

PHYTOCHEMISTRY

Phytochemistry 59 (2002) 191-195

www.elsevier.com/locate/phytochem

A macrocyclic ellagitannin trimer, oenotherin T_1 , from *Oenothera* species

Shoko Taniguchi, Yoko Imayoshi, Ryoko Yabu-uchi, Hideyuki Ito, Tsutomu Hatano, Takashi Yoshida*

Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan

Received 25 July 2001; received in revised form 12 September 2001

Abstract

Oenotherin T_1 was isolated from leaves of *Oenothera tetraptera* as a major ellagitannin. Its structure, that of a macrocyclic trimer with a new acyl group, an isodehydrovaloneoyl group, was established. This compound was also produced by callus tissues induced from *O. laciniata* leaves. © 2002 Published by Elsevier Science Ltd.

Keywords: Oenothera tetraptera; Oenothera laciniata; Onagraceae; Tannin; Ellagitannin trimer; Oenothein A; Oenotherin T₁; Isodehydrovaloneoyl group; Callus tissue culture

1. Introduction

Plants of the *Oenothera* species (Onagraceae) are indigenous to North and South America, and have been used for medicinal purposes (Hocking, 1997).

Two oligomeric ellagitannins with unique macrocyclic structures, oenotheins A (1) (Yoshida et al., 1991) and B (Hatano et al., 1990), were first isolated from *O. erythrosepala* and *O. biennis*, and later found in many species of the families Onagraceae, Lythraceae and Myrtaceae (Lee et al., 1997; Yoshida, et al., 1992b, 2000, Chen et al., 1999). Both of these tannins showed potent anti-tumor activity (Miyamoto et al., 1993a,b) and oenothein B also had an inhibitory effect on infection by the herpes simplex virus (Fukuchi et al., 1989).

Our investigation of the constituents of *Oenothera* species led to the isolation of a new trimeric tannin, named oenotherin T_1 (2), from the leaves of *O. tetraptera* as the main constituent. This tannin was also isolated from products of callus tissues of *O. laciniata* in the studies on tannin production in plant cell cultures. This paper describes the isolation and structure of this new tannin.

2. Results and discussion

2.1. Characterization of oenotherin T_1 (2)

Tannins, including a new tannin 2 in the leaves of *O. tetraptera*, were isolated from the highly polar fraction of an aqueous acetone homogenate of dried leaves by chromatography over Toyopearl HW-40 and the known tannins were identified as gemin D (Yoshida et al., 1985), oenothein B and oenothein A (1).

Oenotherin T_1 (2) was obtained as a pale yellow amorphous powder. The trimeric structure was suggested by its retention behavior in the normal-phase HPLC analysis (Okuda et al., 1989), which was longer than that for a dimer, oenothein B. ESI-MS showed an $[M+NH_4]^+$ ion peak at m/z 2386, corresponding to the molecular formula $C_{102}H_{72}O_{67}$. This molecular mass is 16 mass unit larger than that for a trimeric ellagitannin, oenothein A (1) ($C_{102}H_{72}O_{66}$).

The ¹H NMR spectrum of oenotherin T₁ (2) was complicated by the broadening and/or multiplication of signals. This spectral feature is characteristic of a macro-ring structure with poor flexibility, as observed for oenothein A (1) (Yoshida et al., 1991), and anomerization of the glucose cores.

Although the 13 C NMR spectrum of oenotherin T_1 (2) was also complicated, signals assignable to a conjugated carbonyl system [δ 194 (major), 195 (minor), 137

^{*} Corresponding author. Fax: +81-86-251-7936. E-mail address: yoshida@pharm.okayama-u.ac.jp (T. Yoshida).

(major), 136 (minor) and 152 (major)], a gem-diol (δ 94) and a hemiacetal carbon (δ 97) suggested the presence of an oxidized polyphenolic acyl group such as a dehydrohexahydroxydiphenoyl (DHHDP) group (Okuda et al., 1982). Since the DHHDP group is easily converted into an HHDP group on treatment with Na₂S₂O₄, as observed for the reduction of isoterchebin to tell-imagrandin II (Okuda et al., 1982), oenotherin T₁ (**2**) was treated in an analogous way, to give oenothein A (**1**).

Oenotherin T_1 (2) was treated with o-phenylenediamine, to yield a phenazine derivative, C₁₀₈H₇₄N₂O₆₄ (3). Methylation of 3 with diazomethane and subsequent methanolysis for the quantitative analysis (Hatano et al., 1989) of the constituent phenolic acyl groups in 3 gave methyl tri-O-methylgallate (4), dimethyl hexamethoxydiphenate (5) (Okuda et al., 1983), and tetramethyl deca-Omethylwoodfordinate (6) (Yoshida et al., 1991) in a molar ratio of 3:1:1 along with products derived from an acyl group with the phenazine moiety, while the analogous treatment of oenothein A (1) yielded 4, 5, 6 and trimethyl octa-O-methylvaloneate (7) in a molar ratio of 3:1:1:1. Although 7 was absent among the products from 3, the result of the reduction of oenotherin T_1 (2) which gave oenothein A (1) indicated that the acyl group attributed to the phenazine formation in oenotherin T₁ (2) is closely related to the valoneoyl group.

Further separation of the products other than 4, 5 and 6 from 3 gave phenazine derivatives 8 and 9. Although an oxidized valoneoyl group was found in eugeniflorin D_2 (Lee et al., 1997), 8 and 9 were not identical with the phenazine derivative (10) obtained from the eugeniflorin D_2 .

The ESI–MS of **8** showed an $[M + H]^+$ ion peak at m/z 703 and the high-resolution ESI–MS indicated the molecular formula $C_{36}H_{35}N_2O_{13}$. Its ¹H NMR spectrum (acetone- d_6) showed four aromatic protons forming an ABXY system at δ 8.00, 8.04 (H-6, H-7), 8.28 and 8.30 (H-5, H-8), three aromatic singlets at δ 7.21 (H-3'),

7.37 (H-6") and 8.52 (H-3), and nine 3H singlets arising from methoxyl groups at δ 3.37-4.19, suggesting the structure **8**. Rotating frame Overhauser enhancement correlation spectroscopy (ROESY) displayed only a cross peak due to ROE between an aromatic singlet (δ 7.37, H-6") and a methoxyl signal (δ 3.93, OMe at C-5"), confirming the structure. The ¹³C NMR spectrum of **8** showing 36 resonances due to 24 sp^2 , three ester carbonyl and nine methoxyl carbons also satisfied the assigned structure.

The phenazine derivative **9** was identified as (*S*)-methyl 4-methoxy-3-(4,5,6-trimethoxy-2-methoxycarbonyl phenyl)phenazine-2-carboxylate, based on a comparison of its spectral and physical data (see Experimental section) (Okuda et al., 1977, 1981). The production of **9** is attributed to the cleavage of the ether linkage in a parent polyphenolic acyl group which gave **8** (Yoshida et al., 1992a).

The structure 8 including the stereostructure was therefore assigned, and the structure of the new parent acid moiety named the isodehydrovaloneoyl (IDV) group, was consequently assigned as shown in the formula. Oenotherin T_1 was thus represented by formula 2.

Although many *Oenothera* species produce mainly oenotheins B and A (Yoshida et al., 1995), the main constituent of *O. tetraptera* was oenotherin T_1 (2).

2.2. Production of oenotherin T_1 (2) by callus cultures of O. laciniata

Previously, we reported the production of the macrocyclic ellagitannin oligomers, oenotheins A (1) and B, along with monomeric tannins, tellimagrandin I and other galloylglucoses by *O. laciniata* callus culture (Taniguchi et al., 1998). Further investigation of the products of the callus culture revealed the presence of oenotherin T_1 (2) as a minor constituent. Oenotherin T_1 (2) is regarded as an oxidative metabolite of oenothein A (1).

3. Experimental

3.1. General procedures

 1 H and 13 C NMR spectra were measured in acetone- d_{6} on a Varian VXR-500 instrument (500 MHz for 1 H NMR and 126 MHz for 13 C NMR). Chemical shifts are given in δ (ppm) values relative to that of the solvent signals of acetone- d_{6} (δ_{H} 2.04; δ_{C} 29.8) on a tetramethylsilane scale. ESI–MS were recorded using a Micromass AutoSpec OA-Tof mass spectrometer with a solvent of 50% MeOH + 0.1% AcONH₄. The flow rate was set at 20 μl/min. Normal phase HPLC was conducted on a YMC-pack SIL-60 (250×4.6 mm i. d.) column with a solvent system (N1) which consists of n-hexane–MeOH–THF–HCO₂H (60:45:15:1) containing oxalic acid (500 mg/1.2 l), or a solvent system (N2) consisting of n-hexane–EtOAc (2:1), at a flow rate of 1.5 ml/min. Detection for HPLC analysis was at 280 nm.

3.2. Plant material

The plants of *O. tetraptera* were cultivated in the medicinal plant garden of the Faculty of Pharmaceutical Sciences, Okayama University.

3.3. Isolation of tannins from leaves of O. tetraptera

The dried aerial part (245 g) was homogenized in 70% acetone (31×3). The concentrated filtrate (800 ml) from the homogenate was subjected to CC over Dia-ion HP-20 (Mitsubishi Chemical) (70×470 mm) eluted stepwise with $H_2O\rightarrow 20\%$ MeOH $\rightarrow 40\%\rightarrow 60\%\rightarrow 100\%$ MeOH (each 4 l). Part (1.8 g) of the 20% v/v MeOH eluate (6.5 g) was further applied to a Toyopearl HW-40 (Toso) (fine grade, 22×640 mm) column eluted with 70% EtOH \rightarrow EtOH \rightarrow H₂O \rightarrow acetone (7:2:1) to yield gemin D (40.5 mg), oenothein B (36.7 mg) and 2 (171 mg) from the eluate with 70% EtOH, and 1 (93.9 mg) from the eluate with EtOH \rightarrow H₂O \rightarrow acetone (7:2:1).

3.4. Isolation of oenotherin T_1 from callus tissue of O. laciniata

A fraction of CC of the extract from callus tissues of *O. laciniata* (Taniguchi et al., 1998) on Toyopearl HW-40 was subjected to CC on MCI-gel CHP-20 (Mitsubishi Chemical) (11×170 mm) ($H_2O\rightarrow20\%$ MeOH $\rightarrow30\%\rightarrow100\%$ MeOH) to give **2** in a yield of 0.023%/(fr. wt).

3.5. Oenotherin $T_1(2)$

A pale yellow powder. $[\alpha]_D$ +130° (MeOH; c 0.4). ESI–MS m/z: 2386 [M+NH₄]⁺. (Found: C, 46.7; H, 4.1%. calc. for C₁₀₂H₇₂O₆₇·14H₂O requires: C, 46.7; H, 3.8%). R_t of HPLC (N1): 13 min (oenothein B showed an R_t of 10 min under the same conditions). UV λ $_{\rm max}^{\rm MeOH}$ nm (log ε): 218 (5.28), 267 (4.87). CD (MeOH): $[\theta]_{219}$ +4.02×10⁵, $[\theta]_{241}$ +1.99×10⁵, $[\theta]_{262}$ –1.66×10⁴, $[\theta]_{283}$ +1.19×10⁵.

3.6. Reduction of oenotherin $T_1(2)$ to oenothein A(1)

To an aq. soln (2 ml) of **2** (20 mg) was added Na₂S₂O₄ (20 mg) and the reaction mixture was kept at 70°C for 20 min. The mixture was then acidified with 1% HCl and applied to a Sep-pak C-18 cartridge (Merk). After washing of the cartridge with water, adsorbed materials were eluted with H₂O \rightarrow 10% MeOH \rightarrow 20% \rightarrow 25% \rightarrow 30% \rightarrow 100% MeOH. The elutate obtained with 20 and 25% MeOH gave a product (11.6 mg), which was identified as **1** by HPLC, [α]_D (+112°, MeOH, lit. +113°) and ¹H NMR (500 MHz) (Yoshida et al., 1991).

3.7. Preparation of a phenazine derivative of oenotherin $T_1(\mathbf{2})$

A mixture of **2** (20 mg) and *o*-phenylenediamine (5 mg) in 50% AcOH (1.2 ml)–MeOH (0.4 ml) was left standing overnight at room temp. The solvent was evaporated,

and the residue was purified by reprecipitation with MeOH–CHCl₃ to give a phenazine derivative (3) (23 mg) as a light brown powder, $[\alpha]_D$ +211° (MeOH; c 0.4), ESI–MS m/z: 2423 $[M+H]^+$.

3.8. Quantitative analysis of the constituent polyphenolic acids in the phenazine derivative (3) and oenothein A (1)

CH₂N₂–Et₂O (1 ml) was added to an EtOH soln (0.1 ml) of **3** (1 mg) and the mixture was left to stand for 2 h. After removal of the solvent under an N₂ stream, the residue was treated with 0.2% NaOMe in MeOH (1 ml) overnight at room temp. The reaction mixture was then acidified with 10% HCl and the solvent was removed by evaporation in vacuo. The residue was partitioned between EtOAc and H₂O, and HPLC analysis (N2) of the EtOAc soluble portion showed the presence of **4** (R_t 3.7 min), **5** (R_t 7.3 min), and **6** (R_t 29.1 min) in a molar ratio of 3:1:1. Oenothein A (1) was treated in an analogous way, and HPLC analysis of the methanolyzates showed the presence of **4**, **5**, **6** and **7** (R_t 14.1 min) in a molar ratio of 3:1:1:1.

3.9. Methylation of the phenazine derivative (3) followed by methanolysis

The phenazine derivative (3) (83 mg) in EtOH (20 ml) was treated (\times 3, for 2 h each) with CH₂N₂-Et₂O. After removal of the solvent, the residue was treated with 0.2% NaOMe in MeOH (0.5 ml) overnight at room temp. The reaction mixture was acidified with 10% HCl and the solvent was removed in vacuo. The residue was partitioned between EtOAc and H₂O, and the solvent of the EtOAc layer was also removed in vacuo. The residue was subjected to preparative TLC over Kieselgel PF₂₅₄ (Merk) with *n*-hexane–CHCl₃–acetone (6:3: 1), to give 4 (14.4 mg), $5\{(4.5 \text{ mg}), [\alpha]_D -35.9^\circ \text{ (MeOH; } c$ 0.4)}, 6 {(5.6 mg), $[\alpha]_D$ +22.4° (MeOH; c 0.5)}, 8 (1.8 mg) and 9 (1.1 mg). The identification of compounds 5 and 6 was based on comparisons of their spectral data with those of authentic specimen (Okuda et al., 1983; Yoshida et al., 1991).

3.10. Phenazine derivative (8)

An orange powder. $[\alpha]_D$ –21.5° (MeOH; c 0.4). ESI–MS m/z: 703 $[M+H]^+$. HR–MS m/z: 703.2183 $[M+H]^+$ (Calc. for $C_{36}H_{35}N_2O_{13}$ 703.2139). UV λ_{max}^{MeOH} nm (log ϵ): 217 (4.78), 262 (4.68), 368 (3.97). CD (MeOH): $[\theta]_{200}-2.20\times10^4$, $[\theta]_{228}+7.00\times10^4$, $[\theta]_{253}-5.84\times10^4$, $[\theta]_{309}+8.67\times10^3$. ¹H NMR (acetone- d_6) δ : 3.37 (3H, s; COOMe at C-2'), 3.59 (6H, s) 3.64, 3.88, 4.04, 4.19 (3H each, s) [COOMe at C-1" (δ 3.59), OMe at C-10, C-5', C-6', C-3", C-4")], 3.92 (3H, s; COOMe at C-2), 3.93 (3H, s; OMe at C-5"), 7.21 (1H, s; H-3') 7.37 (1H, s; H-6"), 8.00, 8.04 (each 1H, ddd, J=1.5, 6.5, 8.0

Hz; H-6, H- 7), 8.28, 8.30 (each 1H, m; H-5, H-8), 8.52 (1H, s; H-3). 13 C NMR (acetone- d_6) δ: 51.8 (COOCH₃ at C-2'), 51.9 (COOCH₃ at C-1"), 53.1 (COOCH₃ at C-2), 56.3 (OMe at C-5"), 60.7, 60.8, 60.9, 61.1, 62.8 (OMe at C-10, C-5', C-6', C-3", C-4"), 109.8 (C-6"), 113.7 (C-3'), 128.6 (C-3), 129.2, 129.8, 130.4 (C-1, C-1', C-2'), 130.6, 130.7 (C-5, C-8), 131.5 (C-2), 132.2, 133.0 (C-6, C-7), 140.0, 144.3 (C-4a, C-8a), 141.4, 147.9 (C-3a, C-9a), 141.9, 145.3, 146.4, 146.6 (C-5', C-2", C-3", C-4"), 152.1, 152.2, 152.7 (C-10, C-4', C-6'), 153.3 (C-5"), 165.7 (COOCH₃ at C-2), 166.7 (COOCH₃ at C-2'), 167.2 (COOCH₃ at C-1").

3.11. (S)-Methyl 4-methoxy 3-(4,5,6-trimethoxy-2-methoxycarbonylphenyl)phenazine-2-carboxylate (9) (Okuda et al., 1977, 1981)

An orange powder. $[\alpha]_D$ –33.6° (MeOH; c 0.4). ESI– MS m/z: 493 [M+H]⁺. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 208 sh (4.66), 266 (4.74), 371 (3.93). CD (MeOH): $[\theta]_{200}$ $+6.54\times10^{3}$, $[\theta]_{208} -1.39\times10^{4}$, $[\theta]_{240} -3.91\times10^{4}$, $[\theta]_{265}$ $+6.55\times10^4$, [θ] ₂₉₉ -1.92×10^4 . ¹H NMR (acetone- d_6) δ: 3.50 (3H, s; COOMe at C-2'), 3.60, 3.99, 4.04 (3H each, s; OMe at C-10, C-4', C-6'), 3.73 (3H, s; COOMe at C-2), 3.92 (3H, s; OMe at C-5'), 7.48 (1H, s; H-3'), 7.98, 8.00 (each 1H, m; H-6, H-7), 8.26, 8.28 (each 1H, m; H-5, H-8), 8.58 (1H, s; H-3). 13 C NMR (acetone- d_6) δ : 51.9 (COOCH₃ at C-2'), 52.5 (COOCH₃ at C-2), 56.4, 60.9, 62.5 (OMe at C-10, 4', 6'), 60.9 (C-12), 61.0 (C-9'), 110.0 (C-3'), 125.7 (C-2'), 126.9 (C-1'), 127.6 (C-3), 130.3 (C-1), 130.5, 130.8 (C-5, C-8), 132.0, 132.4 (C-6, C-7), 135.5 (C-2), 140.4 (C-9a), 143.8, 143.9 (C-4a, C-8a), 144.5 (C-3a), 146.6 (C-5'), 152.2, 153.7 (C-6', C-10), 153.7 (C-4'), 166.9 (COOCH₃ at C-2), 167.1 (COOCH₃ at C-2').

Acknowledgements

This study was supported in part by a Grant-in-Aid (No. 13771333) for Scientific Research from the Japan Society for the Promotion of Science. The NMR instrument used in this study is in the SC-NMR Laboratory of Okayama University.

References

Chen, L.G., Yen, K.Y., Yang, L.L., Hatano, T., Okuda, T., Yoshida, T., 1999. Macrocyclic ellagitannin dimers, cuphiins D₁ and D₂, and accompanying tannins from *Cuphea hyssopifolia*. Phytochemistry 50, 307–312.

Fukuchi, K., Sakagami, H., Okuda, T., Hatano, T., Tanuma, S., Kitajima, K., Inoue, Y., Inoue, S., Ichikawa, S., Nonoyama, M., Konno, K., 1989. Inhibition of *Herpes simplex* virus infection by tannins and related compounds. Antiviral Research 11, 285–298.

Hatano, T., Ogawa, N., Kira, R., Yasuhara, T., Okuda, T., 1989.
Tannins of cornaceous plants. I. Cornusiins A, B and C, dimeric monomeric and trimeric hydrolyzable tannins from *Cornus officinalis*,

- and orientation of valoneoyl group in related tannins. Chemical and Pharmaceutical Bulletin 37, 2083–2090.
- Hatano, T., Yasuhara, T., Matsuda, M., Yazaki, K., Yoshida, T., Okuda, T., 1990. Oenothein B, a dimeric, hydrolysable tannin with macrocyclic structure, and accompanying tannins from *Oenothera* erythrospepala. Journal of the Chemical Society, Perkin Transactions 1, 2735–2743.
- Hocking, G.M., 1997. A Dictionary of Natural Products. Plexus Publishing Inc, Medford, pp. 537–538.
- Lee, M.H., Nishimoto, S., Yang, L.L., Yen, K.Y., Hatano, T., Yoshida, T., Okuda, T., 1997. Two macrocyclic hydrolyzable tannin dimers from *Eugenia uniflora*. Phytochemistry 44, 1343–1349.
- Miyamoto, K., Nomura, M., Murayama, T., Furukawa, T., Hatano, T., Yoshida, T., Koshiura, R., Okuda, T., 1993. Antitumor activities of ellagitannins against sarcoma-180 in mice. Biological and Pharmaceutical Bulletin 16, 379.
- Miyamoto, K., Nomura, M., Sasakura, S., Matsui, E., Koshiura, R., Murayama, T., Furukawa, T., Hatano, T., Yoshida, T., Okuda, T., 1993. Antitumor activity of oenothein B, a unique macrocyclic ellagitannin. Japan Journal of Cancer Research 84, 99–103.
- Okuda, T., Hatano, T., Yasui, T., 1981. Revised structure of isoterchebin, isolated from *Cornus officinalis*. Heterocycles 16, 1321–1324
- Okuda, T., Yoshida, T., Ashida, M., Yazaki, K., 1983. Tannins of *Casuarina* and *Stachyurus* species. Part 1. Structures of pedunclagin, casuarictin, strictinin, casuarinin, casuariin, and stachyurin. Journal of the Chemical Society, Perkin Transactions 1, 1765–1772.
- Okuda, T., Yoshida, T., Hatano, T., 1982. Constituents of *Geraniium thumergii* Sieb. et Zucc. Part 12. Hydrated stereostructure and equilibration of Geraniin. Journal of the Chemical Society, Perkin Transactions 1, 9–14.

- Okuda, T., Yoshida, T., Hatano, T., 1989. New methods of analyzing tannins. Journal of Natural Products 52, 1–31.
- Okuda, T., Yoshida, T., Nayeshiro, H., 1977. Constituents of Geranium tumbergii Sieb. et Zucc. IV. Ellagitannins (2) Structure of geraniin. Chemical and Pharmaceutical Bulletin 25, 1862–1869.
- Taniguchi, S., Nakamura, N., Nose, M., Takeda, S., Yabu-uchi, R., Ito, H., Yoshida, T., Yazaki, K., 1998. Production of macrocyclic ellagitannin oligomers by *Oenothera laciniata* callus culture. Phytochemistry 48, 981–985.
- Yoshida, T., Chou, T., Matsuda, M., Yasuhara, T., Yazaki, K., Hatano, T., Nitta, A., Okuda, T., 1991. Woodfordin D and oenothein A, trimeric hydrolyzable tannins of macro-ring structure with antitumor activity. Chemical and Pharmaceutical Bulletin 39, 1157– 1162.
- Yoshida, T., Chou, T., Shingu, T., Okuda, T., 1995. Oenotheins D, F and G, hydrolysable tannin dimers from *Oenothera laciniata*. Phytochemistry 40, 555–561.
- Yoshida, T., Hatano, T., Kuwajima, T., Okuda, T., 1992a. Oligomeric hydrolyzable tannins. Their ¹H NMR spectra and partial degradation. Heterocycles 33, 463–482.
- Yoshida, T., Maruyama, T., Nitta, A., Okuda, T., 1992b. Eucalbanins A, B and C, monomeric and dimeric hydrolysable tannins from Eucalyptus alba Reinw. Chemical and Pharmaceutical Bulletin 40, 1750–1754.
- Yoshida, T., Maruyama, Y., Memon, M.U., Okuda, T., 1985. Gemins D and F, ellagitannins from *Geum japonicum*. Phytochemistry 24, 1041–1046.
- Yoshida, T., Hatano, T., Okuda, T., 2000. Chemical and biological perspectives of ellagitannin oligomers from medicinal plants. In: Atta-ur-Rahman (Ed.), Studies in Natural Products Chemistry, Vol. 23, Elsevier, Amsterdam, pp. 395–453.