

Phytochemistry 59 (2002) 557-563

www.elsevier.com/locate/phytochem

Phenolic glycosides from Markhamia stipulata

Tripetch Kanchanapoom^{a,b}, Ryoji Kasai^a, Kazuo Yamasaki^{a,*}

^aInstitute of Pharmaceutical Sciences, Faculty of Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan ^bDepartment of Pharmaceutical Botany and Pharmacognosy, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand

Received 20 July 2001; received in revised form 22 October 2001

Abstract

From the leaves and branches of *Markhamia stipulata*, five verbascoside derivatives (markhamiosides A–E), and one hydroquinone derivative (markhamioside F) were isolated together with 13 known compounds. Their structural elucidation was based on analyses of chemical and spectroscopic data. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Markhamia stipulata; Bignoniaceae; Phenylpropanoid glycoside; Phenylethanoid glycoside; Hydroquinone derivative; Markhamiosides A-F

1. Introduction

As part of an on a going study on Thai Bignoniaceous plants (Kanchanapoom et al., 2001, 2002), we investigated the constituents of Markhamia stipulata Seem. ex K. Schum. (Thai name: Khae-Hua-Mu) collected from the Botanical gardens, Faculty of Pharmaceutical Sciences, Khon Kaen University, Thailand. M. stipulata is a tree distributed in South and South-east Asia. In Thai traditional medicine, the leaves and barks are externally used for treating skin diseases as well as being internally used for analgesic effect. In preliminary investigations of this plant, dehydro-α-lapachone, lapachol, dehydro-iso-α-lapachone, β-sitosterol, β-lapachone, tectol, paulownin and palmitone have been isolated from the alcoholic extract of stem-heartwood (Joshi et al., 1978). The present study deals with the isolation and structural determination of 19 compounds. Five were new verbascoside derivatives (3, 9–12), one was a new hydroquinone derivative (13) along with 13 known compounds from the leaves and branches of this plant.

2. Results and discussion

The methanolic extract of the leaves and branches of M. stipulata was suspended in H_2O and defatted with

E-mail address: yamasaki@pharm.hiroshima-u.ac.jp (K. Yamasaki).

Et₂O. The aqueous layer was subjected to a column of highly porous copolymer resin of styrene and divinylbenzene, using H₂O, MeOH and Me₂CO, successively. The fraction eluted with MeOH was repeatedly applied to columns of silica gel, RP-18, or prep. HPLC to afford 19 compounds (1–19). Thirteen were identified as known compounds; phenethyl-O-β-glucopyranosyl- $(1\rightarrow 2)$ -O- β -glucopyranoside (1) (Ono et al., 1999), decaffeoylverbascoside (2) (Karasawa et al., 1986), verbascoside (4), isoverbascoside (5) (Miyase et al., 1982), 2"-O-apiosylverbascoside (6) (Kanchanapoom et al., 2001), luteoside A (7), luteoside B (8) (Kernan et al., 1998), khaephuoside B (14) (Kanchanapoom et al., in press), sequinoside K (15) (Zhong et al., 1999), (6S,9R)-roseoside (16) (Otsuka et al., 1995), rengyoside B (17) (Seya et al., 1989), ajugol (18) (Nishimura et al., 1989), (+)-lyoniresinol 3α -O- β -glucopyranoside (19) (Achenbach et al., 1992) by comparison of physical data with literature values and from spectroscopic evidence.

The molecular formula of compound **3** was determined as $C_{25}H_{38}O_{16}$ by HR–FAB mass spectrometry. The ¹H NMR spectrum showed the presence of ABX systems [δ 6.64 (d, J=1.7 Hz), δ 6.63 (d, J=8.1 Hz) and δ 6.50 (dd, J=8.1, 1.7 Hz)] for 3,4-dihydroxy- β -phenylethoxyl moiety together with three anomeric protons, δ 4.31 (d, J=7.8 Hz) for β -glucose, δ 4.94 (d, J=1.3 Hz) for α -rhamnose and δ 5.16 (d, J=1.5 Hz) for β -apiose. Acid hydrolysis of **3** afforded apiose, rhamnose and glucose, identified by TLC. The ¹H and ¹³C NMR spectra were very similar to those of decaffeoylverbascoside (**2**) except for the additional signals of an apiofuranosyl unit. Comparison of the ¹³C NMR spectral data of **3**

^{*} Corresponding author. Tel.:+81-82-257-5285; fax: +81-82-257-5289

with those of **2**, the chemical shifts of C-1", C-2" and C-3" were changed by -1.2, +3.8 and +1.8 ppm, respectively, indicating that the apiofuranosyl residue is located at C-2". Furthermore, the HMBC spectrum provided significant correlations between H-1" (δ 4.31) and CH₂-α (δ 71.9); H-1" (δ 4.94) and C-3" (δ 86.3) as well as between H-1"" (δ 5.16) and C-2" (δ 79.4). Consequently, compound **3** was established as 3,4-dihydroxy-β-phenylethoxy-O-[β-apiofuranosyl-(1"" \rightarrow 2")- α -rhamnopyranosyl-(1"" \rightarrow 3")-O-β-glucopyranoside], named markhamioside A.

The molecular formula of compound 9 was determined as C₃₆H₄₈O₁₉ by HR-FAB mass spectrometry. The ¹H and ¹³C NMR spectral data were closely related to those of luteoside B (8) except for additional resonances for two methoxy groups (δ 3.70 and δ 3.81) in the ¹H NMR spectrum, and at δ 56.4 and δ 56.4 in the ¹³C NMR spectrum). The chemical shifts of an ester moiety were in agreement with those of a feruloyl moiety, as well as the carbon signals of an aglycone part were superimposable with those of a 3-hydroxy-4-methoxy-βphenylethoxyl moiety (Miyase et al., 1991). Acid hydrolysis of 9 provided apiose, rhamnose and glucose, identified by TLC. The complete set of assignments were confirmed by using COSY, HSQC and difference NOE experiments. On irradiation of the signal at δ 3.70 (3-OMe), the intensity of H-5 (δ 6.62, d, J=8.0 Hz) was enhanced, and irradiation of the signal at δ 3.81 (4'-OMe) caused an increase in the NOE enhancement at H-2' (δ 7.09, d, J=1.9 Hz). Upon irradiation of the anomeric signals of β -apiofuranosyl (δ 5.15, d, J=1.9Hz) and α -rhamnopyranosyl units, NOE enhancements were observed for the H-2" (δ 3.42, dd, J=8.8, 7.8 Hz) and H-3" (δ 3.57, dd, J = 9.0, 8.8 Hz) of the glucopyranosyl unit, respectively. On the basis of this spectral data, the structure of compound 9 was elucidated as 3hydroxy-4-methoxy-β-phenylethoxy-O-[β-apiofuranosyl- $(1'''' \rightarrow 2'')$ - α -rhamnopyranosyl- $(1''' \rightarrow 3'')$ -6''-O-feruloyl- β glucopyranosidel, named markhamioside B.

The molecular formula of compound 10 was determined as C₃₄H₄₄O₁₉ by HR-FAB mass spectrometry. The ¹H and ¹³C NMR spectral data indicated that compound 10 is a phenylpropanoid with three sugar moieties. The chemical shifts of compound 10 were almost the same as those of **8**. However, the signals for an α -arabinopyranosyl unit at δ 104.4, 72.8, 74.3, 69.3 and 66.5 (Lahloub et al., 1986) were observed from the ¹³C NMR spectrum instead of the signals for a β-apiofuranosyl unit, suggesting that the α -arabinopyranosyl unit is attached to C-2". Acid hydrolysis of 10 gave arabinose, rhamnose and glucose (identified by TLC). Assignment of all signals was based on the results of COSY, HSQC and HMBC. COSY and HSQC were used to determine the sugar protons. The HMBC spectrum provided further confirmation from the correlations between H-1"" (δ 4.47, d, J=6.9 Hz) and C-2"

 R_3

 R_2

 R_1

(δ 81.4) as well as H-1" (δ 5.07, d, J=1.3 Hz) and C-3". Therefore, compound **10** was 3,4-dihydroxy-β-phenylethoxy-O-[α-arabinopyranosyl-(1"" \rightarrow 2")-α-rhamnopyranosyl-(1"" \rightarrow 3")-6"-O-caffeoyl-β-glucopyranoside], named markhamioside C.

The molecular formula of compound 11 was determined as C₃₆H₄₆O₂₀ by HR-FAB mass spectrometry. Inspection of the ¹H NMR spectrum revealed the presence of two sets of ABX systems [δ 6.72 (d, J=2.0 Hz), δ 6.69 (d, J = 8.1 Hz) and δ 6.56 (dd, J = 8.1, 2.0 Hz) for the 3,4-dihydroxy- β -phenylethoxyl moiety; and δ 7.05 $(d, J=2.0 \text{ Hz}), \delta 6.78 (d, J=8.1 \text{ Hz}) \text{ and } \delta 6.94 (dd, J=8.1 \text{ Hz})$ J=8.1, 2.0 Hz) for the caffeoyl moiety, two trans-olefinic protons [δ 6.26 and 7.57 (each d, J=15.6 Hz)], a singlet signal of acetyl group (δ 2.00), together with three anomeric protons at δ 4.55 (d, J=7.8 Hz) for β glucose, δ 5.17 (d, J = 1.5 Hz) for α -rhamnose and δ 4.50 (d, J=7.0 Hz) for α -arabinose. Acid hydrolysis of 11 afforded arabinose, rhamnose and glucose, identified by TLC. The chemical shifts of compound 11 were almost the same as those of 7, except for signals of α -arabinose instead of B-apiose. The assignments were confirmed by HOHAHA, HSQC, HMBC experiments, in which longrange correlations were observed from the HMBC spectrum between H-4" (δ 5.03, dd, J=9.5, 9.3 Hz) and a carbonyl carbon of caffeoyl moiety (δ 168.0), C-5" (δ 72.9), C-3" (δ 81.1); H-6" (δ 4.14, dd, J=12.0, 5.0 Hz) and a carbonyl carbon of an acetyl group (δ 172.6); H-1" (δ 4.55, d, J=7.8 Hz) and CH₂- α (δ 72.1); H-1" (δ 5.17, d, J = 1.5 Hz) and C-3" (δ 81.1) as well as between H-1"" (δ 4.50, d, J = 7.0 Hz) and C-2" (δ 82.5). Moreover, the difference NOE experiments provided further support by irradiation of the anomeric signals at δ 4.50 of arabinose and δ 5.17 of rhamnose, which resulted in NOE enhancement for the H-2" (δ 3.68, dd, J=8.1, 7.8 Hz) and H-3" (δ 3.96, dd, J=9.3, 8.1 Hz) signals, respectively. Accordingly, the structure of compound 11 was identified as 3,4-dihydroxy- β -phenylethoxy-O- $[\alpha$ arabinopyranosyl- $(1''' \rightarrow 2'')$ - α -rhamnopyranosyl- $(1''' \rightarrow$ 3")-4-O-caffeoyl-6-O-acetyl-β-glucopyranosidel, named markhamioside D.

The molecular formula of compound **12** was deduced as $C_{37}H_{48}O_{21}$ by HR–FAB mass spectrometry. The ¹H and ¹³C NMR spectral data were almost the same as those of **7**. However, the signals at δ 103.8, 73.1, 75.2, 70.4, 76.5 and 62.5 for β-galactopyranosyl unit (Sasaki et al., 1989) were observed instead of the signals for a β-apiofuranosyl unit, suggesting that the β-galactopyranosyl unit is located at C-2". Acid hydrolysis of **12** afforded galactose, rhamnose and glucose, identified by TLC. The assignments were supported by COSY, HSQC, HMBC and difference NOE experiments. In the HMBC spectrum, significant correlations were found between H-4" (δ 5.00, dd, J=9.5, 9.3 Hz) and a carbonyl carbon of a caffeoyl moiety (δ 168.0), C-5" (δ 72.9), C-3" (δ 81.0); between H-6" (δ 4.11, dd, J=12.2, 5.1 Hz) and

a cabonyl carbon of an acetyl group (δ 172.5); between H-1" (δ 4.57, d, J=7.8 Hz) and CH₂- α (δ 72.0); between H-1" (δ 5.14, d, J=1.5 Hz) and C-3" (δ 81.0) as well as between H-1"" (δ 4.53, d, J=7.8 Hz) and C-2" (δ 82.1). Furthermore, irradiation of the anomeric signals at δ 4.53 of galactose and δ 5.14 of rhamnose caused NOE enhancements of the signal at δ 3.48 (H-2") and δ 3.95 (H-3"), respectively. Therefore, the structure of compound 12 was established as 3,4-dihydroxy- β -phenylethoxy-O-[β -galactopyranosyl-(1"" \rightarrow 2")- α -rhamnopyranosyl-(1"" \rightarrow 3")-4-O-caffeoyl-6-O-acetyl- β -glucopyranoside], named markhamioside E.

The molecular formula of compound **13** was determined as $C_{18}H_{26}O_{12}$ by HR-FAB mass spectrometry. The ¹H NMR spectrum revealed the presence of a set of ABX systems at δ 6.67 (1H, d, J=2.7 Hz, H-2), δ 6.59 (1H, d, J=8.8 Hz, H-5) and δ 6.46 (1H, dd, J=8.8, 2.7 Hz, H-6); a methoxy signal at δ 3.73 (3H, s, MeO-3) as well as two anomeric protons at δ 4.69 (d, J=7.8 Hz) for β -apifuranosyl units. The ¹³C NMR spectral data were similar to those of sequinoside K (**15**), except that the signals for an acyl ester were not observed. Also, the chemical shifts of C-5" and C-3" were changed by-1.8 and +1.5 ppm, respectively. Consequently, the structure of compound **13** was identified as deacyl ester of sequinoside K (**15**), named markhamioside F.

The pharmalogical activities of the isolated compounds have not been investigated. However, the pharmacological activities of verbascoside derivatives have been reviewed by Cometa et al. (1993) and Jimenez and Riguera (1994). Some have antifungal, antibacterial and analgesic activities, in agreement with the traditional uses of the plants in Thailand.

3. Experimental

3.1. General

NMR spectra were recorded in CD₃OD using a JEOL JNM A-400 spectrometer (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR) with tetramethylsilane (TMS) as internal standard. MS were recorded on a JEOL JMS-SX 102 spectrometer. Optical rotations were measured with a Union PM-1 digital polarimeter. Preparative HPLC was carried out on columns of ODS (20×150 mm i.d., YMC) and Diol-120 (8.0×300 mm i.d., YMC) with a Tosoh refractive index (RI-8) detector. The flow rates were 6 ml/min for ODS and 3ml/min for Diol-120. For CC, silica gel G 60 (Merck), YMC-gel ODS (50 µm, YMC) and highly porous copolymer of styrene and divinylbenzene (Mitsubishi Chem. Ind. Co. Ltd) were used. The solvent systems were: (I) EtOAc-MeOH-H₂O (4:1:0.1), (II) EtOAc-MeOH-H₂O (7:3:0.3), (III) EtOAc- MeOH-H₂O (6:4:1), (IV) 40-70% aq.

Table 1 ¹H NMR Spectral data of compounds **3**, **9–12** (400 MHz, CD₃OD)

Н	3	9	10	11	12	13
Aglycone	((1 (1))	((1 (1	((0 (1W	(50 (11) 1 / 0 0 / 1)	(5) (1) (1) (2)	((7 (1)) 1 (2.7))
2 5 6	6.64 (1H, <i>d</i> , <i>J</i> = 1.7 Hz) 6.63 (1H, <i>d</i> , <i>J</i> = 8.1 Hz) 6.50 (1H, <i>dd</i> , <i>J</i> = 8.1, 1.7 Hz)	6.64 (1H, <i>d</i> , <i>J</i> = 2.0 Hz) 6.62 (1H, <i>d</i> , <i>J</i> = 8.0 Hz) 6.56 (1H, <i>dd</i> , <i>J</i> = 8.0, 2.0 Hz)	6.68 (1H, <i>d</i> , <i>J</i> = 1.3 Hz) 6.59 (1H, <i>d</i> , <i>J</i> = 8.1 Hz) 6.48 (1H, <i>dd</i> , <i>J</i> = 8.1, 1.3 Hz)	6.72 (1H, <i>d</i> , <i>J</i> = 2.0 Hz) 6.69 (1H, <i>d</i> , <i>J</i> = 8.1 Hz) 6.56 (1H, <i>dd</i> , <i>J</i> = 8.1, 2.0 Hz)	6.71 (1H, <i>d</i> , <i>J</i> = 2.0 Hz) 6.64 (1H, <i>d</i> , <i>J</i> = 8.1 Hz) 6.54 (1H, <i>dd</i> , <i>J</i> = 8.1, 2.0 Hz)	6.67 (1H, d, J=2.7 Hz) 6.59 (1H, d, J=8.8 Hz) 6.46 (1H, dd, J=8.8, 2.7 Hz)
χ	3.93 (1H, <i>m</i>) 3.62 (1H, <i>m</i>)	3.94 (1H, <i>m</i>) 3.66 (1H, <i>m</i>)	3.93 (1H, <i>m</i>) 3.68 (1H, <i>m</i>)	3.98 (1H, m)3.66 (1H, m) 3.66 (1H, <i>m</i>)	3.95 (1H, <i>m</i>)3.64 (1H, <i>m</i>) 3.64 (1H, <i>m</i>)	_
-OMe	2.72 (2H, t, J=7.3 Hz)	2.75 (2H, <i>t</i> , <i>J</i> = 7.5 Hz) 3.70 (3H, <i>s</i>)	2.71 (2H, <i>m</i>)	2.76 (2H, <i>m</i>)	2.73 (2H, <i>m</i>)	- 3.73 (3H, <i>s</i>)
Ester moiety		7.09 (1H, d, J=1.9 Hz)	6.99 (1H, d, J=1.5 Hz)	7.05 (1H, d, J = 2.0 Hz)	7.00 (1H, d, J=2.0 Hz)	_
2 5' 5' x'		6.74 (1H, <i>d</i> , <i>J</i> = 8.1 Hz) 6.96 (1H, <i>dd</i> , <i>J</i> = 8.1, 1.9 Hz) 6.32 (1H, <i>d</i> , <i>J</i> = 15.9 Hz)	6.72 (1H, <i>d</i> , <i>J</i> = 8.1 Hz) 6.84 (1H, <i>dd</i> , <i>J</i> = 8.1, 1.5 Hz) 6.23 (1H, <i>d</i> , <i>J</i> = 15.9 Hz))	6.78 (1H, <i>d</i> , <i>J</i> = 8.1 Hz) 6.94 (1H, <i>dd</i> , <i>J</i> = 8.1, 2.0 Hz) 6.26 (1H, <i>d</i> , <i>J</i> = 15.6 Hz)	6.73 (1H, <i>d</i> , <i>J</i> = 8.3 Hz) 6.90 (1H, <i>dd</i> , <i>J</i> = 8.3, 2.0 Hz) 6.21 (1H, <i>d</i> , <i>J</i> = 15.9 Hz)	
β΄ 4′-OMe		7.57 (1H, <i>d</i> , <i>J</i> = 15.9 Hz) 3.81 (3H, <i>s</i>)	7.51 (1H, <i>d</i> , <i>J</i> = 15.9 Hz)	7.57 (1H, <i>d</i> , <i>J</i> = 15.6 Hz)	7.53 (1H, <i>d</i> , <i>J</i> = 15.9 Hz)	
Glucose I"	4.31 (1H, d, J=7.8 Hz)	4.36 (1H, <i>d</i> , <i>J</i> = 7.8 Hz)	4.42 (1H, <i>d</i> , <i>J</i> = 7.8 Hz)	4.55 (1H, d, J=7.8 Hz)	4.57 (1H, <i>d</i> , <i>J</i> = 7.8 Hz)	4.69 (1H, d, J=7.8 Hz)
,	3.39 (1H, dd, J = 9.3, 7.8 Hz)	3.42 (1H, dd, J=8.8, 7.8 Hz)	3.54 (1H, dd, J = 8.3, 7.8 Hz)	3.68 (1H, dd, J=9.0, 7.8 Hz)	3.48 (1H, dd , $J = 9.0$, 7.8 Hz)	a
,	3.53 (1H, dd, J=9.3, 8.0 Hz)	3.57 (1H, dd, J=9.0, 8.8 Hz)	3.64 (1H, dd, J=9.3, 8.3 Hz)	3.96 (1H, dd, J=9.3, 8.1 Hz)	3.95 (1H, dd, J=9.3, 9.0 Hz)	a
,,	3.94 ^a	3.90 ^a	3.92 (1H, dd, J=9.3, 9.3 Hz)	5.03 (1H, dd , J =9.5, 9.3 Hz)	5.00 (1H, dd , J =9.5, 9.3 Hz)	a
;//	3.23 (1H, <i>m</i>)	3.48 (1H, <i>m</i>)	3.48 ^a	3.58 (1H, <i>m</i>)	3.68 (1H, <i>m</i>)	
3"	3.81 (1H, brd, J=12.2 Hz) 3.63 (1H, dd, J=12.2, 4.9 Hz)	4.45 (1H, dd, J=12.0, 2.0 Hz) 4.31 (1H, dd, J=12.0, 6.1 Hz)	4.47 ^a 4.29 (1H, <i>dd</i> , <i>J</i> = 12.0, 6.1 Hz)	4.14 (1H, dd, J=12.0, 5.0 Hz) 4.05 ^a	4.11 (1H, dd, J=12.2, 5.1 Hz) 4.00 (1H, dd, J=12.2, 2.6 Hz)	3.79 (1H, dd, J=12.2, 2.0 H 3.57 (1H, dd, J=12.2, 5.4 H
Rhamnose '''	4.04 (111 4 1-1211-)	406 (III J I=15 II=)	5.07 (1H, d, J=1.3 Hz)	5 17 (1H J I = 1 5 H=)	5 14 (111 J I = 1 5 H=)	
,,, ,,,	4.94 (1H, d , J =1.3 Hz) 3.96 (1H, dd , J =3.4, 1.3 Hz)	4.96 (1H, d, J=1.5 Hz) 3.94 (1H, m)	3.07 (1H, d , $J = 1.3$ Hz) 4.01 (1H, dd , $J = 3.4$, 1.5 Hz)	5.17 (1H, d, J=1.5 Hz) 4.04 ^a	5.14 (1H, d , $J = 1.5$ Hz)	_
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.62 ^a	3.62 ^a	3.60^{a}	3.57 ^a	4.03 (1H, dd, J=3.5, 1.5 Hz) 3.53 (1H, dd, J=9.6, 3.5 Hz)	_
,,,	3.36 ^a	3.30 ^a	3.31 ^a	3.30 ^a	3.29 ^a	_
///	3.96 ^a	3.98 ^a	3.98 ^a	3.52 ^a	3.40 (1H, dd , J =9.8, 6.1 Hz)	_
///	1.21 (3H, d , J =6.1 Hz)	1.21 (3H, d , J =6.1 Hz)	1.21 (3H, d , J =6.1 Hz)	1.10 (3H, d , J =6.1 Hz)	1.05 (3H, d , J = 6.1 Hz)	_
2"-O-Sugar	Apiose	Apiose	Arabinose	Arabinose	Galactose	Apiose
<i>""</i>	5.16 (1H, d, J=1.5 Hz)	5.15 (1H, d, J = 1.9 Hz)	4.47 (1H, d, J = 6.9 Hz)	4.50 (1H, d, J = 7.0 Hz)	4.53 (1H, d, J = 7.8 Hz)	5.36 (1H, d, J = 1.5 Hz)
,,,,	3.87 (1H, d, J=1.5 Hz)	3.86 (1H, d, J=1.9 Hz)	3.56 ^a	3.56 ^a	3.57 ^a	3.86 (1H, d, J = 1.5 Hz)
,,,,		_	3.48 ^a	3.52 ^a	3.47 (1H, dd, J=7.8, 4.1 Hz)	_
! ""	3.91 (1H, <i>d</i> , <i>J</i> =9.8 Hz)	3.93 (1H, d, J=9.8 Hz)	3.76 (1H, <i>m</i>)	3.77 (1H, <i>m</i>)	3.54 ^a	4.01 (1H, d, J=9.5 Hz)
-1111	3.67 (1H, d , J =9.8 Hz)	3.66 (1H, d, J=9.8 Hz)	- 2.01 (1H, 11, 1, 12, 2, 2, 4, H)	- 2.023	-	3.69 (1H, d , J =9.5 Hz)
5""	3.54 (2H, s)	3.52 (2H, s)	3.81 (1H, dd, J = 12.2, 3.4 Hz)		3.21 (1H, 11.9, 6.8 Hz)	3.49 (2H, s)
	_	_	3.25 (1H, dd, J=12.2, 1.5 Hz)	3.20 (1H, d, J=12.0, 1.5 Hz)	-	_
5""	_	_	_	_	3.70 ^a	_
	_	_	_	_	3.62 ^a	_
Ac	_	_	_	2.0 (3H, s)	1.97 (3H, s)	_

^a Signal pattern unclear due to overlapping.

MeOH, (V) 40% aq. MeOH, (VI) 45% aq. MeOH, (VII) 20–70% aq. MeOH, (VIII) 5% aq. MeCN, (IX) 8% aq. MeCN, (X) 15% aq. MeCN, (XI) 45% aq. MeCN, (XII) 10% aq. MeCN, (XIII) 85% aq. MeCN), (XIV) 20% aq. MeCN, (XV) 25% aq. MeCN and (XVI) 28% aq. MeCN. The spray reagent used for TLC was 10% H₂SO₄ in 50% EtOH.

3.2. Plant material

The leaves and branches of *Markhamia stipulata* Seem. ex K. Schum were collected in April 2000 from the Botanical gardens, Faculty of Pharmaceutical Sci-

Table 2 ¹³C NMR Spectral data for compounds **2–12** (100 MHz, CD₃OD)

ences, Khon Kaen University, Thailand. The identification of the plant was confirmed by Professor Vichiara Jirawongse, Department of Pharmaceutical Botany and Pharmacognosy, Faculty of Pharmaceutical Sciences, Khon Kaen University. A voucher sample (KKU-0022) is kept in the Herbarium of the Faculty of Pharmaceutical Sciences, Khon Kaen University, Thailand.

3.3. Extraction and isolation

The dried leaves and branches (1.7 kg) of *M. stipulata* were extracted with hot MeOH. After removal of the solvent by evaporation, the residue (117.0 g) was defat-

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Carbon no.	2	3	4	5	6	7	8	9	10	11	12
131.5 131.5 131.5 131.5 131.4 131.6 131.4 131.4 132.8 131.7 131.8 131.8 2	Aglycone											·
2	~ .	131.5	131.5	131.5	131.4	131.6	131.4	131.4	132.8	131.7	131.8	131.8
3	2											117.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
α 72.3 71.9 72.2 72.4 72.2 72.2 72.2 72.1 72.2 72.1 72.0 4-OMe 36.5 36.5 36.5 36.5 36.4 36.6 36.7 36.7 36.7 4-OMe — — — — — — 56.4 — — — Ester molety I — — — — — 56.4 — — — — 2 19.7 127.6 127.7 127.5 127.6 127.7 127.6 127.7 127.6 127.7 127.6 127.7 127.6 127.7 127.6 127.7 127.5 127.6 127.7 127.6 127.7 127.6 127.7 127.6 127.7 127.6 127.7 127.7 127.6 127.7 127.6 127.7 127.6 127.7 127.6 127.7 127.6 127.7 127.6 127.7 127.7 127.7 127.7 <th< td=""><td></td><td>121.2</td><td></td><td>121.3</td><td>121.3</td><td>121.3</td><td>121.2</td><td>121.3</td><td></td><td>121.4</td><td>121.5</td><td></td></th<>		121.2		121.3	121.3	121.3	121.2	121.3		121.4	121.5	
β												
## A Company of the												
Part												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	_	_	_	_	_	_	30.4	_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
3' 149.7 149.5 149.7 149.5 149.5 149.5 149.4 149.5 149.7 149.7 4' 146.8 146.8 146.6 146.8 146.5 146.7 150.6 146.7 146.8 146.8 5' 116.5 116.6 116.5 116.6 116.6 116.5 166.6 116.6 116.5 166.6 116.6 116.5 166.6 116.5 116.6 116.5 116.6 116.5 116.6 116.5 116.6 116.5 116.6 116.5 116.6 116.5 116.5												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					146.6	146.8	146.5	146.7	150.6	146.7	146.8	146.8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5'										116.6	
β' 148.0 147.2 147.9 147.8 147.2 147.1 147.2 148.0 148.0 C = O 168.3 169.1 168.3 167.9 169.1 169.0 169.1 168.0 168.0 3'OMe − − − − − 56.4 − 0 0 0 <th< td=""><td>6'</td><td></td><td></td><td>123.2</td><td>123.1</td><td>123.2</td><td>123.1</td><td>123.2</td><td>124.3</td><td>123.1</td><td>123.2</td><td>123.2</td></th<>	6'			123.2	123.1	123.2	123.1	123.2	124.3	123.1	123.2	123.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	α'			114.7	114.8	114.9	114.7	114.8	115.3	114.8	114.7	114.8
C=O 3'-OMe	β′			148.0								
3'-OMe - - - - - 56.4 - - - Glc 1" 104.1 102.9 103.1 102.9 103.1 103.2 103.0 103.0 102.8 2" 75.6 79.4 76.2 75.2 81.0 80.6 79.6 79.7 81.4 82.5 82.1 3" 84.5 86.3 81.6 83.9 82.0 81.7 85.6 85.8 85.3 81.1 81.0 4" 70.1 70.3 70.4 70.0 70.8 70.6 70.5 70.7 70.5 70.6 70.6 5" 77.7 77.5 76.0 75.5 76.0 72.7 75.1 75.2 75.0 72.9 72.9 6" 62.6 62.5 62.4 64.6 62.4 63.8 64.5 64.6 64.6 64.0 64.0 64.0 Rham 1"" 102.7 103.3 103.0				168.3			167.9					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3'-OMe											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gl_{c}											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		104.1	102.0	104.2	104.2	102.1	102.0	102.1	102.2	102.0	102.0	102.8
3" 84.5 86.3 81.6 83.9 82.0 81.7 85.6 85.8 85.3 81.1 81.0 4" 70.1 70.3 70.4 70.0 70.8 70.6 70.5 70.7 70.5 70.6 70.6 5" 77.7 77.5 76.0 75.5 76.0 72.7 75.1 75.2 75.0 72.9 72.9 6" 62.6 62.5 62.4 64.6 62.4 63.8 64.5 64.6 64.6 64.0 64.0 Rham 1"" 102.7 103.3 103.0 102.6 103.5 103.3 103.3 103.4 103.1 103.1 103.1 2"" 72.2 72.1 72.3 72.2 72.3 72.2 72.3 72.2 72.1 72.2 72.3 72.2 72.1 72.2 72.2 72.1 72.2 72.2 72.1 72.2 72.1 72.2 72.1 72.2 72.1 72.2 72.1 72.2 72.1 72.2 72.1 72.2 72.1 <td></td>												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
Rham 1"" 102.7 103.3 103.0 102.6 103.5 103.3 103.3 103.4 103.1 103.1 103.1 2"" 72.2 72.1 72.3 72.2 72.3 72.1 72.2 72.3 72.2 72.3 72.2 72.3 72.2 72.1 72.0 72.0 72.2 72.1 72.0 72.0 72.1 72.2 72.1 72.1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6"	62.6	62.5	62.4	64.6	62.4	63.8	64.5	64.6	64.6	64.0	64.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		102.7	103.3	103.0	102.6	103.5	103.3	103.3	103.4	103.1	103.1	103.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2""	72.2	72.1	72.3	72.2	72.3	72.1	72.2	72.3	72.2	72.1	72.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		72.1	72.0	72.0	72.2	71.9	71.7	72.1	72.2	72.1	71.9	72.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4′′′										73.8	73.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5′′′						70.5	70.5	70.5	70.5	70.6	70.6
1"" 110.9 111.2 111.0 111.0 111.0 104.4 104.1 103.8 2"" 78.4 78.5 78.4 78.5 72.8 72.8 73.1 3"" 80.5 80.4 80.3 80.5 80.5 74.3 74.5 75.2 4"" 75.1 75.1 75.0 75.1 75.2 69.3 69.5 70.4 5"" 65.7 65.7 65.7 65.7 66.5 66.8 76.5 6"" 172.5 172.6 172.6 172.5	6′′′											
1"" 110.9 111.2 111.0 111.0 111.0 104.4 104.1 103.8 2"" 78.4 78.5 78.4 78.5 72.8 72.8 73.1 3"" 80.5 80.4 80.3 80.5 80.5 74.3 74.5 75.2 4"" 75.1 75.1 75.0 75.1 75.2 69.3 69.5 70.4 5"" 65.7 65.7 65.7 65.7 66.5 66.8 76.5 6"" 172.5 172.6 172.6 172.5	2" O Sugar		4ni			4 ni	4ni	4ni	4ni	Ara	Ara	Gal
2"" 78.4 78.5 78.4 78.4 78.5 72.8 72.8 73.1 3"" 80.5 80.4 80.3 80.5 80.5 74.3 74.5 75.2 4"" 75.1 75.1 75.0 75.1 75.2 69.3 69.5 70.4 5"" 65.7 65.5 65.4 65.7 65.7 66.5 66.8 76.5 6"" COCH ₃												
3"" 80.5 80.4 80.3 80.5 80.5 74.3 74.5 75.2 4"" 75.1 75.1 75.0 75.1 75.2 69.3 69.5 70.4 5"" 65.7 65.5 65.4 65.7 65.7 66.5 66.8 76.5 6"" 62.5												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
5"" 65.7 65.5 65.4 65.7 66.5 66.8 76.5 62.5 COCH ₃ 172.5 172.6 172.5												
6"" 62.5 COCH ₃ 172.5 172.6 172.5												
COCH ₃ 172.5 172.6 172.5			65.7			65.5	65.4	65.7	65.7	66.5	66.8	
	6''''											62.5
	$COCH_3$						172.5				172.6	172.5
	COCH ₃						20.7				20.7	20.7

ted with Et₂O. The aqueous layer was subjected to a column of highly porous copolymer of styrene and divinylbenzene and eluted with H2O, MeOH and Me₂CO, successively. The fraction eluted with MeOH (39.0 g) was subjected to a column of silica gel (systems I, II and III, respectively) affording six fractions. Fraction 2 (3.8 g) was applied to a column of RP-18 using system IV to provide seven fractions. Fraction 2-1 was purified by prep. HPLC (system V) to provide compounds 4 (277 mg) and 15 (110 mg). Fraction 2-3 was purified by prep. HPLC (system VI) to give compounds 5 (190 mg) and 14 (61 mg). Fraction 3 (11.0 g) was subjected to a column of RP-18 (system VII) to afford 13 fractions, together with compound 7 (3.2 g) from fraction 3-8. Fraction 3-1 was purified by prep. HPLC-ODS (systemVIII) to provide compound 13 (4 mg). Fraction 3-3 was purified by prep. HPLC-ODS (system IX) to afford compound 2 (47 mg). Fraction 3-5 was purified by prep. HPLC-ODS (system X) to give compounds **16** (133 mg) and **19** (16 mg). Fraction 3-5 was similarly purified by prep. HPLC-ODS (system VI) to afford compounds 6 (31 mg) and 8 (125 mg). Fraction 3-12 was purified by prep. HPLC-ODS (system XVI) to give compound 9 (18 mg). Fraction 4 (6.2 g) was reapplied for a RP-18 column (system VII) to afford nine fractions. Fraction 4-1 was purified by prep. HPLC-ODS (system IX) to provide compounds 17 (93 mg) and 18 (45 mg). Fraction 4-3 was further purified by prep. HPLC-ODS (system XII) and HPLC-Diol (system XIII) to give compound 3 (141 mg). Fraction 4-6 was similarly purified by prep. HPLC-ODS (system XIV) to afford compounds 1 (27 mg) and 10 (43 mg). Finally, fraction 4-7 was purified by prep. HPLC-ODS (system XV) to provide compounds 11 (143 mg) and 12 (39 mg).

3.4. Markhamioside A (3)

Amorphous powder, $[\alpha]_D^{31}$ –74.8° (MeOH, c 3.23); for ¹H NMR and ¹³C NMR of (CD₃OD) spectra, see Tables 1 and 2. Negative HR–FAB–MS, m/z: 593.2075 [M–H]⁻ (C₂₅H₃₇O₁₆ requires 593.2081).

3.5. Markhamioside B (9)

Amorphous powder, $[\alpha]_D^{31}$ –46.5° (MeOH, c 0.75); for ¹H NMR and ¹³C NMR (CD₃OD) spectra see Tables 1 and 2. Negative HR–FAB–MS, m/z: 783.2704 [M–H]⁻ (C₃₆H₄₇O₁₉ requires 783.2711).

3.6. Markhamioside C (10)

Amorphous powder, $[\alpha]_D^{31}$ +61.1° (MeOH, c 3.48); for ¹H NMR and ¹³C NMR (CD₃OD) spectra, see Tables 1 and 2. Negative HR–FAB–MS, m/z: 755.2413 [M–H]⁻ (C₃₄H₄₃O₁₉ requires 755.2398).

3.7. Markhamioside D (11)

Amorphous powder, $[\alpha]_D^{31}$ – 57.6° (MeOH, c 2.54); for ¹H NMR and ¹³C NMR (CD₃OD) spectra, see Tables 1 and 2. Negative HR–FAB–MS, m/z: 797.2501 [M–H]⁻ (C₃₆H₄₅O₂₀ requires 797.2504).

3.8. Markhamioside E (12)

Amorphous powder, $[\alpha]_D^{31}$ –43.8° (MeOH, c 1.71); for ¹H NMR and ¹³C NMR (CD₃OD) spectra, see Tables 1 and 2. Negative HR–FAB–MS, m/z: 827.2615 [M–H]⁻ (C₃₇H₄₇O₂₁ requires 827.2609).

3.9. Acid hydrolysis of markhamiosides A–E (3, 9–12)

Compound 3 (ca 5 mg) was dissolved in 0.2 N $\rm H_2SO_4$ (5 ml) and heated at 95 °C for 1 h. After cooling, the reaction mixture was extracted with $\rm Et_2O$. The aqueous layer was neutralized with NaHCO₃, concentrated to dryness, and extracted with pyridine. The pyridine extract was then analyzed on silica gel TLC (EtOAc–MeOH– $\rm H_2O$ –AcOH 13:3:3:4). Rhamnose ($R_{\rm f}$ 0.52), apiose ($R_{\rm f}$ 0.48) and glucose ($R_{\rm f}$ 0.32) wew detected by comparison with authentic samples. By the same method, (i) compound 9 yielded rhamnose $R_{\rm f}$ 0.52),

13 C NMR spectral data compounds 13, 14 and 15 (100 MHz, CD₃OD)

С	13	14	15
1	152.8	134.2	152.4
2	103.7	95.4	103.1
3	149.3	154.6	149.2
4	142.9	155.4	142.7
5	116.1	154.6	116.0
6	109.8	95.4	109.4
1'	102.5	101.1	101.8
2'	78.8	78.8	78.8
3'	78.1	78.3	78.5
4'	71.6	71.7	71.7
5'	78.8	78.8	78.8
6'	62.6	62.6	62.6
1'	110.8	110.6	110.5
2'	78.1	78.2	78.0
3'	80.7	79.1	79.2
4'	75.5	75.2	75.4
5′	66.1	67.4	67.9
1‴		122.1	122.3
2""		113.8	113.8
3""		152.8	152.9
4"'		148.6	148.7
5‴		125.2	125.3
6""		115.8	115.9
C=O		167.6	167.8
MeO-3	56.4	56.4	56.3
MeO-4		61.2	
MeO-5		56.4	
MeO-3"		56.5	56.3

apiose ($R_{\rm f}$ 0.48) and glucose ($R_{\rm f}$ 0.32); (ii) compounds **10** and **11** yielded rhamnose ($R_{\rm f}$ 0.52), arabinose ($R_{\rm f}$ 0.41) and glucose ($R_{\rm f}$ 0.32); (iii) compound **12** yielded rhamnose ($R_{\rm f}$ 0.54), glucose ($R_{\rm f}$ 0.31) and galactose ($R_{\rm f}$ 0.27) with solvent system n-BuOH–C₅H₅N–H₂O (6:4:3).

3.10. Markhamioside F (13)

Amorphous powder, $[\alpha]_D^{31}$ 110.7° (MeOH, c 0.28); for ¹H NMR and ¹³C NMR (CD₃OD) spectra, see Tables 1 and 3. Negative HR–FAB–MS, m/z: 433.1319 [M–H]⁻ (C₁₈H₂₅O₁₂ requires 433.1346).

Acknowledgements

We would like to thank the Research Center for Molecular Medicine, Hiroshima University for the use of its NMR facilities. Also, we are grateful to Mr. Bamrung Thavinchiua of the Department of Pharmaceutical Botany and Pharmacognosy, Faculty of Pharmaceutical Sciences, Khon Kaen University, Thailand, for help in obtaining the plant material.

References

- Achenbach, H., Lowel, M., Waibel, R., Gupta, M., Solis, P., 1992. New lignan glucosides from *Stemmadenia minima*. Planta Medica 58, 270–272.
- Cometa, F., Tomassini, M., Nicoletti, M., 1993. Phenylpropanoid glycosides: distribution and pharmacological activity. Fitoterapia 64, 195–217.
- Jimenez, C., Riguera, R., 1994. Phenylethanoid glycosides in Plants: structure and biological activity. Natural Product Reports 11, 591– 606
- Joshi, K.C., Singh, P., Pardasani, R.T., 1978. Chemical constituents of the stem heartwood of *Markhamia stipulata*. Planta Medica 34, 219–221.

- Kanchanapoom, T., Kasai, R., Yamasaki, K., 2001. Lignan and phenylpropanoid glycosides from *Fernandoa adenophylla*. Phytochemistry 57, 1245–1248.
- Kanchanapoom, T., Kasai, R., Yamasaki, K., 2002. Phenolic and iridoid glycosides from *Barnettia kerri*. Phytochemistry 59, 565–570.
- Karasawa, H., Kobayashi, H., Takizawa, N., Miyase, T., Fukushima, S., 1986. Studies on the constituents of *Cistanchis herba*. VII. Isolation and structures of cistanosides H and I. Yakugaku Zasshi 106, 562–566.
- Kernan, M.R., Amnarquaye, A., Chen, J.L., Chan, J., Sesin, D.F.,
 Parkinson, N., Ye, Z., Barrett, M., Bales, C., Stoddart, C.A., Sloan,
 B., Blanc, P., Limbach, C., Mrisho, S., Rozhon, E.J., 1998. Antiviral phenylpropanoid glycosides from the medicinal plant *Mar-khamia lutea*. Journal of Natural Products 61, 564–570.
- Lahloub, M.F., Gross, G.-A., Sticher, O., Winkler, t., Schulten, H.-R., 1986. Ehrenoside, a new phenylpropanoid glycoside from *Veronica bellidioides*. Planta Medica 52, 352–355.
- Miyase, T., Ishino, M., Akahori, C., Ueno, A., Ohkawa, Y., Tanizawa, H., 1991. Phenylpropanoid glycosides from *Plantago asiatica*. Phytochemistry 30, 2015–2018.
- Miyase, T., Koizumi, A., Ueno, A., Noro, T., Kuroyanagi, M., Fukushima, S., Akiyama, Y., Takemoto, T., 1982. Studies on the acyl glycosides from *Leucoseptrum japonicum*. Chemical and Pharmaceutical Bulletin 30, 2732–2737.
- Nishimura, H., Sasaki, H., Morota, T., Chin, M., Mitsuhashi, H., 1989. Six iridoid glycosides from *Rehmannia glutinosa*. Phytochemistry 28, 2705–2709.
- Ono, M., Yoshida, A., Ito, Y., Nohara, T., 1999. Phenethyl alcohol glycosides and isopentenol glycoside from fruit of *Bupleurum flaca-tum*. Phytochemistry 51, 819–823.
- Otsuka, H., Yao, M., Kamada, K., Takeda, Y., 1995. Alangionosides G-M: glycosides of megastigmane derivatives from the leaves of *Alangium premnifolium*. Chemical and Pharmaceutical Bulletin 43, 754–759.
- Sasaki, H., Nishimura, H., Chin, M., Mitsuhashi, H., 1989. Hydroxycinnamic acid esters of phenylalcohol glycosides from *Rehmania* glutinosa var. purpurea. Phytochemistry 28, 875–879.
- Seya, K., Endo, K., Hikino, H., 1989. Structures of rengyosides A, B and C, three glucosides of *Forsythia suspensa* fruits. Phytochemistry 28, 1495–1498.
- Zhong, X.-N., Otsuka, H., Ide, T., Hirata, E., Takeda, Y., 1999. Hydroquinone diglycosides acyl esters from the leaves of *Myrsine seguinii*. Phytochemistry 52, 923–927.