

PHYTOCHEMISTRY

Phytochemistry 60 (2002) 197-200

www.elsevier.com/locate/phytochem

Three labdane diterpenoids from *Aframomum sceptrum* (Zingiberaceae)

Christabel Tomla^a, Pierre Kamnaing^a, Godfred A. Ayimele^a, Eric A. Tanifum^a, Apollinaire Tsopmo^a, Pierre Tane^a, Johnson F. Ayafor^{a,†}, Joseph D. Connolly^{b,*}

^aDepartment of Chemistry, University of Dschang, PO Box 67, Dschang, Cameroon ^bChemistry Department, The University of Glasgow G12 8QQ, Scotland, UK

Received 31 October 2001; received in revised form 15 February 2002

Abstract

Three labdane diterpenoids, 8β ,17-epoxy-3 β ,7 β -dihydroxy-12(*E*)-labden-16,15-olide (1), methyl 8β ,17-epoxy-3 β ,7 β ,15-trihydroxy-12(*E*)-labden-16-oate (2) and 3β ,7 β ,8 β ,12 ζ ,17-pentahydroxylabdan-16,15-olide (3) have been isolated from the seeds of *Afromomum sceptrum* K. Schum (Zingiberaceae) and their structures assigned on the basis of their spectroscopic properties. Nerolidol, and the known flavonoids 3-acetoxy-4',5,7-trihydroxyflavanone, and 3,4',5,7-tetrahydroxyflavanone were also obtained. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Aframomum sceptrum; Zingiberaceae; Labdane diterpenoids

1. Introduction

Over 20 species of the genus *Aframomum* occur in Cameroon (Badré, 1972) where they are widely used for medicinal, ethnodietary and spiritual purposes. Several compounds with interesting bioactivity, including the hot-tasting non-toxic antifungal agent, aframodial (Kimbu et al., 1979; Morita and Itokawa, 1988) and other diterpenoids (Ayafor et al., 1994) and flavonoids (Ayafor and Connolly, 1981; Tsopmo et al., 1996), have been isolated in recent years from some of the species. This paper describes an investigation of the seeds of an unusually bitter species, identified as *Aframomum sceptrum*. These seeds are used in traditional medicine.

2. Results and discussion

Three new labdane diterpenoids, namely 8β ,17-epoxy- 3β ,7 β -dihydroxy-12(E)-labden-16,15-olide (1), the bitter principle, methyl 8β ,17-epoxy- 3β ,7 β ,15-trihydroxy-12(E)-labden-16-oate (2), and 3β ,7 β ,8 β ,12 ζ ,17-pentahydroxy-labdan-16,15-olide (3) have been isolated and char-

E-mail address: joec@chem.gla.ac.uk (J.D. Connolly).

acterized along with the known nerolidol, 3-acetoxy-4',5,7-trihydroxyflavanone, and 3,4',5,7-tetrahydroxyflavanone (Ayafor and Connolly, 1981). Compound 1 exhibits slight trypanocidal activity. All the *Aframomum* species examined thus far contain labdane diterpenoids.

The dry powdered seeds of *A. sceptrum* were macerated with acetone and the solvent evaporated under reduced pressure. The crude extract was then subjected to repeated column chromatography, gel permeation chromatography through Sephadex LH-20, and the chromatotron to afford compounds 1–3.

[†] Deceased.

^{*} Corresponding author. Tel.: $\pm 44-141-330-5499$; fax: $\pm 44-141-330-4888$.

Compound 1 was obtained as white crystals, mp 139– 140 °C, from hexane–EtOAc. The EIMS of 1 showed a molecular ion peak at m/z 350 compatible with the molecular formula C₂₀H₃₀O₅. The IR spectrum revealed the presence of hydroxyl and lactone groups characterized by absorptions at v_{max} 3441 and 1747 cm⁻¹, respectively. The ¹H NMR spectrum of 1 (Table 1), which simplified on D₂O exchange, showed three tertiary methyl groups δ 1.05 (3H-18), 0.90 (3H-20), and 0.85 (3H-19)] and a deshielded olefinic signal at δ 6.55 (H-12, m) typical of labdanes (Ayafor et al., 1994; Tsopmo et al., 1996). The presence of an 8(17)-epoxide in this spectrum was indicated by the chemical shifts at δ 2.90 (H-17b, d, J=4.0 Hz) and 2.40 (H-17a, d, J=4.0Hz). A detailed analysis of the ¹H–¹H COSY spectrum in conjunction with the HMQC spectrum established the presence of several spin systems, namely two (-CH-CH₂-CH-), a-CH-CH₂-CH₂-, a-CH₂-CH₂-, and an isolated -CH2. In the first spin system, the olefinic proton resonating at δ 6.55 (H-12) correlated with two protons at δ 1.90 and 2.15 (2H-11) which were in turn coupled to the signal at δ 1.60 (H-9). The ¹³C NMR spectrum (Table 1), analyzed with the aid of the HMQC spectrum, showed a carbonyl group at δ 171.4 (C-16), a trisubstituted double bond at δ 142.0 (C-12) and 125.8 (C-13), two oxymethines at δ 78.8 (C-3) and 69.4 (C-7), and an oxymethylene at δ 65.7 (C-15). The presence of the 8(17)-epoxide was characterized by the carbon signals at δ 59.5 (C-8) and 45.1 (C-17) and the tertiary

methyl signals by shifts at δ 28.6 (C-18), 15.0 (C-20), and 15.8 (C-19). Correlations in the HMBC spectrum (Table 2) enabled the above part structures to be assembled to give the gross structure 1. Major correlations were observed between H-7 and C-5, C-6, C-8, C-9, and C-17 as well as between H-9 and C-7, C-10, C-11, and C-12.

The stereochemistry at C-3 and C-7 was deduced from the 1 H NMR spectrum. The magnitude of the observed coupling constants of H-3 (δ 3.27), $J_{3,2ax} = 11.4$ Hz and $J_{3,2eq} = 4.6$ Hz and H-7 (δ 3.70), $J_{7,6ax} = 11.6$.Hz and $J_{7,6eq} = 5.1$ Hz, showed that both hydroxyl groups were equatorial and therefore β-oriented. The β-orientation of the C-8, C-17 epoxide was deduced by comparison of the 1 H NMR shifts of the epoxide protons H-17 with those reported for aulacocarpin A and B (Ayafor et al., 1994) and aframodial (Morita and Itokawa, 1988). The correlations observed in the difference NOE spectra of 1 also confirmed the proposed stereochemistry 8 β ,17-epoxy-3 β ,7 β -dihydroxy-12(E)-labden-16,15-olide for 1.

Compound **2** was obtained as white crystals. The CIMS of **2** showed a pseudo-molecular ion peak at m/z 400 [M+NH₄]⁺, compatible with the molecular formula $C_{21}H_{34}O_6$. The IR, ¹H and ¹³C NMR spectra of **2** (Table 1) were similar to those observed for **1** suggesting that it was a close analogue. In the IR spectrum, the C=O absorption band observed at ν_{max} 1747 cm⁻¹ in **1** was shifted to 1707 cm⁻¹ in **2** revealing that the lactone

Table 1 ¹H NMR data (400 MHz) and ¹³C NMR data (100 MHz) for compounds **1**, **2** and **3**

	1 ^a		2 ^a		3 ^b	
	$\delta_{ m c}$	$\delta_{\rm H}$, mult. (<i>J</i>)	$\delta_{ m c}$	$\delta_{\rm H}$, mult. (<i>J</i>)	$\delta_{ m c}$	$\delta_{\rm H}$, mult. (<i>J</i>)
1	37.7	1.80°, 1.65°	37.7	1.80°, 1.15 dd (11.0,3.8)	37.0	1.45°, 0.8°
2	27.4	1.65°	27.5	1.70°	27.2	1.40°
3	78.7	3.27 dd (11.4, 4.6)	78.9	3.30 m	77.2	3.00 m
4	39.4	_	39.3	_	38.7	_
5	51.7	1.06 ^c	51.8	1.10 ^c	52.3	0.80^{c}
6	30.5	2.05 °, 1.50 °	30.6	2.10°, 1.50°	27.0	1.55°
7	69.4	3.70 dd (11.6, 5.1)	69.5	3.70°	73.2	3.11°
8	59.5	=	60.0	_	70.7	
9	51.4	1.60°	51.8	1.60°	52.4	0.95 d (10.2)
10	39.3	_	39.5	_	36.2	_
11	23.3	2.15°, 1.90°	21.9	2.20°, 2.00°	22.1	1.85 m, 1.10 m
12	141.3	6.55 m	146.7	6.75 dd (11.7, 11.7)	77.9	3.55, m
13	125.8	_	129.5	_	43.8	2.85, ddd (3.8, 3.8, 3.8)
14	25.7	2.85 m	31.4	2.60 m	25.2	2.30 m, 2.15 m
15	65.7	4.40 t (7.4)	62.0	3.75°	67.2	4.25 m, 4.15 m
16	171.4	_	168.7	_	177.1	_
17	45.1	2.95 d (4.1), 2.8 d (4.1)	45.2	2.95 d (4.1), 2.96 2.45 d (4.1)	76.2	3.80 d (11.4), 3.81 3.10 d (11.4)
18	28.6	1.05 s	27.5	1.10 s	28.7	0.92 s
19	15.8	0.85 s	15.8	$0.85 \ s$	16.4	0.70 s
20	15.0	0.90 s	15.1	0.95 s	16.0	0.90 s
OMe	_	_	52.4	3.80 s	_	_

^a Spectra recorded in CDCl₃.

^b Spectra recorded in DMSO-d₆.

^c Multiplicity not determined due to overlap.

Table 2 HMBC (H to C) correlations observed for 1, 2 and 3

Proton position	1	2	3
1	5, 9, 10	_	5, 10
2	_	_	1, 3, 4, 10
3	19	_	_
4	_	_	_
5	-	_	_
6	4, 5, 7, 8, 10	4, 5, 8	8, 10
7	6	_	_
8	_	_	_
9	5, 7, 10, 11, 12, 20	10, 11, 12, 20	5, 10, 20
10	_	_	_
11	8, 9, 12, 13	8, 9, 12, 13	9, 12
12	14, 16	9, 14, 16	16
13		_	11, 12, 16
14	12, 13, 15, 16	12, 13, 15, 16	12, 13, 16
15	13, 14, 15	13	14, 16
16		_	_ '
17	7, 8, 9	8	8, 9
18	3, 4, 5, 19	3, 4, 5, 19	3, 4, 5, 19
19	3, 4, 5	3, 4, 5, 18	3, 4, 5
20	9, 10	9, 10	1, 5, 10
OMe	_	16	=

function was not present in 2. In the ¹H NMR spectrum of 2 (Table 1), the chemical shift of the oxymethylene protons at position 15 were shifted upfield from δ 4.40 in 1 to δ 3.75 in 2 with a subsequent correlation in the HMQC spectrum to the carbon at δ 62.0. A methoxy signal appearing at δ 3.80, with an HMBC correlation to a carbonyl carbon at δ 168.7, revealed the presence of a methyl ester function in 2. Further analyses of the DEPT-135, HMQC, ¹H-¹H COSY, NOE difference and HMBC spectra (Table 2) of 2 led to the unambiguous assignment of all protons and carbons and to structure **2**, methyl 8β ,17-epoxy- 3β ,7 β ,15-trihydroxy-12(E)-labden-16-oate to this compound. Similar labdanes with a methyl ester at position 16 have been reported before from Aframomum aulacocarpus (Ayafor et al., 1994) and A. daniellii (Kimbu et al., 1987).

Compound 3 was obtained as white powder (CH₂Cl₂), mp 189–190 °C. Its EIMS showed no [M]⁺ peak, but showed an $[M-H_2O]^+$ ion peak at m/z 368. Analyses of this spectrum together with the ¹H and ¹³C NMR spectra led to the molecular formula $C_{20}H_{34}O_7$. The IR spectrum of 3 revealed the presence of prominent absorption bands at v_{max} 3439 and 1747 cm⁻¹, attributed to hydroxyl and carbonyl (lactone) functionalities, respectively. In contrast to 1 and 2, the UV spectrum showed no absorption maximum above 210 nm. The ¹H NMR spectrum showed three tertiary methyls at δ 0.92, 0.90, and 0.70 typical of labdanes attributed to C-18, C-20 and C-19, respectively. Two oxymethylene groups [δ_H 4.25 (1H, m) and 4.15 (1H, m), $\delta_{\rm C}$ 67.2 (C-15): $\delta_{\rm H}$ 3.78 (1H, d, J=11.4 Hz) and 3.10 (1H, d, J = 11.4 Hz), δ_C 76.2 (C-17)] and three oxymethines [$\delta_{\rm H}$ 3.00, 3.11, 3.55 (all m, H-3, H-7 and H-12 respectively), δ_C 77.2, 73.2 and 77.9] were also present in the molecule. The ¹³C NMR spectrum of 3 also revealed a carbonyl function at δ 177.1. Comparison of ¹H and ¹³C NMR data of 3 with those of 1 showed the absence of olefinic signals and the appearance of an additional oxymethine signal ($\delta_{\rm H}$ 3.55, $\delta_{\rm C}$ 77.9) in 3. The epoxy protons in 1 were also replaced in 3 by shifts at δ_H 3.10 and 3.80, which clearly showed the presence of a hydroxyl group at C-17. The rest of the data (Table 1) were comparable with those reported in the literature for similar compounds (Barrero and Altarejos, 1993). Further analyses of the ¹H–¹H COSY, HMQC, DEPT-135, HMBC (Table 2) and NOE difference spectra of 3 led to the assignment of all protons and carbons and to structure 3, 3β,7β,8β,12ζ,17-pentahydroxylabdan-16,15olide. No direct evidence was obtained for the stereochemistry at C-12 and C-13.

3. Experimental

3.1. General experimental procedures

Melting points were determined on a Kofler apparatus and are uncorrected. Optical rotations were measured on an AA Series Automatic Polarimeter Polaar-2000. The UV spectra were recorded on a Shimadzu UV-3101 PC spectrophotometer, while IR spectra (KBr) were recorded on a Jasco FT-IR-410 spectrophotometer. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded in CDCl₃ or in DMSO-d₆ on a Bruker DPX-400 spectrometer. The chemical shifts (δ) are reported in parts per million (ppm) relative to tetramethylsilane (TMS $\delta = 0$) as internal standard and coupling constants (J values) are given in Hertz. ${}^{1}H-{}^{1}H$ COSY, HMBC, and HMQC experiments were recorded with gradient enhancements using sine shaped gradient pulses. Mass spectra were recorded in the positive EI and CI modes on a Jeol JMS-700 instrument and no fragments below m/z 40 were registered. Column chromatography, on Merck Si gel 60 and gel permeation chromatography on Sephadex LH-20, were used for isolation and purification. TLC was carried out on Kieselgel 60 F₂₅₄ (Merck) pre-coated plates and spots were visualized by spraying with 50% H₂SO₄ solution followed by heating.

3.2. Plant material

The seeds of Aframomum sceptrum K. Schum used for this experiment were collected in Fontem, South-West Province, Cameroon in December 1999. Paul Mezili, a botanist of the Cameroon National Herbarium, authenticated the plant material. Voucher specimens have been deposited in the Herbarium of the Botany Department of the University of Dschang, Cameroon.

3.3. Extraction and isolation

The dried and finely powdered seeds (270 g) of A. sceptrum were macerated three times with acetone (21). Filtration and removal of solvent in vacuo afforded 40 g of crude extract. This extract was subjected to open column chromatography on silica gel and eluted with a hexane–EtOAc gradient to yield five major fractions (A-E): A (6.7 g) eluted with hexane–EtOAc (19:1), B (5.4 g) eluted with hexane–EtOAc (9:1), C (4.6 g) eluted with hexane-EtOAc (1:1), D (12 g) eluted with hexane-EtOAc (3:7), and E (200 mg) eluted with pure EtOAc. A portion (380 mg) of fraction A was purified on a chromatotron with hexane–EtOAc (9:1) as eluent to give nerolidol (125 mg), while fraction C was treated on a silica gel column using CH₂Cl₂-MeOH (49:1) as eluent to yield 3-acetoxy-4',5,7-trihydroxyflavanone (6 mg). Fraction D (2 g) was subjected to gel permeation chromatography through Sephadex LH-20 (MeOH) to give three sub-fractions (D₁–D₃). D₂ was further chromatographed on Si gel using gradients of CH₂Cl₂-MeOH to yield 1 (1 g) and 2 (3.5 mg), while D₃ treated in the same manner gave 3,4',5,7-tetrahydroxyflavanone (6 mg). Compound 3 (90 mg) crystallized out of fraction E.

3.3.1. 8β ,17-Epoxy-3 β ,7 β -dihydroxy-12(E)-labden-16,15-olide (1)

White needles (hexane–EtOAc): mp 139–140 °C; $[\alpha]_D^{22}$ + 27.9 (c 1.24, CH₂Cl₂); UV (MeOH) λ_{max} (log ε) 222 (3.12) nm; IR (KBr) ν_{max} 3441 (OH), 1747 (C=O), 1672, 1632, 1445, 1388, 1204, 1093, 1027, 962, 914, 545 cm⁻¹; ¹H NMR and ¹³C NMR data see Table 1; CIMS m/z (rel. int.) $[M+NH_4]^+$ 368 (100), 338 (42), 333 (7); EIMS (70 eV) m/z (rel. int.) $[M]^+$ 350 [(1), 332 (8), 320 (4), 305 (6), 287 (14), 271 (65), 269 (5), 247 (8), 229 (10), 209 (31), 178 (32), 139 (23), 112 (100), 91 (53), 81 (44).

3.3.2. Methyl 8β ,17-epoxy- 3β ,7 β ,15-trihydroxy-12(E)-labden-16-oate (2)

White crystals (hexane–EtOAc): mp 85–86 °C; $[\alpha]_D^{22}+13.7$ (c 0.35, CH₂Cl₂); UV (MeOH) λ_{max} (log ε) 220 (3.10), 263 (1.63) nm; IR (KBr) ν_{max} 3435 (OH), 1707 (C=O), 1633 (C=C), 1437, 292, 1209, 1094, 912, 749, 544 cm⁻¹; ¹H NMR and ¹³C NMR data are reported in Table 1; CIMS m/z (rel. int) 400 [M+NH₄] + (15), 368

(100), 350 (16), 338 (68); EIMS (70 eV) m/z (rel. int.) [M]⁺ absent, 350 (3), 332 (10), 287 (9), 271 (6), 247 (110, 209 (350), 180 (30), 135 (43), 121 (100), 112 (97), 94 (65), 43 (66).

3.3.3. 3β , 7β , 8β , 12ζ ,17-Pentahydroxylabdan-16,15-olide (3)

White powder (CH₂Cl₂): mp 189–190 °C, $[\alpha]_D^{22}$ –7.14 (c 0.49, MeOH); UV (MeOH) no absorption above 210 nm; IR (KBr) $\nu_{\rm max}$ 3439 (OH), 1746 (C=O), 1631 (C=C), 1456, 1093, 1024, 950, 874 cm⁻¹; ¹H NMR and ¹³C NMR data are reported in Table 1; Isobutane-CIMS m/z (rel. int) [M+H]⁺ 369 (68), 351 (67), 333 (100), 315 (30), 247 (5); EIMS [M]⁺ absent, 350 [M-H₂O]⁺ (4), 336 (100), 318 (8), 274 (14), 233 (17), 211 (22), 135 (13), 121 (20), 81 (21), 55 (23), 41 (24).

Acknowledgements

Financial support from the International Science Program, Uppsala University is gratefully acknowledged.

References

Ayafor, J.F., Connolly, J.D., 1981. 2*R*,3*R*-(+)-3-Acetoxy-4′,5-dihydroxy-7-methoxyflavanone and 2*R*,3*R*-(+)-3-acetoxy-4′,5,7-trihydroxyflavanone: two new 3-acetylated dihydroflavonols from *Afromomum pruinosum* Gagnepain (Zingiberaceae). J. Chem. Soc., Perkin Trans. I, 2563–2565.

Ayafor, J.F., Tchuendem, M.H.K., Nyasse, B., Tillequin, F., Anke, H., 1994. Novel bioactive diterpenoids from *Afromonum aulaco-carpus*. J. Nat. Prod. 57, 917–923.

Badré, F., 1972. Flore du Cameroun. Muséum National de l'Histoire Naturelle, Paris.

Barrero, A.F., Altarejos, J., 1993. ¹³C NMR data for labdane diterpenoids. Magn. Reson. Chem. 31, 299–308.

Kimbu, S.F., Ngadjui, B.T., Sondengam, B.L., Njimi, T., Connolly, J.D., Fakunle, C.O., 1987. A new labdane diterpenoid from the seeds of *Afromomum daniellii*. J. Nat. Prod. 50, 230–231.

Kimbu, S.F., Njimi, T., Sondengam, B.L., Akinniyi, J.A., Connolly, J.D., 1979. The structure of a labdane dialdehyde from *Afromomum daniellii*. J. Chem. Soc., Perkin Trans. I, 1303–1304.

Morita, H., Itokawa, H., 1988. Cytotoxic and antifungal diterpenes from the seeds of *Alpinia galanga*. Planta Med. 54, 117–120.

Tsopmo, A., Tchuendem, M.H.K., Ayafor, J.F., Tillequin, F., Koch, M., Anke, H., 1996. 3-Acetoxy-5,7-dihydroxy-4'-methoxyflavanone, a new cytotoxic dihydroflavanol from *Aframomum hanburyi*. Natural Products Letters 9, 33–37.