

Phytochemistry 55 (2000) 317-321

www.elsevier.com/locate/phytochem

Gibberellin biosynthesis: metabolic evidence for three steps in the early 13-hydroxylation pathway of rice

Masatomo Kobayashi ^a, Jake MacMillan ^b, Bernard Phinney ^{c,*}, Paul Gaskin ^b, Clive R. Spray ^c, Peter Hedden ^b

^aPlant Molecular Biology Laboratory, Tsukuba Life Science Center, The Institute of Chemical and Physical Research, 3-1-1 Koyadai Tsukuba-Ibaraki, Japan 305-0074

^bDepartment of Agricultural Sciences, University of Bristol, Long Ashton, Bristol BS41 9AF, UK
^cMolecular, Cell and Developmental Biology (MCDB), University of California, Los Angeles, California 90095-1606, USA

Received 4 April 2000; received in revised form 5 June 2000

Abstract

[$^{14}C_4$]GA₅₃, [$^{14}C_4$]GA₄₄, and [$^{2}H_2$ / $^{14}C_4$]GA₁₉ were injected separately into seedlings of rice (*Oryza sativa*) using a dwarf mutant ($^{2}H_2$) that has low levels of endogenous gibberellins (GAs). After 8 h incubation, the shoots were extracted and the labeled metabolites were identified by full-scan gas chromatography–mass spectrometry (GC–MS) and Kovats retention indices (KRIs). Our results document the metabolic sequence, GA₅₃ \rightarrow GA₄₄ \rightarrow GA₁₉ \rightarrow GA₂₀ and the presence of endogenous GA₅₃, GA₄₄, GA₁₉, GA₂₀ and GA₁. Previous metabolic studies have shown the presence of the step, GA₂₀ \rightarrow GA₁ in rice. Taken together, the data establish in vegetative shoots of rice the presence of the early 13-hydroxylation pathway, a pathway that originates from GA₁₂ and leads to bioactive GA₁. © 2000 Published by Elsevier Science Ltd.

Keywords: Oryza sativa; Graminaceae; Rice; Dwarf-35 (d₃₅, dx; cultivar Tanginbozu); Gibberellins; Metabolism; Plant growth regulators; Early 13-hydroxylation pathway; GAs; GA_{1-n}.

1. Introduction

Gibberellins (GAs) are diterpene acids that are of widespread occurrence in higher plants (angiosperms, gymnosperms and ferns) (MacMillan, 1999), and to a limited extent in fungi (MacMillan, 2000a) and bacteria (MacMillan, 2000b). While gibberellins control a wide variety of plant responses, only a limited number of the 121 identified GAs are bio-active per se in the control of shoot elongation (reviewed in MacMillan and Phinney, 1987). The other GAs are either bio-active as precursors to the active GAs, or bio-inactive as terminal branch products of the main pathway(s) (MacMillan, 1987). Interestingly, the gibberellins have yet to be shown to have a biological function in fungi and bacteria. GAs originate from GA₁₂ by branch pathways, the early 13hydroxylation pathway, the early 3-hydroxylation pathway, the early 3,13-hydroxylation pathway and/or

E-mail address: bop@ucla.edu (B. Phinney).

the non-early 3,13-hydroxylation pathway. The number of branches vary depending on the species and organ, the branches differing from each other in the timing and pattern of hydroxylation. For flowering plants (angiosperms), the biosynthesis of GA_1 is generally assumed to occur via the early 13-hydroxylation pathway, which originates from GA₁₂ and leads to bio-active GA₁. However, there is limited in vivo metabolic evidence for this generalization, where most of the information is based solely on the endogenous presence of GAs in any one species (reviewed in MacMillan, 1997). The most complete information on the early 13-hydroxylation pathway in flowering plants is from vegetative shoots of maize where all members of the pathway have been shown to be endogenous (Fujioka et al., 1988); in this comprehensive series of in vivo studies, each step has been established by feeds of labeled substrates followed by the GC-MS identification of the metabolites from each experiment (Kobayashi et al., 1994, 1996, Spray et al., 1996). While we have previously shown GA₂₀ to be metabolized to bio-active GA₁ in rice (Kobayashi et al., 1994), we now present additional evidence for the

^{*} Corresponding author. Tel.: +1-310-825-3177; fax: +1-310-825-3177.

presence of the early 13-hydroxylation pathway by studying the metabolism of the three gibberellins, GA_{53} , GA_{44} and GA_{19} . In addition, GA_{53} , GA_{44} , GA_{19} , GA_{20} and GA_1 are identified as naturally occurring in rice. The mutant d_{35} was used in the studies since this semi-dwarf has been reported to have reduced levels of endogenous GA_{53} due to a genetic block for GA_{53} biosynthesis at a step before GA_{12} (Ogawa et al., 1996).

2. Results and discussion

2.1. Metabolism of $\lceil {}^{14}C_4 \rceil GA_{53}$

The metabolites, $[^{14}C_4]GA_{44}$ and $[^{14}C_4]GA_{19}$, and non-metabolized $[^{14}C_4]GA_{53}$ were identified by the KRI and full-scan GC–MS data shown in Table 1. These identifications were confirmed in a duplicate experiment (data not shown). The isotopic content in the substrate (115 Ci mol⁻¹) was diluted in the non-metabolized $[^{14}C_4]GA_{53}$ (102.2 Ci mol⁻¹) and in the metabolites $[^{14}C_4]GA_{44}$ (90.1, 92.6 and 95.8 Ci mol⁻¹) and $[^{14}C_4]GA_{19}$ (84.4, 94.6 and 95.5 Ci mol⁻¹). We conclude that GA_{53} was metabolized to GA_{44} and GA_{19} , and that GA_{53} , GA_{44} and GA_{19} are endogenous in rice.

2.2. Metabolism of $[^{14}C_4]GA_{44}$

The metabolite, [14C₄]GA₁₉, and non-metabolized [14C₄]GA₄₄ were identified by the KRI and full-scan GC–MS data shown in Table 2. These identifications were confirmed by a second experiment (data not

shown). We conclude that GA_{44} was metabolized to GA_{19} . Further evidence for the presence of endogenous GA_{44} and GA_{19} was provided by the dilution of label in the substrate (160 Ci mol⁻¹) for the non-metabolized [$^{14}C_4$] GA_{44} (95.8 Ci mol⁻¹), and in the metabolite, [$^{14}C_4$] GA_{19} (94.6 Ci mol⁻¹).

2.3. Metabolism of $[{}^{2}H_{2}]^{14}C_{4}[GA_{19}]$

[2H_2]GA $_{20}$ and [2H_2]GA $_1$ were identified by the KRI and full scan GC–MS data (Table 3) using [$^{14}C_4$]GA $_{19}$ as a radioactive marker. 3-epi[2H_2]GA $_1$ was also identified but is probably an artefact formed from [2H_2]GA $_1$ (Gaskin et al., 1995). [2H_2]GA $_{17}$ was tentatively identified by GC–SIM at the correct retention time. The identification of [2H_2]GA $_{20}$ as a metabolite of [2H_2]GA $_{19}$ was confirmed by a second experiment using [3H_2]GA $_{20}$ as a radioactive marker (data not shown). The isotope content in the substrate [2H_2]GA $_{19}$ (86 2H_2 mol $^{-1}$) was diluted in the metabolites, [2H_2]GA $_{20}$ (81 2H_2 mol $^{-1}$) and [2H_2]GA $_1$ (79 2H_2 mol $^{-1}$). We conclude that GA $_{19}$ is metabolized to GA $_{20}$ and that GA $_{20}$ and GA $_1$ are endogenous in rice.

The data on dilution of label documents the endogenous presence in rice of the five gibberellins, GA_{53} , GA_{44} , GA_{19} , GA_{20} and GA_1 . The present results also provide metabolic evidence in rice for the three steps, $GA_{53} \rightarrow GA_{44} \rightarrow GA_{19} \rightarrow GA_{20}$. We had previously shown that GA_{20} is metabolized to GA_1 in shoots of rice (Kobayashi et al., 1994). Thus we have now established four steps of the early 13-hydroxylation branch pathway (Fig. 1), a pathway generally presumed to occur in rice shoots.

Table 1 GAs identified by GC–MS as MeTMSi derivatives^a

ODS HPLC fraction	N(CH ₃) ₂ HPLC fraction	Radioactivity (Bq)	Identified GA	Isotopic content (Ci mol ⁻¹)	Identification data KRI: significant ions, m/z (rel. int) ^b	
19–21	10–11	134	GA ₄₄	90.1, 92.6, 95.8°	2791:	440 (12), 432 (29), 425 (4), 417 (8), 373 (6), 238 (11), 209 (70), 207 (100)
19–21	14–15	101	GA_{19}	84.4, 94.6, 95.5 ^d	2596:	462 (7), 447 (6), 442 (21), 434 (100), 402 (7), 374 (72), 345 (31)
25	5–6	184	GA ₅₃	102.2°	2505:	456 (14), 448 (26), 424 (9), 416 (10), 389 (32), 209 (100), 207 (85)

^a Seedlings were harvested and processed 8 h after injection of $[^{14}C_4]GA_{53}$ (467 Bq per plant) to 59 seedlings of d_{35} rice at the 4–5 leaf stage. An additional feed (419 Bq per plant) to 40 seedlings provided replicate isotopic content values.

b Determined by full scan GC-MS.

^c GC-SIM on M⁺ ion cluster at correct GC retention time.

^d GC-SIM on M⁺-28 ion cluster at correct GC retention time.

Table 2
GAs identified by GC-MS as MeTMSi derivatives^a

ODS HPLC fraction	N(CH ₃) ₂ HPLC fraction	Radioactivity (Bq)	Identified GA	Isotopic ratio ² H ₀ : ² H ₁ : ² H ₂	Identification data KRI: significant ions, m/z (rel. int) ^b	
11–13	19–20	595	NDc			
19–21	12	696	GA_{44}	95.8 ^d	2803:	440 (26), 438 (11), 432 (16), 379 (10), 373 (4), 240 (34), 238 (17), 209 (100), 207 (51)
19–21	17–18	181	GA_{19}	94.6 ^e	2601:	442 (48), 434 (100), 410 (10), 402 (28), 380 (56), 378 (35), 374 (72)

^a Seedlings were harvested and processed 8 h after injection of [1⁴C₄]GA₄₄ (823 Bq per plant) to 50 seedlings of d₃₅ rice at the 4–5 leaf stage.

Table 3
GAs identified by GC–MS as MeTMSi derivatives^a

ODS HPLC fraction 9–10	N(CH ₃) ₂ fraction fraction	Radioactivity (Bq)	Identified GA GA ₁	Isotopic ratio ² H ₀ : ² H ₁ : ² H ₂ 19.0:2.0:79.0	Identification data KRI: significant ions, m/z (rel. int) ^b	
					2672:	508 (100), 506 (18), 493 (8), 450 (26), 378 (21), 315 (18), 237 (12), 209 (54), 207 (21)
			3-epiGA ₁	20.0:4.5:74.5	2793:	508 (100), 506 (3), 493 (8), 450 (21)
16–18	14–15	235	GA_{20}	15.8:2.9:81.3	2488:	420(100), 418 (13), 405 (16), 403 (2), 377 (59), 361 (13), 303 (23), 301 (4)
20-22	7	7	GA_{17}	16.4:0.0: 83.6		c

a Seedlings were harvested and processed 8 h after injection of a mixture of $[^2H_2]GA_{19}$ (50 ng per plant) and $[^{14}C_4]GA_{19}$ (370 Bq per plant) into 30 seedlings of d_{35} rice at the 4-5 leaf stage.

Our metabolic evidence that the three sequential steps, $GA_{53} \rightarrow GA_{44} \rightarrow GA_{19} \rightarrow GA_{20}$, occur in rice extends the information obtained from the cloning of a GA 20-oxidase from rice (Toyomasu et al., 1997). The recombinant protein expressed by a cDNA clone from rice seedlings catalyzed the conversion of GA_{53} to a mixture of GA_{44} , GA_{19} and GA_{20} . However, the individual steps were not investigated. Of particular interest would have been information on the metabolism of GA_{44} by the recombinant protein since our present paper shows that the closed lactone of GA_{44} is metabolized in vivo to GA_{19} , as is the case for vegetative shoots of maize (Kobayashi et al., 1996).

3. Experimental

3.1. Plant material

Seedlings of the dwarf-35 (d_{35}) mutant of rice (Oryza sativa) were used for the feeding studies. This mutant was originally isolated as the rice cultivar, Tanginbozu, subsequently called dx, and currently named d_{35} (Mitsunaga et al., 1994; Futsuhara and Kikuchi, 1995). The seed were a gift from Dr. Hitoshi Saka (National Institute of Agrobiological Resources, Tsukuba-shi, Japan). Seedlings were grown in the UCLA greenhouse and used at the 4-leaf stage (3 weeks after germination).

b Determined by full scan GC-MS.

^c No GAs detected.

^d GC-SIM on M⁺ ion cluster at correct GC retention time.

^e GC-SIM on M⁺-28 ion cluster at correct GC retention time.

b Determined by full scan GC–MS.

^c GC-SIM on M⁺ ion cluster at the correct GC retention time.

Fig. 1. Metabolic steps in the early 13-hydroxylation pathway for vegetative shoots of rice: (a) putative; (b) established in this paper; (c) established by Kobayashi et al. (1994).

3.2. Labeled substrates

 $[^{14}C_4]GA_{53}$ (4.29 GBq mmol $^{-1}$) (115 Ci mol $^{-1}$), $[^{14}C_4]GA_{44}$ (5.92 GBq mmol $^{-1}$) (160 Ci mol $^{-1}$), and $[^{14}C_4]GA_{19}$ (3.36 GBq mmol $^{-1}$) (90.26 Ci mol $^{-1}$) were prepared as described by Kamiya and Graebe (1983). $[^{2}H_2]GA_{19}$ (7:7:86; $^{2}H_0$: $^{2}H_1$: $^{2}H_2$) was obtained from Professor L. N. Mander (Australian National University, Canberra, Australia). The substrates were at least 95% chemically pure based on GC–MS.

3.3. Feeds, extraction and purification

Each substrate was dissolved in ethanol:water (1:1) and injected with a microsyringe into sets of seedlings, the numbers in each set varying depending on the experiment. The amounts and combinations of substrates applied to each plant are given in Tables 1–3.

Sets of shoots were harvested 8 h after treatment and homogenized in dry ice. Each homogenate was extracted and purified to give an EtOAc-soluble acid fraction (AE), which was further purified by column chromatography, the details of which are given in Spray et al. (1996).

3.4. GC-MS

Radioactive fractions from the Nucleosil 5N(CH₃)₂ columns were methylated and trimethysilylated, then analyzed by full-scan GC–MS and/or GC–SIM as described in Gaskin and MacMillan (1991).

Acknowledgements

Supported by the National Science Foundation, Grant MCB-9306597 (B.O.P.) and IACR grant-aided support from the Biotechnology and Biological Sciences Research Council of the United Kingdom (J.M., P.G. and P.H.).

References

Fujioka, S., Yamane, E., Spray, C.R., Gaskin, P., MacMillan, J., Phinney, B.O., 1988. Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L. Plant Physiology 88, 1367– 1372.

Futsuhara, Y., Kikuchi, F., 1995. 1. Inheritance of dwarfism. In: Matsuo, T., Kumazawa, K., Ishihara, R., Hirata, H. (Eds.), Science of The Rice Plant. Food and Agriculture Policy Research Center, Tokyo, pp. 300–308.

Gaskin, P., MacMillan, J., 1991. GC–MS of the Gibberellins and Related Compounds: Methodology and a Library of Reference Spectra. University of Bristol, UK, Cantock's Enterprises Ltd, pp. 1– 132

Gaskin, P., MacMillan, J., Spray, C.R., Suzuki, Y., Phinney, B.O., 1995. 3-Epigibberellin A₁: natural occurrence in plants and artefactual formation from gibberellin A₁.. Phytochemistry 38, 1–4.

Kamiya, Y., Graebe, J., 1983. The biosynthesis of all major pea gibberellins in a cell-free system from *Pisum sativum*. Phytochemistry 22, 681–689.

Kobayashi, M., Gaskin, P., Spray, C.R., Phinney, B.O., MacMillan, J., 1994. The metabolism of gibberellin A₂₀ to gibberellin A₁ by tall and dwarf mutants of *Oryza sativa* and *Arabidopsis thaliana*. Plant Physiology 106, 1367–1372.

- Kobayashi, M., Spray, C.R., Phinney, B.O., Gaskin, P., MacMillan, J., 1996. Gibberellin metabolism in maize: The stepwise conversion of gibberellin A_{12} -aldehyde to gibberellin A_{20} . Plant Physiology 110, 413–418.
- MacMillan, J., 1997. Biosynthesis of the gibberellins. Nat. Prod. Rep. 14, 221–243.
- MacMillan, J., 1999. (http://www.plant-hormones.bbsrc.ac.uk/gainplants/occurrence_of_gas_in_plants.htm).
- MacMillan, J., 2000a. (http://www.plant-hormones.bbsrc.ac.uk/gain-plants/gasinfungi.htm).
- MacMillan, J., 2000b. (http://www.plant-hormones.bbsrc.ac.uk/gain-plants/gasinbacteriai.htm).
- MacMillan, J., Phinney, B.O., 1987. Biochemical genetics and the regulation of stem elongation by gibberellins. In: Cosgrove, D.J., Knievel, D.P. (Eds.), Physiology of Cell Expansion During Plant Growth. American Society of Plant Physiologists, Rockville, Maryland, USA, pp. 156–171.
- Mitsunaga, S., Tashiro, T., Yamaguchi, J., 1994. Identification and characteriztion of gibberellin-insensitive mutants selected from among dwarf mutants of rice. Theoretical Applied Genetics 87, 705–712.
- Ogawa, S., Toyomasu, T., Yamane, H., Murofushi, N., Ikeda, R., Moritomo, Y. et al., 1996. A step in the biosynthesis of gibberellins that is controlled by the mutation in the semi-dwarf rice cultivar *Tan-Ginbozu*. Plant and Cell Physiology 37, 363–368.
- Spray, C.R., Kobayashi, M., Suzuki, Y., Phinney, B.O., Gaskin, P., MacMillan, J., 1996. The dwarf-1(d1) mutant of Zea mays blocks three steps in the gibberellin-biosynthetic pathway. Proceedings of the National Academy of Sciences 93, 10515–10518.
- Toyomasu, T., Kawaide, H., Sekimoto, H., von Numers, C., Phillips, A.L., Hedden, P. et al., 1997. Cloning and characterization of a cDNA encoding gibberellin 20-oxidase from rice (*Oryza sativa*) seedlings. Physiologia Plantarum 99, 111–118.