

Phytochemistry 59 (2002) 415-418

www.elsevier.com/locate/phytochem

An isoflavanoid—neoflavonoid and an *O*-methylated isoflavone from the heartwood of *Dalbergia nitidula*

Madelyn Bekker, Elfranco Malan*, Jacobus A. Steenkamp, E. Vincent Brandt

Department of Chemistry, University of the Orange Free State, PO Box 339, Bloemfontein, 9300 South Africa

Received in revised form 4 October 2001

Abstract

An isoflavanoid $(6\rightarrow 2)$ neoflavonoid dimer and a 4',5',7-trihydroxy-2'-methoxyisoflavone, both as the acetate derivatives were isolated from the heartwood of *Dalbergia nitidula*. Their structures were established by spectroscopic methods. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Dalbergia nitidula; Leguminosae; Isoflavanoid-neoflavonoid; Absolute configuration; Methoxyisoflavone

1. Introduction

The relatively high natural abundance of flavonoid oligomers (Porter, 1994) is well documented in contrast to the limited occurrence of iso- and neo-flavonoid oligomers (Dewick, 1994; Donnelly and Boland, 1994). The first three pterocarpan-neoflavonoid dimers (daljanelins) and the isoflavanoid—neoflavonoid analogue 1 were identified from the heartwood of *Dalbergia nitidula* (Ferreira et al., 1995).

Arising from the re-investigation of the heartwood of *D. nitidula* with respect to the compounds present in low concentrations, we now report the isolation of a new iso-flavanoid-neoflavonoid dimer **2** where the neoflavonoid unit is linked to the C-6 of the isoflavan moiety.

Although the 2',4',5',7-substitution pattern is not unique amongst isoflavonoids (Agrawal, 1989; Dewick, 1994) the new *O*-methyl derivative 4',5',7-trihydroxy-2'-methoxyisoflavone **4** was isolated as the acetate derivative **5**.

2. Results and discussion

Excluding the 17 isoflavonoid compounds identified from the bark and heartwood before (Van Heerden et al., 1978, 1980; Bezuidenhoudt et al., 1984), the MeOH

E-mail address: malane@sci.uovs.ac.za (E. Malan).

extract of the heartwood of *D. nitidula* yielded (3*S*)-6-(3-phenyl-5-hydroxy-6-methoxy benzo[b]furan-2-ylmethyl)vestitol (vestitol=2',7-dihydroxy-4'-methoxyisoflavan) **2** and the *O*-methylated isoflavone **4** as the acetate derivative **5**.

The C-8 linked neoflavanoid-isoflavan **1** was previously isolated from the heartwood of *D. nitidula* (Ferreira et al., 1995). The present compound **2** under discussion is an isomer of **1** with the neoflavonoid unit linked at C-6 of the vestitol moiety. The ¹H NMR data (Table 1) of compound **3** show an ABX-system, four singlets and the protons assigned to the unsubstituted B-ring, all of them in the aromatic region (δ 6.59–7.49). The isoflavan character is typical (Markham, 1982; Ferreira et al., 1995) from the H-2_{ax}, H-2_{eq} (δ 3.93 and δ 4.28), H-3 (δ 3.25–4.28) and the H-4_{ax}, H-4_{eq} (δ 2.97 and δ 2.87) resonance patterns of the C-ring in the heterocyclic region.

The EI–MS of compound 3 with molecular ion of [M⁺] 650.2152 (C₃₈H₃₄O₁₀) along with the ¹H and ¹³C spectra strongly suggested a dimeric structure.

Using the isoflavan heterocyclic protons (C-ring) as reference the NOESY experiment (refer 3) showed associations of 2-H_{eq} (C, δ 4.28) with 6'-H (B, δ 7.11) as well as 4-H_{eq} (C, δ 2.87) with 5-H (A, δ 6.96). The ABX-system of the B-ring was established from interactions between 6'-H(B) and 5'-H (B, δ 6.82) and between 3'-H (B, δ 6.64) with the 4'-OMe (δ 3.80).

In extension of the above assignments, the 5-H(A) showed associations with the isolated methylene group

^{*} Corresponding author. Tel.: +27-51-4013018; fax: +27-51-4307805

2 R=H 3 R=Ac (n.O.e. associations)

6 m/z 253

at δ 3.99 and 4.05 (Ferreira et al., 1995) and the prominent 2',6'-H at δ 7.47 of the E-ring. Interactions between the 2',6'-H(E) with the isolated methylene group and the 4-H (D, δ 7.25) confirmed the interflavanyl bond comprising the methylene as linkage from $C-6(A) \rightarrow C-2(F)$ in 3. The 7-H (D, δ 7.10) associated with 6-OMe(D). The above information suggested the structure of vestitol for the isoflavan moiety. COSY experiment confirmed all the above observations with couplings between 7-H (D, δ 7.10) to both 4-H (D, δ 7.25) and 6-OMe (D, δ 3.88). The correlations between 5-H (A, δ 6.96) and the isolated methylene group at δ 4.51 and δ 3.99, and between the 8-H (A, δ 6.59) established the A-ring. This information also confirmed the position of the methylene linkage between 6-C(A) to 2-C(F). Very important is the EIMS fragment m/z 253 (28.5%) 6 which confirmed the neoflavanoid moiety in accordance to the fragmentation as was proposed by Ferreira et al. (1995).

Carbon atom resonances were assigned on the basis of ¹H to ¹³C connectivities e.g. HMQC and HMBC correlations (Table 2).

The D-ring of **3** was identified by coupling of 6-C (D, δ 159.55) with 6-OMe (δ 3.88, ${}^{3}J_{\rm CH}$) and 7-H (D, δ 7.10, ${}^{2}J_{\rm CH}$); 5-C (D, δ 149.54) correlated with 7-H (D, δ 7.10, ${}^{3}J_{\rm CH}$) and 4-H (D, δ 7.25, ${}^{2}J_{\rm CH}$), while 8-C (D, δ 153.86) showed coupling with 7-H (D, δ 7.10, ${}^{2}J_{\rm CH}$) and 4-H (D, δ 7.25, ${}^{3}J_{\rm CH}$); 9-C (D, δ 121.38) correlated with 7-H (D,

Table 1 ¹H NMR (300 MHz, 296 K) data of isoflavanoid–neoflavonoid derivative 3 in CDCl₃. Splitting patterns and *J*-values are given in parentheses

Ring	Н	3
A	5-H	6.96 (s)
	8-H	6.59 (s)
В	3'-H	6.64 (d, J=3.0 Hz)
	5'-H	6.82 (dd, J = 3.0 and 10.0 Hz)
	6'-H	7.11 (dd, J = 1.0 and 10.0 Hz)
С	$2_{\rm eq}$ -H	4.24 (ddd, J=2.0, 4.0 and 9.0 Hz)
	2 _{ax} -H	3.93 (dd, J = 9.0 and 9.0 Hz)
	3-H	3.25 (dddd, J = 4.0, 5.5, 9 and 10.5 Hz)
	4 _{ax} -H	2.97 (ddd, J=1.0, 10.5 and 15.5 Hz)
	$4_{\rm eq}$ -H	2.87 (ddd, J = 2.0, 5.5 and 15.5 Hz)
D	4-H	7.25 (s)
	7-H	7.10 (s)
E	(2-6)-H	7.35–7.49 (<i>m</i>)
	-CH ₂ -	4.04 (d, J = 14.0 Hz)
	$-C\overline{\underline{H}}_2-$	4.00 (d, J = 14.0 Hz)
	OCH_3	3.88 (s)
	$OC\overline{H}_3$	3.80(s)
	OCOCH3	2.33 (s)
	$OCOC\overline{H_3}$	2.34 (s)
	$OCOC\overline{H_3}$	2.17 (s)

Table 2

13C NMR data (ppm) of compound 3 at 296 K

Ring	C	ppm	Ring	C	ppm
A/C	2-C	70.86	D/F	2-C	151.66
	3-C	30.10		3-C	118.48
	4-C	27.22		4-C	113.40
	5-C	131.32		5-C	149.54
	6-C	121.07		6-C	159.55
	7-C	148.10		7-C	127.78
	8-C	110.99		8-C	153.86
	9-C	153.93		9-C	121.38
	10-C	120.55			
В	1'-C	112.97	E	1'-C	132.58
	2′-C	137.13		2'-C	129.33
	3'-C	108.84		3′-C	129.24
	4'-C	149.81		4'-C	128.25
	5′-C	125.19		5′-C	129.33
	6'-C	96.39		6'-C	129.24
				CH_2	27.22
				$\overline{O}CH_3$	56.73
				$\overline{OCH_3}$	55.87
				$O\overline{C}OCH_3$	21.43
				$OCO\overline{CH_3}$	21.06
				$OCO\overline{CH_3}$	20.98
				$OCOCH_3$	169.97
				$O\overline{C}OCH_3$	169.74
				$O\overline{C}OCH_3$	169.74

 $^{3}J_{\text{CH}}$) and 4-H (D, $^{2}J_{\text{CH}}$), all these connectivities confirmed the proposed structure of 3.

The resonance signal of 1'-C (E, δ 132.58) showed coupling with the E-ring phenyl protons at δ 7.49. The F-ring was determined from correlations of 2-C (F, δ 151.66) to the isolated methylene group protons at δ 4.51 and 3.99 ($^2J_{\rm CH}$), as well as couplings from 3-C (F, δ 118.48) to the E-ring protons, the 4-H (D, δ 7.25) and the isolated methylene protons (all $^3J_{\rm CH}$).

The substitution pattern of the A-ring was evident from the 6-C (A, δ 121.97) and 10-C (A, δ 120.55) couplings with 8-H (A, δ 6.59, ${}^3J_{\rm CH}$); the 6-C(A) also coupled with the isolated methylene protons (${}^2J_{\rm CH}$), disclosing the position of linkage to the A-ring. The 7-C (A, δ 148.10) correlated with 8-H (A, δ 6.59, ${}^2J_{\rm CH}$) and 5-H (A, δ 6.96, ${}^3J_{\rm CH}$), while 9-C (A, δ 153.93) coupled with both 8-H(A) and 5-H(A) to complete the identification of the A-ring. The 4'-C (δ 149.81) of the B-ring coupled with the 4'-OMe protons (δ 3.80, ${}^3J_{\rm CH}$), 6'-H (δ 7.11, ${}^3J_{\rm CH}$) and 3'-H (δ 6.64, ${}^2J_{\rm CH}$). Further correlations from 2'-C (B, δ 137.13) to 6'-H (δ 7.11, ${}^3J_{\rm CH}$) and between 1'-C (B, δ 112.97) and 6'-H (B, δ 7.11, ${}^2J_{\rm CH}$) confirmed the substitution pattern of the B-ring.

The CD-data of 3 (see 3.2) are in agreement with that of (+)-vestitol and the compound, (3S)-8-(5-hydroxy-6-methoxy-3-phenylbenzo[b]furan-2-ylmethyl)vestitol, isolated by Ferreira et al., (1995) and could be unambiguously assigned to have the 3S absolute configuration. The newly discovered isoflavanoid $(6\rightarrow 2)$ neoflavonoid 2 (as the full acetate 3) is isomeric to the $(8\rightarrow 2)$ linked compound.

Table 3 ¹H (300 MHz, 296 K) and ¹³C NMR assignments for compound 5 in CDCl₃. Splitting patterns and *J*-values are given in parentheses

Ring	Н	5	C	ppm
A/C	2-H	7.93 (s)	C-2	154.72
A/C	5-H	8.32 (d, J=9.0 Hz)	C-3	122.45
6-H 8-H	6-H	7.19 (dd , $J = 2.0$ and 9.0 Hz)	C-4	175.07
	8-H	7.32 (d, J = 2.0 Hz)	C-5	128.15
			C-6	120.14
			C-7	154.95
			C-8	111.49
			C-9	157.08
		C-10	122.15	
6'-H OM OA	3'-H	6.87 (s)	1'-C	116.84
	6'-H	7.09(s)	2′-C	152.22
			3'-C	108.19
	OMe	3.87 (s)	4'-C	147.68
	OAc	2.39 (s)	5'-C	137.69
	OAc	2.33 (s)	6'-C	125.42
	OAc	2.16 (s)		
			$OCOCH_3$	169.34
			_	169.04
				169.04
			$O\underline{C}H_3$	56.61

The existence of 2',4',5',7-substituted isoflavones are well known (Burns et al., 1984; Rao et al., 1984; Agrawal, 1989; Dewick, 1994) but to our knowledge the isolation of a 2'-methoxy isoflavone 4 as the acetate derivative 5 is a first. The ¹H NMR data (Table 3) of 5 showed the characteristic 2-H (C, s, δ 7.93) at low field (Rao et al., 1984), together with an ABX-system and two singlets at δ 6.87 and δ 7.09 for the A- and B-rings resp. From 2D COSY correlations between 2-H(C) and 6'-H (B, s, δ 6.87), the 2'-OMe with 3'-H (B, s, δ 6.87), together with the n.O.e. association of the 3'-H with 4'-OAc and the associations indicated on 5 it was possible to identify the B-ring. The low field doublet at δ 8.32 of the 5-H (A, J=9.0 Hz) is typical of the proton adjacent to the 4-C (δ 175.07) carbonyl (Burns et al., 1984). With the 5-H as reference it was possible to establish the ABX-system of the A-ring [Table 3 (5)]. With the assistance of HMQC and HMBC it was possible to assign the carbons (Table 3) and confirm the structure of 5. EIMS showed a molecular ion m/z 426 (M⁺, 60%) with RDA-fragments m/z 136 (A-ring, 100%) and m/z 164 (B-ring, 20%), which confirmed the suggested structure 5 with the OMe-group as a substituent on the B-ring.

3. Experimental

¹H NMR spectra were recorded on a Bruker AVANCE DPX 300 spectrometer for solns. as indicated, with Me₄Si as internal standard. Electron impact–mass spectroscopy (EI-MS) data were recorded on a VG-70E instrument when tuned to function in the EI-MS mode. CD data were collected in MeOH as solvent on a Hitachi 150-20 spectropolarimeter. TLC was performed on precoated Merck plastic sheets (silica gel 60 PF₂₅₄, 0.25 mm) and the plates were sprayed with H₂SO₄-HCHO (40:1, v/v) after development. Preparative plates (PLC) $[20\times22 \text{ cm}, \text{Kieselgel PF}_{254} (1.0 \text{ mm})]$ were air dried and used without prior activation. Column chromatography was done on Sephadex LH-20 in 120×4 cm columns, at a flow rate of 30 cm³/h using ethanol as eluent. Flash column chromatography (FCC) was carried out in a glass column (54×6.5 cm) charged with Merck Kieselgel 60 (230-400 mesh) using benzene-EtAc (9:1, v/v) as eluent at a flow rate of 60 cm³/min. Acetylations were conducted in Ac₂O-pyridine at 50 °C for 24 h. Evaporations were done under reduced pressure at ambient temp. in a rotary evaporator, and freeze drying of aqueous solutions on a Virtis 12 SL freezemobile.

3.1. Metabolites from the methanol extract of the heartwood of D. nitidula

The ether extract (20 g) was subjected to column chromatography on Sephadex LH-20 (120×4 cm column at a flow rate of 30 cm³/h) in ethanol as eluent.

Four fractions were collected and combined after TLC monitoring (benzene–Me₂CO–methanol, 6:3:1; v/v/v) viz. 1 (2.84 g), 2 (3.12 g), 3 (2.90 g) and 4 (4.96 g).

All four combinations were derivatized in Ac₂O-pyridine and separately subjected to FCC using benzene—EtAc (9:1, v/v) as eluent, fractions 1.1 (0.1 g), 1.2 (0.05 g), 1.3 (0.03 g) and 1.4 (0.55 g) were collected and subsequently separated on PLC with benzene—EtAc (9:1, v/v) as solvent system. Liquiritigenindiacetate (R_f 0.43, 35 mg) was obtained from fraction 1.1; vesticarpin-diacetate (R_f 0.27, 3 mg) was identified from fraction 1.2 and fraction 1.3 yielded 2',7-diacetoxy-4'-methoxyisoflavone (R_f 0.24, 7.5 mg). The new 4',5',7-triacetoxy-2'-methoxyisoflavone 5 was isolated from fraction 1.4 (R_f 0.26, 5 mg).

Fractions 2, 3 and 4 yielded all the compounds as was reported in the literature (Letcher and Shirley, 1976; Van Heerden et al., 1980; Bezuidenhout et al., 1984; Ferreira et al., 1995).

Fraction 4 yielded amongst the other known compounds the new 6-C-(3-phenyl-5-acetoxy-6-methoxy-benzo[b]furan-2-ylmethyl)vestitol-triacetate 3 ($R_{\rm f}$ 0.30, 4 mg, TLC hexane–Me₂CO–EtAc 7:1:2, v/v/v) after the initial FCC separation using hexane–Me₂CO–EtAc, 11:6:3, v/v/v as eluent.

3.2. (3S)-6-(3-Phenyl-5-acetoxy-6-methoxy benzo[b]furan-2-ylmethyl)-vestitol-triacetate 3 as a light brown solid

(Found: M⁺, 650.2152. $C_{38}H_{34}O_{10}$ requires M, 650.2150.) ¹H NMR: Table 1. ¹³C NMR: Table 2. CD $[\theta]_{238}$ 104, $[\theta]_{245}$ 780, $[\theta]_{252}$ 281, $[\theta]_{260}$ 473, $[\theta]_{270}$ 11, $[\theta]_{288}$ —1510, $[\theta]_{294}$ —969 and $[\theta]_{300}$ —45. EI—MS, m/z 650 (M⁺, 62%), 374 (8), 359 (10), 282 (10), 240 (10), 150 (30), 137 (100), 134 (20).

3.3. 4',5',7-Triacetoxy-2'-methoxyisoflavone 5 as a yellow-brown solid

(Found: M^+ 426.0951. $C_{22}H_{18}O_9$ requires M, 426.0950.) ¹H NMR: Table 3. ¹³C NMR: Table 3. EI–MS, m/z 426 (M^+ , 60%), 164 (15), 136 (100).

Acknowledgements

We gratefully thank the National Research Foundation, Pretoria and the 'Sentrale Navorsingsfonds' of the UOFS for the financial support. Our thanks are due to Dr. R Bekker (NMR) and Dr. L Fourie (MS) for their assistance.

References

- Agrawal, P.K., 1989. Carbon—13 NMR of Flavonoids. Elsevier, Amsterdam, pp. 192–207.
- Bezuidenhoudt, B.C.B., Brandt, E.V., Roux, D.G., 1984. Synthesis of isoflavanoid oligomers using a pterocarpan as inceptive electrophile. Journal of the Chemical Society, Perkin Transactions 1, 2767–2778.
- Burns, D.T., Dalgarno, B.G., Gargan, P.E., Grimshaw, J., 1984. An isoflavone and a coumestan from *Eysenhardtia Polystacha*—Robert Boyle's flourescent acid- base indicator. Phytochemistry 23, 1. 167–169.
- Dewick, P.M., 1994. In: Harborne, J.B. (Ed.), The Flavonoids. Advances in Research since 1986. Chapman & Hall, London, pp. 117–238.
- Donnelly, D.M.X., Boland, G., 1994. In: Harborne, J.B. (Ed.), The Flavonoids. Advances in Research since 1986. Chapman & Hall, London, pp. 239–258.
- Ferreira, J.A., Nel, J.W., Brandt, E.V., Bezuidenhoudt, B.C.B., Ferreira, D., 1995. Oligomeric isoflavonoids. Part 3. Daljanelins A–D, the first pterocarpan- and isoflavanoids–neoflavonoid analogues. Journal of the Chemical Society, Perkin Transactions 1, 1049–1056.
- Letcher, R.M., Shirley, I.M., 1976. Phenolic compounds from the heartwood of *Dalbergia nitidula*. Phytochemistry 15, 353–354.
- Markham, K.P., 1982. The Flavonoids. Advances in Research. Chapman & Hall, London, pp. 19–37.
- Porter, L.J., 1994. In: Harborne, J.B. (Ed.), The Flavonoids. Advances in Research since 1986. Chapman and Hall, London, pp. 23–115.
- Van Heerden, F.R., Brandt, E.V., Roux, D.G., 1978. Structure and synthesis of some complex pyranoisoflavonoids from the bark of *Dalbegia nitidula* Welw. ex Bak. Journal of Chemical Society, Perkin Transactions 1, 137–145.
- Van Heerden, F.R., Brandt, E.V., Roux, D.G., 1980. Synthesis of the pyranoisoflavonoid, heminitidulan. Isoflavanoid and rotenoid glycosides from the bark of *Dalbergia nitidula* Welw. ex Bak. Journal of the Chemical Society, Perkin Transactions 1, 2463–2469.
- Rao, E.V., Murthy, M.S.R., Ward, R.S., 1984. Nine isoflavones from Tephrosia Maxima. Phytochemistry 23 (7), 1493–1501.