

Phytochemistry 54 (2000) 77-84

www.elsevier.com/locate/phytochem

Triterpene saponins from Randia formosa

Sevser Sahpaz^a, Mahabir P. Gupta^b, Kurt Hostettmann^{a,*}

^aInstitut de Pharmacognosie et Phytochimie, Université de Lausanne, BEP, CH-1015 Lausanne, Switzerland ^bCIFLORPAN, Faculdad de Farmacia, Universidad de Panama, Panama City, Panama

Received 10 August 1999; received in revised form 5 January 2000

Abstract

Seven new triterpenoid saponins, randiasaponins I (1), II (2), III (3), IV (4), V (5), VI (6) and VII (7) as well as two known ones, ilexoside XXVII (8) and ilexoside XXXVII (9), were isolated from the methanolic extract of the leaves of *Randia formosa*. The structures of the new saponins were established as $3-O-\alpha-L$ -arabinopyranosyl- 3β , 19α , 23-trihydroxyursa-12, 20(30)-dien-28-oic acid $28-\beta$ -D-glucopyranosyl ester (1), $3-O-\beta$ -D-glucopyranosyl- $(1 \rightarrow 3)-\alpha-L$ -arabinopyranosyl rotundic acid (2), $3-O-\beta$ -D-glucopyranosyl pomolic acid $28-\beta$ -D-glucopyranosyl ester (3), $3-O-\alpha-L$ -rhamnopyranosyl- $(1 \rightarrow 2)-\alpha-L$ -arabinopyranosyl pomolic acid $28-\beta$ -D-glucopyranosyl ester (4), $3-O-\alpha-L$ -rhamnopyranosyl- $(1 \rightarrow 2)-\alpha-L$ -arabinopyranosyl siaresinolic acid $28-\beta$ -D-glucopyranosyl ester (5), $3-O-\alpha-L$ -arabinopyranosyl ilexosapogenin A $28-\beta$ -D-glucopyranosyl ester (7), based on spectral and chemical evidence. Besides the saponins, two common flavonoids kaempferol 3-O-rutinoside and rutin were also isolated. © 2000 Published by Elsevier Science Ltd. All rights reserved.

Keywords: Randia formosa; Rubiaceae; Triterpenoid saponins; 3β,19α,23-Trihydroxy-ursa-12,20(30)-dien-28-oic acid; Rotundic acid; Pomolic acid; Siaresinolic acid; Ilexosapogenin A

1. Introduction

In the course of our study of plants from the flora of Panama, the constituents of *Randia formosa* Schum. (Rubiaceae) were investigated. Earlier phytochemical investigation revealed that the stem bark of the plant contains iridoids (Sainty et al., 1982). Saponins have already been found in the genus *Randia* (Murty et al., 1989; Dubois et al., 1990). However, no phytochemical study on the leaves of *R. formosa* has been reported in the literature so far.

This paper describes the isolation and structure elucidation of a total of nine urs-12-ene and olean-12-ene type triterpenoid saponins from the methanolic extract of the leaves of *R. formosa*.

E-mail address: kurt.hostettmann@ipp.unil.ch (K. Hostettmann).

2. Results and discussion

Leaves of *R. formosa* were extracted successively with CH₂Cl₂ and MeOH. The methanolic extract of the dried and powdered leaves afforded a mixture of glycosides which were separated by repeated column chromatography on normal and reversed phase silica gel, affording seven new triterpene mono- and bidesmosidic saponins, randiasaponins I–VII together with ilexoside XXVII (Yano et al., 1993) and ilexoside XXXVII (Amimoto et al., 1993).

Compound 1 was obtained as an amorphous white powder. The flow injection analysis (FIA) by liquid chromatography/electrospray-mass spectrometry (LC/ES-MS) in the positive ion mode of 1 showed a quasi molecular $[M + Na]^+$ peak at m/z 803 corresponding to a molecular formula of $C_{41}H_{64}O_{14}$. Compound 1 was suggested to be an ester glycoside as its IR spectrum showed a band at 1740 cm⁻¹. An alkaline hydrolysis of 1 yielded a prosapogenin and glucose,

^{*} Corresponding author. Tel.: +41-21-6924561; fax: +41-21-6924565.

confirming this hypothesis. On acid hydrolysis, 1 afforded a mixture of compounds in the triterpenoid fraction. It has been previously reported that this type of saponin, bearing an exocyclic methylene functionality, gave some artifactual aglycones after acid hydroly-

sis (Ahmad et al., 1984, 1986). The sugar components were identified by TLC as arabinose and glucose (1:1) by comparison with authentic samples. A detailed analysis of the NMR spectral data of 1 revealed the features of a 19 oxygenated urs-12-ene type triterpene

Table 1 ¹H-NMR spectral data for randiasaponins I–VII (1–7), (500 MHz, CD₃OD)^a

Н	1	2	3	4	5	6	7
	δ (ppm), J (Hz)	δ (ppm), J (Hz)	δ (ppm), J (Hz)	δ (ppm), J (Hz)	δ (ppm), J (Hz)	δ (ppm), J (Hz)	δ (ppm), J (Hz)
1	0.99 ^b , 1.65 ^b	1.01 ^b , 1.61 ^b	0.99 ^b , 1.64 ^b	0.99 ^b , 1.62 ^b	0.99 ^b , 1.62 ^b	0.98 ^b , 1.61 ^b	0.99 ^b , 1.61 ^b
2	1.76 ^b , 1.87 ^b	1.73 ^b , 1.84 ^b	1.73 ^b , 1.84 ^b	1.72 ^b , 1.82 ^b	1.72 ^b , 1.82 ^b	1.75 ^b , 1.85 ^b	1.76 ^b , 1.95 ^b
3	3.61 ^b	3.61 ^b	3.15 dd (11.5, 4.0)	3.11 (11.2, 3.9)	3.11 dd (11.2, 3.9)	3.62 ^b	3.63 ^b
5	1.27 ^b	1.24 ^b	0.79 ^b	0.81b	0.81 ^b	1.24 ^b	1.26 ^b
6	1.46 ^b	1.50 ^b	1.53 ^b	1.52 ^b	1.41 ^b	1.39 ^b	1.47 ^b
7	1.32 ^b , 1.68 ^b	1.28 ^b	1.33 ^b , 1.54 ^b	1.33 ^b , 1.52	1.33 ^b , 1.47 ^b	1.26 ^b	1.26 ^b , 1.60 ^b
9	1.76 ^b	1.73 ^b	1.67 ^b	1.72 ^b	1.67 ^b	1.70 ^b	1.72 ^b
11	1.97 ^b	1.97 ^b	1.97 ^b	1.95 ^b	1.95 ^b	1.95 ^b	1.96 ^b
12	5.33 ^b	5.28 t (3.4)	5.33 br s	5.30 t (3.9)	5.32 ^b	5.30 ^b	5.32 ^b
15	1.06 ^b , 1.82 ^b	1.01 ^b , 1.84 ^b	1.02 ^b , 1.83 ^b	0.99 ^b , 1.77 ^b	1.03 ^b , 1.67 ^b	1.02 ^b , 1.83 ^b	1.02 ^b , 1.82 ^b
16	1.76 ^b	1.50 ^b	1.63 ^b	1.62 ^b	1.72 ^b	1.72 ^b	1.72 ^b
	2.74 td (13.5, 4.5)	2.50 td (13, 4.0)	2.61 td (13.5, 4.0)	2.61 td (13.2, 4.4)	2.32 td (13.2, 4.4)	2.32 td (13.0, 4.0)	2.32 td (13.0, 4.0)
18	2.65 s	2.50 s	2.51 s	2.51 s	3.05 s	3.04 s	3.04 s
19	-	_	_	_	3.27 d (4.0)	3.27 d (3.5)	3.27 ^b
20	-	1.30 ^b	1.36 ^b	1.36 ^b	-	_	_
21	2.10 <i>dt</i> (13.7, 4.9), 2.77 <i>td</i> (13.5, 5.0)	1.71 ^b	1.71 ^b	1.72 ^b	1.70 ^b	1.69 ^b	1.67 ^b
22	1.71 ^b , 1.95 ^b	1.64 ^b , 1.73 ^b	1.63 ^b , 1.77 ^b	1.62 ^b , 1.77 ^b	1.65 ^b , 1.77 ^b	1.64 ^b , 1.77 ^b	1.70 ^b , 1.79 ^b
23	3.29 d (3.4), 3.61 ^b	3.30 ^b , 3.63 ^b	1.05 s	1.01 s	1.01 s	3.30 ^b , 3.60 ^b	3.29 d (3.4), 3.64
24	0.71 s	0.72 s	0.85 s	0.84 s	0.84 s	$0.71 \ s$	0.71 s
25	0.99 s	0.98 s	0.95 s	0.95 s	0.95 s	$0.98 \ s$	0.99 s
26	$0.79 \ s$	$0.80 \ s$	$0.77 \ s$	0.74 s	$0.78 \ s$	$0.77 \ s$	$0.75 \ s$
27	1.34 s	1.34 s	1.33 s	1.33 s	1.29 s	1.29 s	1.30 s
29	1.37 s	1.19 s	1.20 s	1.20 s	0.95 s	$0.93 \ s$	0.94 s
30	4.70 br s, 4.89 br s	0.93 d (6.8)	0.93 d (6.8)	0.92 d (6.8)	0.95 s	0.94 d (6.8)	0.93 d (6.8)
3-0-	Arabinose	Arabinose	Arabinose	Arabinose	Arabinose	Arabinose	Glucose
1'	4.32 d (6.8)	4.35 d (7.3)	4.29 d (7.0)	4.55 d (4.4)	4.55 d (4.4)	4.32 d (6.8)	4.40 d (7.5)
2'	3.54 ^b	3.69 ^b	3.71 ^b	3.77 ^b	3.77 ^b	3.53 ^b	3.17 t (8.5)
3′	3.50	3.61 ^b	3.65 ^b	3.74 ^b	3.74 ^b	3.50 ^b	3.34 ^b
4′	3.79 ^b	4.03 br s	4.03 br s	3.79 ^b	3.79 ^b	3.79 ^b	3.29 ^b
5′	3.54 ^b	3.57 d (11.7)	3.55 d (12.5)		3.48 <i>dd</i> (11.8, 3.0)		3.27 ^b
	3.84 <i>dd</i> (12.2, 2.9)	3.86 <i>dd</i> (12.7, 2.0)		3.85 ^b	3.85 ^b	3.84 <i>dd</i> (12.5, 3.0)	
6′	, , ,	, , ,	` ' '			, , ,	3.69 ^b , 3.84 ^b
Terminal		Glucose	Glucose	Rhamnose	Rhamnose		<i>,</i>
1"		4.54 d (7.3)	4.56 d (7.3)	5.09 d (0.9)	5.09 d (0.9)		
2"		3.29 ^b	3.31 ^b	3.88 <i>dd</i> (3.4, 1.5)	3.88 <i>dd</i> (3.4, 1.5)		
3"		3.31 ^b	3.31 ^b	3.68 ^b	3.68 ^b		
4"		3.34 t (8.8)	3.37 ^b	3.38 ^b	3.38 ^b		
5"		3.37 t (8.8)	3.39 ^b	3.81 ^b	3.81 ^b		
6"		3.69 ^b	3.70 ^b	1.23 d (5.9)	1.23 d (5.9)		
		3.83 dd (12.3, 2)	3.82 dd (11.2, 2.0)	, ,	, ,		
28- <i>O</i> -	Glucose	` ' '	Glucose	Glucose	Glucose	Glucose	Glucose
1‴	5.34 d (8.3)		5.33 d (8.3)	5.37 d (8.3)	5.32 d (8.3)	5.32 d (8.3)	5.37 d (8.5)
2"'	3.31 ^b		3.33 ^b	3.38 ^b	3.32 ^b	3.32 ^b	3.31 ^b
3‴	3.33 ^b		3.35 ^b	3.34 ^b	3.33 ^b	3.34 ^b	3.34 ^b
4‴	3.35		3.37 ^b	3.38 ^b	3.34 ^b	3.36 ^b	3.35 ^b
5‴	3.40 t (8.8)		3.42 ^b	3.40 ^b	3.40 ^b	3.41 ^b	3.40 ^b
6′′′	3.68 ^b , 3.80 ^b		3.70 ^b	3.70 ^b , 3.82 ^b	3.70 ^b , 3.82 ^b	3.68 ^b , 3.80 ^b	3.69 ^b , 3.81 ^b
	*		3.82 <i>dd</i> (11.2, 2.0)	*	,	*	*

^a Assignments were based on COSY, HMQC and HSQC experiments.

^b Signal patterns are unclear due to overlapping.

saponin whose hydroxyl group at C-3 and carboxyl group at C-28 are glycosylated (Kakuna et al., 1992). Assignments for all proton and carbon resonances (see Tables 1 and 2) were achieved by COSY, HSQC and HMBC experiments. The ¹³C-NMR spectrum revealed 41 carbon signals of which 11 were assigned to pentosyl and hexosyl units and the remaining 30 signals to a

triterpenoid skeleton. The Δ^{12} functionality of the triterpenoid aglycone was deduced from the resonance of the sp² carbons C-12 (tertiary carbon) at δ 129.82 and C-13 (quaternary carbon) at δ 139.37. The ¹H-NMR spectrum of **1** exhibited resonances for the anomeric protons of the sugar moiety at δ 4.32 (d, J = 6.8 Hz), 5.34 (d, J = 8.3 Hz) which were assigned to the

Table 2 ¹³C-NMR spectral data for randiasaponins I–VII (1–7), (125 MHz, CD₃OD)

C	1	2	3	4	5	6	7
1	39.62	39.51	39.90	39.97	39.77	39.35	39.40
2	26.37	26.32	27.05	27.04	6.99	26.29	27.09
3	83.44	83.64	90.56	90.71	90.71	83.43	83.55
4	43.89	43.89	40.20	40.27	40.26	43.85	43.88
5	48.24	48.35	57.03	57.15	57.03	48.29	48.34
6	18.97	19.02	19.44	19.51	19.50	19.00	19.03
7	33.85	33.70	34.14	34.13	33.87	33.34	33.38
8	41.03	41.07	41.23	41.26	40.89	40.83	40.87
9	48.62	48.58	48.59	49.04	48.49	48.55	48.60
10	37.68	37.71	37.84	38.06	37.87	37.82	37.83
11	24.74	24.71	24.73	24.83	24.72	24.75	24.73
12	129.82	129.40	129.66	129.68	124.96	124.96	124.99
13	139.37	140.09	139.50	139.56	144.29	144.31	144.36
14	42.87	42.68	42.59	42.63	42.61	42.67	42.71
15	29.55	29.64	29.63	29.53	29.45	29.44	29.52
16	26.99	26.67	26.51	26.53	28.45	28.45	28.45
17	49.46	49.46	49.41	49.46	47.12	47.10	47.13
18	55.61	55.14	54.88	54.95	45.06	45.04	45.09
19	73.86	73.64	73.63	73.64	82.45	82.43	82.47
20	156.23	43.09	42.87	42.92	35.95	35.92	35.95
21	29.04	27.32	27.19	27.21	29.67	29.51	29.48
22	38.81	39.06	38.24	38.29	33.27	33.27	33.29
23	64.94	65.26	28.59	28.62	28.61	64.91	64.95
24	13.43	13.34	17.06	17.09	17.01	13.36	13.34
25	16.58	16.42	16.06	16.06	15.94	16.38	16.36
26	17.75	17.59	17.61	17.77	17.61	17.83	17.83
27	24.08	24.88	24.73	24.68	25.01	25.06	25.03
28	177.95	180.81	178.46	178.54	178.54	178.55	178.58
29	27.71	27.10	27.14	27.10	28.67	28.62	28.61
30	106.33	16.61	16.63	16.61	25.19	25.20	25.19
3- <i>O</i> -	Arabinose	Arabinose	Arabinose	Arabinose	Arabinose	Arabinose	Glucose
1'	106.28	106.14	107.01	104.74	104.74	106.27	105.72
2'	72.96	72.12	72.04	76.81	76.81	72.92	75.63
3′	74.53	84.27	83.80	72.99	72.99	74.48	78.72
4'	69.75	69.56	69.46	68.32	68.32	69.72	71.57
5'	66.81	66.87	66.62	63.64	63.64	66.79	77.71
6′							62.75
Terminal		Glucose	Glucose	Rhamnose	Rhamnose		
1"		105.52	105.30	102.01	102.01		
2"		75.33	75.25	72.15	72.15		
3"		77.94	77.80	72.15	72.15		
4"		71.17	71.13	73.87	73.87		
5"		77.69	77.56	70.21	70.21		
6"		62.35	62.34	17.99	17.99		
28- <i>O</i> -	Glucose	02.33	Glucose	Glucose	Glucose	Glucose	Glucose
1'''	95.83		95.70	95.79	95.76	95.77	95.82
2'''	73.62		73.78	73.91	73.86	73.88	73.86
3'''	78.61			78.69		78.64	
3''' 4'''			78.45		78.54 71.07		78.57
5'''	71.11		71.05	71.12	71.07	71.04	71.10
-	78.30		78.20	78.31	78.28	78.26	78.34
6'''	62.40		62.39	62.43	62.38	62.36	62.40

anomeric protons of L-arabinose and D-glucose, respectively. Chemical shifts, multiplicities, coupling constants and magnitude in the ¹H-NMR spectrum, as well as 13 C-NMR, data indicated the α -configuration at the anomeric position for the arabinose unit, and the β-configuration for the glucose (Piacente et al., 1995). The signal of C-28 at δ 177.95 further confirmed the IR absorption at 1740 cm⁻¹, indicating the presence of an ester group rather than a free acid group (Durham et al., 1994). In addition, the shift observed for the anomeric carbon of β -D-glucose at δ 95.83 was in agreement with a site of glycosylation at the 28-carboxyl group. The ¹³C-NMR spectrum of 1 also showed significant glycosylation shifts for C-3 (δ 83.44) of the aglycone. These results supported the presence of a bidesmosidic structure. In the HMBC experiment, correlations between C-3 (δ 83.44) of the aglycone and the anomeric proton (H-1': δ 4.32 d, J = 6.8 Hz) of α -L-arabinose and C-28 (δ 177.95) of the aglycone and the anomeric proton (H-1": 5.34 d, J = 8.3 Hz) of β -D-glucose were observed showing the interglycosidic connectivities (see Fig. 1). After the assignment of the ¹³C-NMR signals of the sugar moiety, the resonances remaining for the aglycone of 1 were five methyls, eleven methylenes, five methines and nine quaternary carbons. The carbon and proton resonances for the aglycone moiety of 1 indicated an elemental formula of C₃₀H₄₆O₅, implying eight degrees of unsaturation, of which two were attributed to a Δ^{12} and a carbonyl functionality, five were attributed to a pentacyclic system, and one remained to be assigned. The ¹³C-NMR spectrum of 1 showed the presence of two olefinic bonds, one of which is the Δ^{12} functionality. The other olefinic carbon signals appeared at δ 156.23 (quaternary carbon) and 106.33 (CH₂) indicating the presence of a > C=CH₂ moiety. The HSQC experiment of 1 showed correlations between the exocyclic methylene functionality and two resonances on the ¹H-NMR spectrum at δ 4.70 (br s) and δ 4.89 (br s). The presence of only five methyls in the ${}^{1}\text{H-NMR}$ (CH₃-24: δ 0.71, CH₃-25: δ 0.99, CH₃-26: δ 0.79, CH₃-27: δ 1.34, CH₃-29: δ 1.37) and ¹³C-NMR spectra (CH₃-24: δ 13.43, CH₃-25: δ 16.58, CH₃-26: δ 17.75, CH₃-27: δ 24.08, CH₃-29: δ 27.71) suggested that the other double bond was present between C-20 and C-30. The

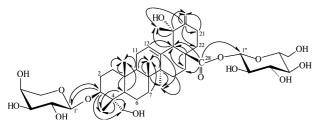


Fig. 1. Heteronuclear multiple bond correlations (HMBC) for 1. Arrows point from carbon to proton.

HMBC experiment exhibited correlations particularly between C-20/H₃-29, C-20/H₂-30, C-19/H₂-30 and C-21/H₂-30. Further correlations are shown in Fig. 1. It is therefore concluded that the other double bond is between C-20 and C-30. Furthermore, carbon signals at δ 83.44 (C-3), 73.86 (C-19), and 64.94 (C-23) were consistent with assignments to hydroxylated carbons. The orientation of the hydroxyl group at C-19 was shown to be α by means of a consideration of the data in the literature (Akira et al., 1987; Takashi et al., 1991). Finally, a singlet proton signal at δ 2.65 and the corresponding carbon resonances at δ 55.61 were assigned to H-18 and C-18, respectively. These results clearly supported the identity of the aglycone moiety to be 3β , 19α , 23-trihydroxyursa-12, 20(30)-dien-28-oic acid which has not been reported previously. Thus, the structure of saponin 1 was established as 3-O-α-L-arabinopyranosyl-3β,19α,23-trihydroxyursa-12,20(30)dien-28-oic acid 28-β-D-glucopyranosyl ester, for which the trivial name randiasaponin I is proposed.

Compound 2 was obtained as an amorphous white powder, and exhibited a quasimolecular peak [M + Na] $^+$ at m/z 805 in the LC/ES-MS, corresponding to a molecular formula of C₄₁H₆₆O₁₄. The ¹H- and ¹³C-NMR spectra of 2 displayed many similarities with those of 1 for the aglycone moiety, except for the C-20(30) olefinic bond. Instead of this, the ¹³C-NMR spectrum of 2 showed an additional secondary methyl resonance at δ 16.61 which was correlated to a signal in the ¹H-NMR spectrum at δ 0.93 (d, J = 6.8 Hz) in HSQC experiments. In addition, the presence of a quaternary carbon at δ 43.09 for position 20 was characteristic of an urs-12-ene type structure (Kakuna et al., 1992). Compound 2 gave glucose and arabinose (1:1) on acid hydrolysis as in saponin 1. But the absence of a glycosylation shift for the 28-carboxyl group (δ 180.81) suggested that 2 had a free 28-carboxyl group which was further confirmed by the IR absorption at 1700 cm⁻¹, indicating the presence of a free acid group rather than an ester group. A comparison of the ¹³C-NMR spectrum of 2 with that of 1 showed that the arabinosyl unit was also attached to the C-3 position, and varied structurally from 1 by signals of a terminal β-D-glucopyranosyl unit which was deduced to be attached at C-3 of the α -L-arabinosyl unit of 2. An obvious chemical shift in the 13 C-NMR spectrum at δ 84.27 assigned to C-3' of the α-L-arabinosyl unit supported this suggestion. Furthermore, all sites of glycosylation were also established by HMBC experiments showing long-range correlations between C-1' of the α -L-arabinose (δ 106.14) and H-3 (δ 3.61, m) of the aglycone, C-3' of the α -L-arabinosyl moiety (δ 84.27) and H-1" of the terminal β -D-glucopyranosyl unit (δ 5.34, d, J = 8.3 Hz). Comparison of spectral data with those reported for known aglycone moieties indicated that the genin of 2 was rotundic acid (Nakatani et al.,

1989). Therefore, the structure of **2** was established as 3-O- β -D-glucopyranosyl- $(1 \rightarrow 3)$ - α -L-arabinopyranosyl rotundic acid for which the trivial name randiasaponin II is proposed.

Compound 3 was obtained as an amorphous white powder. The molecular formula was deduced from the peak at m/z 951 [M + Na]⁺ in the LC/ES-MS as C₄₇H₇₆O₁₈. Acid hydrolysis of 3 afforded glucose and arabinose (2:1). The ¹H- and ¹³C-NMR spectra of 3 indicated the presence of one α-L-arabinopyranosyl unit (H-1': δ 4.29, d, J = 7 Hz; C-1': δ 107.01) and two β-D-glucopyranosyl units (H-1': δ 4.56, d, J = 7.3Hz; C-1': δ 107.01 and H-1': δ 5.33, d, J = 8.3 Hz; C-1': δ 95.70). The carbon signals due to C-3 sugar moieties were almost superimposable with those of 2, and the aglycone signals were very similar in both compounds, with the exception of the C-23 and C-28 moieties. In the ¹³C-NMR of 3, the presence of an additional tertiary methyl at δ 28.59 for C-23 indicated that the aglycone of 3 was pomolic acid. All ¹H- and ¹³C-NMR spectral data assigned to the sapogenol moiety were also in agreement with those reported for pomolic acid (Wenjuan et al., 1986; Inada et al., 1987). On the other hand, the HMBC performed on 3 showed clearly the connectivity between C-28 (δ 178.46) of the aglycone and H-1' of the β -D-glucose (δ 5.33, d, J = 8.3 Hz) indicating 3 to possess one additional glucose at C-28 when compared with 2. Hence, 3 was formulated as 3-O-β-D-glucopyranosyl-(1 \rightarrow 3)- α -L-arabinopyranosyl pomolic acid 28- β -D-glucopyranosyl ester for which the trivial name randiasaponin III is proposed.

Compound 4 was obtained as an amorphous white powder. The molecular formula was deduced from the peak at m/z 935 [M + Na]⁺ in the LC/ES-MS as C₄₇H₇₆O₁₇. Compound 4 afforded rhamnose, arabinose and glucose (1:1:1) on acid hydrolysis. All proton and carbon assignements based on 2D-NMR experiments (COSY, HMQC and HMBC) made clear that the set of carbon signals (C-1': δ 102.01, C-2'/3': δ 72.15, C-4': δ 73.87, C-5': δ 70.21, C-6': δ 17.99) corresponding to a sugar moiety which is different from that of compounds 1-3 belongs to a terminal α -Lrhamnosyl unit. Comparison of the ¹³C-NMR spectrum of 4 with that of 3 confirmed that 4 possesses a terminal α-L-rhamnosyl unit, instead of a terminal β-Dglucosyl unit as in 3. An obvious chemical shift at 76.81 ppm assigned to C-2' of the α -L-arabinosyl unit showed the site of glycosylation of the terminal α-Lrhamnopyranosyl unit to be at C-2' of the α -L-arabinose. HMBC experiments performed with 4 confirmed this hypothesis, since the carbon signal at 76.81 ppm showed correlations to H-1' and H-2' of the L-rhamnosyl unit. Consequently, the structure of 4 was established as 3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)- α -Larabinopyranosyl pomolic acid 28-β-D-glucopyranosyl ester for which the trivial name randiasaponin IV is proposed.

Compound 5 was obtained as an amorphous white powder. The molecular formula was deduced from the peak at m/z 935 [M + Na]⁺ in the LC/ES-MS as C₄₇H₇₆O₁₇. It afforded rhamnose, arabinose and glucose (1:1:1) on acid hydrolysis as in 4. A comparison of the ¹³C-NMR spectrum of 5 with that of 4 showed that the sugar moieties were identical in the two compounds. Compound 5 differed structurally from 4 in its aglycone moiety which showed a pair of signals at δ 124.96 (C-12) and 144.29 (C-13) in the ¹³C-NMR spectrum, characteristic for the double bond of an olean-12-ene type structure (see Tables 1 and 2) (Doddrell et al., 1974). In addition, C-29 (δ 28.67) and C-30 $(\delta 25.19)$ tertiary methyl resonances, C-19 $(\delta 82.45)$ hydroxylated methine and C-20 (δ 35.95) quaternary carbon resonances supported the presence of an olean-12ene type structure. All remaining proton and carbon resonances for the aglycone moiety were in agreement with those reported in literature for siaresinolic acid (Yaguchi et al., 1995; Bilia et al., 1994). Therefore, the structure of 5 was established as 3-O-α-L-rhamnopyranosyl- $(1 \rightarrow 2)$ - α -L-arabinopyranosyl siaresinolic acid 28-β-D-glucopyranosyl ester for which the trivial name randiasaponin V is proposed.

Compound 6 was obtained as an amorphous white powder. The molecular formula was deduced from the peak at m/z 805 [M + Na]⁺ in the LC/ ES-MS as C₄₁H₆₆O₁₄. It afforded arabinose and glucose (1:1) on acid hydrolysis. The aglycone of 6 varied structurally from that of 5 only in its C-4 substituent: a hydroxymethylene group in 6 instead of a methyl group in 5. The ¹³C-NMR spectrum showed C-4 quaternary carbon (δ 43.85), C-23 hydroxylated methylene (δ 64.91) and C-24 methyl resonances (δ 13.36) confirming the proposed structure. Therefore, the aglycone of 6 was identified as ilexosapogenin A by comparison of its spectral data with those reported for this aglycone in the literature (Amimoto et al., 1992). The ¹Hand 13 C-NMR spectra indicated the presence of one α -L-arabinosyl unit (H-1': δ 4.32 d, J = 6.8 Hz; C-1': δ 106.27) and one β -D-glucopyranosyl unit (H-1': δ 5.32) d, J = 8.3 Hz; C-1': δ 95.77) as in **1** and **2**. In the same way as 1, the shifts observed on the carbons of the sugar moieties were in agreement with a site of glycosylation of an α-L-arabinosyl unit at the 3-hydroxyl group, and β-D-glucosyl unit at the 28-carboxyl group. Consequently, the structure of 6 was established as 3-O-α-L-arabinopyranosyl ilexosapogenin A 28-β-D-glucopyranosyl ester for which the trivial name randiasaponin VI is proposed.

Compound 7 was obtained as an amorphous white powder. The molecular formula was deduced from the peak at m/z 835 [M + Na]⁺ in the LC/ES-MS as $C_{42}H_{68}O_{15}$. Compound 7 afforded only glucose on acid

1 randiasaponin I

		$\mathbf{R}_{_{1}}$	\mathbf{R}_2	\mathbf{R}_3
2	randiasaponin II	-Ara(3→1)Glc	-CH ₂ OH	-H
3	randiasaponin III	-Ara(3→1)Glc	-CH ₃	-Glc
4	randiasaponin IV	-Ara(2→1)Rha	-CH ₃	-Glc
8	ilexoside XXVII	-Ara	-CH ₂ OH	-Glc
9	ilexoside XXXVII	-Glc	-CH ₂ OH	-Glc
10	rotundic acid	-H	-CH ₂ OH	-H

		$\mathbf{R_{i}}$	\mathbf{R}_{2}	\mathbf{R}_3
5	randiasaponin V	-Ara(2→1)Rha	-CH ₃	-Glc
6	randiasaponin VI	-Ara	-CH₂OH	-Glc
7	randiasaponin VII	-Glc	-CH ₂ OH	-Glc

hydrolysis. Comparison of the 1 H and 13 C-NMR spectra with those of **6** showed that both compounds had the same aglycone which is ilexosapogenin A. They differed only by a set of additional signals of a β -D-glucopyranosyl unit (H-1': δ 4.40 d, J=7.5 Hz; C-1': δ 105.72) which was deduced to be attached to the C-3 position instead of an α -L-arabinosyl unit in **6**. 2D-NMR experiments of **7** confirmed this site of glycosylation (see Tables 1 and 2). Therefore, the structure of **7** was established as 3-O- β -D-glucopyranosyl ilexosapogenin A 28- β -D-glucopyranosyl ester for which the trivial name randiasaponin VII is proposed.

3. Experimental

3.1. General

IR spectra (cm⁻¹) were recorded on a Philips PU

9716 infrared spectrometer as pressed KBr disks. Optical rotations were mesured with a Perkin-Elmer 241 polarimeter using MeOH as solvent. ¹H- and ¹³C-NMR spectra were recorded on a Varian UNITY INOVA 500 instrument at 500 and 125 MHz, respectively. The LC/ES-MS analyses were performed on a Finnigan MAT ion trap mass spectrometer equipped with a Finnigan electrospray. High-resolution measurements were made on a Bruker FTMS BioAPEX II instrument. Open column chromatography (CC): silica gel (15-40 and 63-200 µm, Merck). Medium-pressure liquid chromatography (MPLC): LiChroprep RP-18 $(25-40 \mu m, 46 \times 3.6 \text{ cm i.d., Merck})$; Büchi B-681 pump, Büchi B-683 detector 8210 (210 nm); Büchi 684 fraction collector; LKB Bromma 2210 recorder. TLC: silica gel F254, Merck: detection of saponins by spraying with Godin's reagent and of sugars by aniline phthalate reagent followed by heating at 100° for 5–10 min.

3.2. Plant material

Leaves of *R. formosa* Schum. were collected in Llano Carti, San Blas, Panama, in August 1994. A voucher specimen has been deposited at the National Herbarium of Panama, Panama City (FLORPAN 1675) and at the Institut de Pharmacognosie et Phytochimie, Lausanne, Switzerland (No. 94139).

3.3. Extraction and isolation

The air dried and powdered leaves of R. formosa (280 g) were extracted at room temperature succesively with CH_2Cl_2 (1500 ml \times 3) and MeOH (1500 ml \times 3) to afford 4 and 33 g of extracts, respectively. The MeOH extract was subjected to open CC on a normal phase silica gel (63–200 µm, column 75×6.5 cm i.d., step-gradient CH₂Cl₂/MeOH 95:5 → MeOH). Fifteen fractions were collected (I-XV). Fraction VI (6 g) rich in saponins according to the TLC control was submitted to MPLC (LiChroprep C-18, step-gradient H₂O \rightarrow MeOH/H₂O 70:30 \rightarrow MeOH) to give compounds 1 (117 mg), 2 (95 mg) and 3 (460 mg). The other fractions of this column, rich in saponins, were further subjected to CC on a normal phase silica gel using CH₃Cl₃/MeOH/H₂O mixtures of increasing polarity as eluent, to yield compounds 4 (102 mg), 5 (82 mg), 6 (538 mg), 7 (40 mg), 8 (401 mg) and 9 (55 mg).

3.4. Randiasaponin I (1)

White powder. $[\alpha]_D^{20} + 45.9^\circ$ (MeOH, c 0.17). IR v_{max} cm⁻¹ (KBr): 3420 (OH), 2935 (C–H), 1740 (ester CO), 1635 (C=C) and 1070 (C–O–C). ^1H - and $^{13}\text{C-NMR}$ (CD₃OD): see Tables 1 and 2. Positive HR ES-MS m/z: 803.4188 [M + Na]⁺ (calcd. for C₄₁H₆₄O₁₄Na: 803.4188). LC/ES-MS: m/z 803 [M + Na]⁺, 641 [M + Na-Glu]⁺, 597 [M + Na-Glu-COO⁻]⁺, 509 [M + Na-Glu-Ara]⁺, 491 [M + Na-Glu-Ara-H₂O]⁺, 473 [M + Na-Glu-Ara-2H₂O]⁺.

3.5. Randiasaponin II (2)

White powder. $[\alpha]_D^{20} + 10.9^\circ$ (MeOH, c 0.12). IR ν_{max} cm⁻¹ (KBr): 3420 (OH), 2935 (C–H), 1700 (acid CO), 1635 (C=C) and 1070 (C–O–C). ¹H- and ¹³C-NMR (CD₃OD): see Tables 1 and 2. Positive HR ES-MS m/z: 805.4343 [M + Na]⁺ (calcd. for C₄₁H₆₆O₁₄Na: 803.4345). LC/ES-MS: m/z 805 [M + Na]⁺, 761 [M + Na-COO⁻]⁺, 643 [M + Na-Glu]⁺, 511 [M + Na-Glu-Ara]⁺, 493 [M + Na-Glu-Ara-H₂O]⁺.

3.6. Randiasaponin III (3)

White powder. $[\alpha]_D^{20}$ +6.67° (MeOH, *c* 0.33). IR $\nu_{\rm max}$ cm⁻¹ (KBr): 3420 (OH), 2935 (C–H), 1740 (ester CO),

1635 (C=C) and 1070 (C-O-C). 1 H- and 13 C-NMR (CD₃OD): see Tables 1 and 2. Positive HR ES-MS m/z: 951.4933 [M + Na] $^{+}$ (calcd. for C₄₇H₇₆O₁₈Na: 951.4924). LC/ES-MS: m/z 951 [M + Na] $^{+}$, 789 [M + Na-Glu] $^{+}$, 745 [M + Na-Glu-COO $^{-}$] $^{+}$, 627 [M + Na-Glu-Glu] $^{+}$, 495 [M + Na-Glu-Glu-Ara] $^{+}$, 477 [M + Na-Glu-Glu-Glu-Ara-H₂O] $^{+}$.

3.7. Randiasaponin IV (4)

White powder. $[\alpha]_D^{20}$ –65° (MeOH, c 0.24). IR v_{max} cm⁻¹ (KBr): 3420 (OH), 2935 (C–H), 1740 (ester CO), 1635 (C=C) and 1070 (C–O–C). ¹H- and ¹³C-NMR (CD₃OD): see Tables 1 and 2. Positive HR ES-MS m/z: 935.4970 [M + Na]⁺ (calcd. for C₄₇H₇₆O₁₇Na: 935.4975). LC/ES-MS: m/z 935 [M + Na]⁺, 773 [M + Na-Glu]⁺, 729 [M + Na-Glu-COO⁻]⁺, 627 [M + Na-Glu-Rha]⁺, 495 [M + Na-Glu-Rha-Ara]⁺, 477 [M + Na-Glu-Rha-Ara-H₂O]⁺.

3.8. Randiasaponin V (5)

White powder. $[\alpha]_D^{20}$ –29.6° (MeOH, c 0.24). IR ν_{max} cm⁻¹ (KBr): 3420 (OH), 2935 (C–H), 1740 (ester CO), 1635 (C=C) and 1070 (C–O–C). ¹H- and ¹³C-NMR (CD₃OD): see Tables 1 and 2. Positive HR ES-MS m/z: 935.4966 [M + Na]⁺ (calcd. for C₄₇H₇₆O₁₇Na: 935.4975). LC/ES-MS: m/z 935 [M + Na]⁺, 773 [M + Na-Glu]⁺, 729 [M + Na-Glu-COO⁻]⁺, 627 [M + Na-Glu-Rha]⁺, 495 [M + Na-Glu-Rha-Ara]⁺.

3.9. Randiasaponin VI (6)

White powder. $[\alpha]_D^{20}$ +7.1° (MeOH, c 0.14). IR $\nu_{\rm max}$ cm⁻¹ (KBr): 3420 (OH), 2940 (C–H), 1740 (ester CO), 1635 (C=C) and 1070 (C–O–C). ¹H- and ¹³C-NMR (CD₃OD): see Tables 1 and 2. Positive HR ES-MS m/z: 805.4339 [M + Na]⁺ (calcd. for C₄₁H₆₆O₁₄Na: 805.4345). LC/ES-MS: m/z 805 [M + Na]⁺, 643 [M + Na-Glu]⁺, 599 [M + Na-Glu-COO⁻]⁺, 511 [M + Na-Glu-Ara]⁺.

3.10. Randiasaponin VII (7)

White powder. $[\alpha]_D^{20} + 16.6^{\circ}$ (MeOH, c 0.35). IR ν_{max} cm⁻¹ (KBr): 3420 (OH), 2935 (C–H), 1740 (ester CO), 1635 (C=C) and 1070 (C–O–C). ¹H- and ¹³C-NMR (CD₃OD): see Tables 1 and 2. Positive HR ES-MS m/z: 835.4450 [M + Na]⁺ (calcd. for C₄₂H₆₈O₁₅Na: 835.4450). LC/ES-MS: m/z 835 [M + Na]⁺, 673 [M + Na-Glu]⁺, 629 [M + Na-Glu-COO⁻]⁺, 511 [M + Na-Glu-Glu]⁺.

3.11. Alkaline hydrolysis of saponins

A sample of each saponin (5 mg) was refluxed with

3% KOH (5 ml) for 30 min, and worked-up in the usual way. The aqueous layer was neutralized by passing it through Amberlite MB-3 (mixed form) and lyophilized. The residue obtained was tested for sugar by TLC (EtOAc–MeOH–AcOH–H₂O, 13:3:4:3).

3.12. Acid hydrolysis of saponins

A sample of each saponin (5 mg) was refluxed with 5% HCl in 60% aqueous dioxane (5 ml) at 100°C for 2 h, cooled and filtered. The filtrate was neutralized by passing it through Amberlite MB-3 (mixed form) and lyophilized. The residues were examined for sugars by TLC (EtOAc–MeOH–AcOH–H₂O, 13:3:4:3).

Acknowledgements

The authors wish to thank the Swiss National Science Foundation for financial support of this work.

References

Ahmad, V.U., Bano, N., Bano, S., 1984. Phytochemistry 23, 2613. Ahmad, V.U., Bano, N., Bano, S., 1986. Phytochemistry 25, 951.

- Akira, I., Mari, K., Hiroko, M., 1987. Chemical and Pharmaceutical Bulletin 35, 841.
- Amimoto, K., Yoshikawa, K., Arihara, S., 1992. Chemical and Pharmaceutical Bulletin 40, 1990.
- Amimoto, K., Yoshikawa, K., Arihara, S., 1993. Phytochemistry 33, 1475
- Bilia, A.R., Palme, E., Catalano, S., Flamini, G., Morelli, I., 1994. Journal of Natural Products 57, 333.
- Doddrell, D.M., Khong, P.W., Lewis, K.G., 1974. Tetrahedron Letters, 2381.
- Dubois, M.-A., Benze, S., Wagner, H., 1990. Planta Medica 56, 451.Durham, D.G., Liu, X., Richards, R.M.E., 1994. Phytochemistry 36, 1469.
- Inada, A., Kobayashi, M., Murata, H., Nakanishi, T., 1987. Chemical and Pharmaceutical Bulletin 35, 841.
- Kakuna, T., Yoshikawa, K., Arihara, S., 1992. Phytochemistry 31, 3553
- Murty, Y.L.N., Jairaj, M.A., Sree, A., 1989. Phytochemistry 28, 276. Nakatani, M., Miyazaki, Y., Iwashita, T., Naoki, H., Hase, T., 1989. Phytochemistry 28, 1479.
- Piacente, S., Pizza, C., de Tommasi, N., de Simone, F., 1995. Journal of Natural Products 58, 512.
- Sainty, D., Delaveau, P., Bailleul, F., Moretti, C., 1982. Journal of Natural Products 45, 676.
- Takashi, K., Kazuko, Y., Shigenobu, A., 1991. Tetrahedron 47, 7219.
- Wenjuan, Q., Xiue, W., Junjie, Z., Fukuyama, Y., Yamada, T., Nagakawa, K., 1986. Phytochemistry 25, 913.
- Yaguchi, E., Miyase, T., Ueno, A., 1995. Phytochemistry 39, 185.
- Yano, I., Nishiizumi, C., Yoshikawa, K., Arihara, S., 1993. Phytochemistry 32, 417.