, J = 6.4, 1.6 H, 6-H) (apiose,) δ 4.98 (d, J = 3.2 Hz), 3.90 (d, J = 9.0 Hz), 3.76 (d, J = 10 Hz), 3.97 (d, J = 10 Hz), 3.56 (2H, brs.) and ¹³C-NMR — (100 MHz, CD₃OD) (aglycone) δ 98.11 (C₁), 153.8 (C₃), 105. 96 (C₄), 28.36 (C₅), 25.85 (C₆), 69.65 (C₇), 133.21 (C₈), 43.78 (C₉), 120.99 (C₁₀), 168.41 (C₁₁) (glycone) δ 99.74 (C₁), 74.56 (C₂), 77.68 (C₃'), 71.39 (C₄), 77.0 (C₅'), 68.54 (C₆'), 110.89 (C₁''), 77.8 (C₂''), 80.41 (C₃''), 74.92 (C₄''), 65.45 (C₅'').

3.5. Hexaacetate of compound 3

Compound 3 2.5 mg was dissolved in a mixture of C_5H_5N (0.1 ml) and Ac_2O (0.1 ml) and the solution was kept at 60°C for 18 h. After addition of excess MeOH the solvent was removed under reduced pressure to give the hexaacetate 3a (3.2 mg) FAB — ion given m/z 743.23 (M + H)⁺, 766 (M + Na)⁺, ¹H-NMR — (400 MHz, CDCl₃) (aglycone) δ 5.47 (d, J = 2.8 Hz), 7.57 (d, J = 2.4 Hz) 3.57 (m), 1.71 (m), 4.44 (d, J = 3.2 Hz), 5.50 (m), 2.69 (m), 5.31 (m), (glycone) (hexose) δ 4.92 (d, J = 8 Hz), 3.60 (m), 5.33 (m), 4.96 (d, J = 4.8 Hz), 3.76 (m), 3.75 (m, 6-H) 4.32 (m, 6-H), (apiose) 4.98 (d, J = 2.4 Hz), 4.46 (d, J = 3.2 Hz),

4.23, (dd, J = 10, 10 Hz, 4-H), 4.14 (dd, J = 10, 10, Hz, 4-H), 4.73 (dd, J = 12, 12 Hz, 5-H), 4.59 (dd, J = 12, 12 Hz, 5-H), 1.96–2.11 (m, OAc).

Acknowledgements

We are grateful to Prof. R.D. Gaur for identification of the plant material.

References

- Bailleal, P., Leaveau, A. M., & Durand, M. J. (1981). J. Nat. Prod, 44, 573.
- Basaran, A., Akdemir, Z., Yuruker, A., & Calis, I. (1988). Fitoterapia, 59, 389.
- Calis, I., Lahloub, M. F., & Sticher, O. (1984). Helv. Chim. Acta, 67, 160
- Machida, K., Asano, J., & Kikuchi, M. (1995). Phytochemistry, 39, 111.
- Rastogi, R. P., & Mehrotra, B. N. (1993). Compendium of Indian medicinal plants, 2 (p. 423). New Delhi/Lucknow: Central Drug Research Institute/Publication and Information Directorate.
- The Wealth of India (1962), Council of Scientific and Industrial Research, New Delhi, India, vol. 6, p. 172.