

Methylenedioxy- and methoxyflavones from *Melicope coodeana* syn. *Euodia simplex*

Henrik T. Simonsen^a, Michael D. Larsen^a, Merete W. Nielsen^a, Anne Adsersen^a, Carl Erik Olsen^b, Dominique Strasberg^c, Ulla W. Smitt^{a,*}, Jerzy W. Jaroszewski^a

^aDepartment of Medicinal Chemistry, Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark

^bDepartment of Chemistry, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark

^cLaboratoire de Biologie et Physiologie Végétales, Faculté des Sciences et Technologies, Université de La Réunion, F-97715 St.-Denis, Messag Cedex 9, France

Received 14 December 2001; received in revised form 14 February 2002

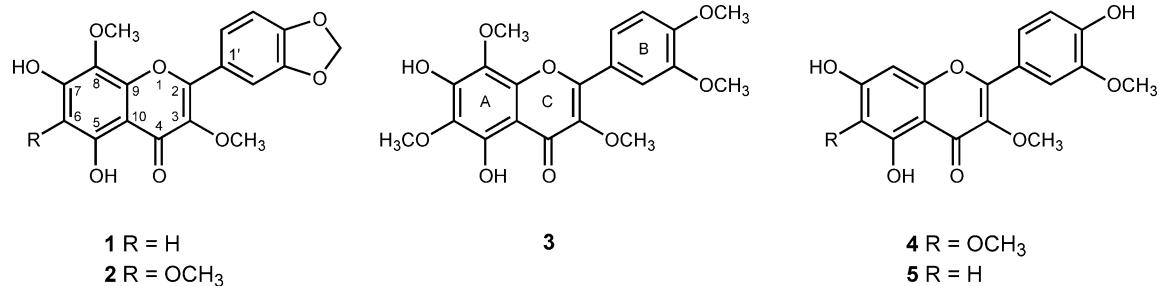
Abstract

Three new natural products, 3,8-dimethoxy-5,7-dihydroxy-3',4'-methylenedioxyflavone, 3,6,8-trimethoxy-5,7-dihydroxy-3',4'-methylenedioxyflavone and 3,6,8,3',4'-pentamethoxy-5,7-dihydroxyflavone were isolated from *Melicope coodeana* syn. *Euodia simplex* (Rutaceae) along with 3,6,3'-trimethoxy-5,7,4'-trihydroxyflavone and 3,3'-dimethoxy-5,7,4'-trihydroxyflavone. The structural assignments are based on ¹H and ¹³C NMR data, including discussion of the chemical shifts of C-2 in 3,5-dihydroxy- and 3-methoxy-5-hydroxyflavones. The presence of highly methoxylated and methylenedioxyflavones is characteristic of the genus *Melicope*, and the present findings support the recent transfer of *Euodia simplex* to *Melicope*. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: *Euodia simplex*; *Melicope coodeana*; Rutaceae; Methylenedioxyflavones; Methoxyflavones; ¹³C NMR; Chemotaxonomy; Réunion Island

1. Introduction

In a recent taxonomic revision of *Euodia* J. R. & G. Forst. and of a part of *Melicope* J. R. & G. Forst. (Rutaceae), all *Euodia* species from the Malagasy region were transferred to *Melicope* (Hartley, 2001). As a part of this revision, the name of *Euodia simplex* Frappier ex Cordem., a species endemic to the Réunion Island, was changed to *Melicope coodeana* T. G. Hartley. *Melicope* species are characterized by the presence of highly methoxylated flavonoids, some of them containing the rare methylenedioxy group (Murphy et al., 1974; Fauvel et al., 1981; Jong and Wu, 1989; Higa et al., 1990; Hou et al., 1994). It was, therefore, of interest to establish the flavonoid pattern of *M. coodeana*. No previous phytochemical studies of this species are known.


2. Results and discussion

Extraction of leaves of *M. coodeana* with CH₂Cl₂–MeOH and fractionation of the extract on silica gel

afforded five flavonoids. Two major flavonoids contained one methylenedioxy group each, as shown by a characteristic two-proton singlet at δ 6.11 and a methylene carbon resonance at δ 102.5. Both compounds showed spin patterns of a 1,3,4-trisubstituted aromatic ring. NOEs from the methylene group to H-2' and H-5' placed the methylenedioxy group in ring B. Chemical shifts of proton and carbon resonances of the B ring in **1** and **2**, identical within experimental error, were closely similar to those reported for similarly substituted flavonoids (Calvert et al., 1979). Compound **1** had a total of two methoxy groups and two hydroxy groups, whereas compound **2** had three methoxy and two hydroxy groups. Both flavonoids showed a low-field proton resonance (δ 13) attributable to a chelated phenol group at C-5.

In a long series of 3-methoxyflavones having a free hydroxy group at C-5, the resonance of C-2 appears in a narrow chemical shift range (δ 154.4–158.3), usually close to δ 156 (Calvert et al., 1979; Roitman and James, 1985; Barbera et al., 1986; Wang et al., 1989; Ahsan et al., 1994; Horie et al., 1995; Boers et al., 1998; Dong et al., 1999). Only a few compounds reported in the literature seem to violate this regularity and their assignments, not established rigorously, appear to be incorrect. Thus,

* Corresponding author. Tel.: +45-3530-6386; fax: +45-3530-6041.
E-mail address: uws@dfh.dk (U.W. Smitt).

the reported assignments of C-2 (δ 148.1) and C-4' (δ 157.4) in 3,7,4'-trimethoxy-5,3'-dihydroxyflavone (Dong et al., 1999) should be interchanged. The reported chemical shifts of C-2 (δ around 151.5) in five 3,6,7-trimethoxy-5-hydroxyflavones differing in the substitution pattern of ring B (Calvert et al., 1979; Wang et al., 1989) are in conflict with those reported for a series of 6,7-dioxygenated and 6,7,8-trioxygenated 3-methoxy-5-hydroxyflavones (Roitman and James, 1985; Ahsan et al., 1994). In contrast to the 3-methoxy-5-hydroxyflavones, the chemical shift of C-2 in a large number of 3,5-dihydroxyflavones was found at δ 145.4–147.3 (Markham et al., 1982; Breitmaier and Voelter, 1990; Ashan et al., 1994; Lichius et al., 1994; Dong et al., 1999). Erroneous assignments have to be excluded also here; for example, the resonance at δ 153.7 assigned to C-2 in 3,5-dihydroxy-6,7,8-trimethoxy-3',4'-methylene-dioxyflavone (Hou et al., 1994) presumably belongs to C-5, and the chemical shift of C-2 is apparently δ 145.4. The chemical shift of C-2 thus appears to be one of the best conserved in flavonoids, being expected to be affected appreciably only by the nature of the substituent at C-3 and by a hydrogen bond between 5-OH and the carbonyl group at C-4. *O*-Methylation of the 5-hydroxy group in 3-hydroxy- and 3-methoxyflavones shifts the resonance of C-2 upfield by 3–4 ppm (Calvert et al., 1979; Breitmaier and Voelter, 1990; Dong et al., 1999).

According to the rules outlined above, the presence of a C-2 resonance close to δ 155 proves the 3-methoxy-flavone structure of **1** and **2**. Accordingly, one of the methoxy groups present in these compounds exhibited NOEs to H-2' and H-5', as expected for a 3-methoxy group. A NOE between the proton of the 5-hydroxy group and the single aromatic hydrogen observed in the ^1H NMR spectrum of **1** demonstrated that the 6-position is free. Thus, C-7 and C-8 bear a hydroxy and a methoxy group. Carbon resonances of aromatic methoxy groups flanked by two *ortho* substituents appear around δ 60, whereas those flanked by only one *ortho* substituent around δ 55 (Roitman and James, 1985). Since both methoxy resonances of **1** were close to δ 60, the second methoxy group is placed at C-8, and hence the hydroxy group is at C-7. All observed HMBC connectivities were in agreement with this structure of **1**. Thus, H-6 showed correlations to C-8 and C-10, 5-OH

to C-4, C-5, C-6 and C-10, methoxy protons to the respective carbons C-3 and C-8, and a full coupling network was observed within ring B, including connectivities from H-2' and H-6' to C-2.

Compound **2** has a fully substituted A ring. In 5,6,7,8-tetraoxxygenated flavonol derivatives with a free hydroxy group at C-5, the resonance of C-5 and C-7 appear near δ 150, and those of C-6 and C-8 near δ 130 (Calvert et al., 1979; Lichius et al., 1994; Horie et al., 1995). In a HMBC spectrum of **2**, the 3-methoxy group correlated with the C-3 resonance at δ 138.9, and the remaining two methoxy groups with carbons at δ 129.0 and 132.8. These two methoxy groups must thus be placed at C-6 and C-8.

NMR spectra of compound **3** showed the presence of five methoxy groups. Analysis of the NMR data similarly as described above showed that **3** differs from **2** by the presence of two methoxy groups instead of the methylenedioxy group in ring B. The compounds **1–3** are new natural products. Their NMR data are collected in Tables 1 and 2. Compound **1** has previously been synthesized from 7-prenyloxy-5-hydroxy-3,8-methoxy-3',4'-methylenedioxyflavone isolated from *M. triphylla* (Higa et al., 1990). Compound **3** has been mentioned in several patents but no description of its preparation, properties or isolation was given. Two last

Table 1
 ^1H NMR (400 MHz) data for flavonoids **1**, **2** and **3**

Hydrogen	1^a	2^a	3^b
6	6.80 (<i>s</i>)	—	—
2'	7.84 (<i>d</i>)	7.85 (<i>d</i>)	7.79 (<i>d</i>)
5'	7.08 (<i>d</i>)	7.09 (<i>d</i>)	7.02 (<i>d</i>)
6'	7.92 (<i>dd</i>)	7.93 (<i>dd</i>)	7.83 (<i>dd</i>)
3-OCH ₃	3.98 (<i>s</i>)	3.99 (<i>s</i>)	3.98 (<i>s</i>) ^d
6- OCH ₃	—	4.02 (<i>s</i>) ^c	3.88 (<i>s</i>) ^d
8- OCH ₃	3.95 (<i>s</i>)	4.03 (<i>s</i>) ^c	3.97 (<i>s</i>) ^d
3'- OCH ₃	—	—	4.00 (<i>s</i>) ^d
4'- OCH ₃	—	—	4.05 (<i>s</i>) ^d
OCH ₂ O	6.11 (<i>s</i>)	6.11 (<i>s</i>)	—
5-OH	13.01 (<i>s</i>)	13.15 (<i>s</i>)	12.58 (<i>s</i>)
Coupling constants	³ <i>J</i> _{5',6'} =8.3 Hz ⁴ <i>J</i> _{2',6'} =1.8 Hz	³ <i>J</i> _{5',6'} =8.3 Hz ⁴ <i>J</i> _{2',6'} =1.8 Hz	³ <i>J</i> _{5',6'} =8.6 Hz ⁴ <i>J</i> _{2',6'} =1.9 Hz

^a In pyridine-*d*₅.

^b In chloroform-*d*.

^{c,d} Assignments marked with the same superscript are interchangeable.

Table 2
¹³C NMR (100 MHz) data for flavonoids **1**, **2** and **3**

Carbon	1 ^a	2 ^a	3 ^b
2	155.1	155.2	155.6
3	139.2	138.9	138.6
4	179.2	179.5	179.3
5	157.9	152.9 ^c	151.5
6	100.2	132.8 ^f	130.4 ^h
7	158.2	^{c,e}	148.0 ⁱ
8	128.7	129.0 ^f	127.1 ^h
9	^c	145.6	144.9
10	105.4	104.7	105.1
1'	124.9	125.0	123.1
2'	108.7	108.7	111.0 ^j
3'	148.6	148.6	148.6 ⁱ
4'	150.1 ^d	150.3 ^d	148.8 ⁱ
5'	109.0	109.0	111.1 ^j
6'	124.0	124.1	122.2
3-OCH ₃	61.3	60.1	—
6-OCH ₃	—	61.3 ^e	60.2 ^k
7-OCH ₃	—	—	61.1 ^k
8-OCH ₃	60.1	60.5 ^g	61.7 ^k
3'-OCH ₃	—	—	55.9 ^k
4'-OCH ₃	—	—	50.0 ^k
OCH ₂ O	102.5	102.5	—

^a In pyridine-*d*₅.

^b In chloroform-*d*.

^c Hidden under the solvent resonance (δ about 149).

^d Hidden under the solvent resonance, δ value determined from HMBC spectrum.

^{e–k} Assignments marked with the same superscript are interchangeable.

flavonoids isolated from *M. coodeana* were identified as **4** and **5** by NOESY experiments and by comparison of their spectral data with those previously reported (Roitman and James, 1985; Wang et al., 1989; Miles et al., 1993).

In addition to the plants belonging to *Melicope*, highly methoxylated and methylenedioxyflavones have so far been isolated from two species of the Rutaceae, *Zieridium ignambiensis* (Elavumoottil et al., 1991) and *Pelea barbigera* (Higa and Scheuer, 1974). In a taxonomic revision by Hartley and Stone (Hartley and Stone, 1989), *Pelea* A. Gray is put in the synonymy with *Melicope*. *Zieridium*, a small genus with only three species all from New Caledonia, belongs to Rutoideae, the same subfamily as *Melicope*. The isolation of **1–5** described in the present work fully supports the recent re-classification of *E. simplex* as *M. coodeana* (Hartley, 2001).

3. Experimental

3.1. General

NMR spectra were recorded on a Bruker AMX400 spectrometer at 25 °C, using TMS as internal standard. Mass spectra were obtained with a Jeol JMS-AX505W

double-focusing mass spectrometer operating in positive-ion EI mode. UV spectra were obtained from HPLC runs with a Shimadzu SPD-M6A diode array detector. The HPLC system also included two LC-6A pumps and a SCL-6A controller. A 125×4.6 mm Nucleosil 100 C18 (5 μ m) column was eluted with MeCN–H₂O containing 0.03% TFA at 1.2 ml/min (linear MeCN gradient from 30 to 50% in 20 min). Preparative HPLC separations were conducted on a Shimadzu system consisting of two LC-10AS pumps, a SCL-10A controller, and a SPD-10A diode array detector, using a 250×12.5 mm column of Nucleosil 100 C18 (5 μ m), operated isocratically with 37% MeCN in H₂O with 0.03% TFA. MPLC separations were performed on a 300×30 mm Bäckström column of Merck silica gel 60 (0.040–0.063 mm). VLC and open-column LC separations were performed using Merck silica gel 60 H and Merck silica gel 60 (0.063–0.200 mm), respectively. For TLC, Merck silica gel 60 F₂₅₄ plates were used with toluene–EtOAc–MeOH (30:8:1) as the eluent.

3.2. Plant material

Leaves of *Melicope coodeana* T. G. Hartley (syn. *Euodia simplex* Frappier ex Cordem.) were collected in February 2000 at Plaine de Chicots, Réunion Island, and identified by the authors. The plant material was dried in an air-conditioned room at about 25 °C. Voucher specimen (DFHAA2) was deposited in Herbarium C (Botanical Museum, University of Copenhagen, Copenhagen).

3.3. Extraction and isolation

Dried and pulverised plant material (265 g) was extracted with 3×2.8 l of CH₂Cl₂–MeOH (1:1) for one hour on an ultrasonic bath. The combined extracts (57 g) were fractionated by VLC using a step-gradient of EtOAc in heptane, to give a flavonoid-rich fraction (5.4 g) eluting with heptane–EtOAc (1:2). Further fractionation by MPLC and stepwise gradient elution with heptane–EtOAc (4:1 to 1:1), neat EtOAc, and then with EtOAc–MeOH (1:1) yielded fractions 1–7. Compounds **1** (15 mg) and **2** (80 mg) were obtained from fraction 5 (1.5 g, eluted with heptane–EtOAc 1:1) by further fractionation by LC with a step gradient of EtOAc in heptane. Fraction 4 (0.6 g, eluted with heptane–EtOAc 2:1) was subjected to LC twice, using heptane–EtOAc (3:1) and toluene–EtOAc–MeOH (40:8:1), respectively, and **5** (1 mg) was finally purified by prep. HPLC. Compounds **3** and **4** were isolated from fraction 6 (0.1 g, eluted with neat EtOAc) using three successive LC columns eluted with heptane–EtOAc–MeOH (7:3:1), toluene–EtOAc–MeOH (40:6:1) and toluene–EtOAc–MeOH (30:8:1), respectively. Final purification by prep. HPLC yielded pure **3** (8 mg) and **4** (2 mg).

3.4. 3,8-Dimethoxy-5,7-dihydroxy-3',4'-methylenedioxyflavone (1)

Yellow crystals (15 mg); EI HRMS m/z 358.0689 (M^+), $C_{18}H_{14}O_8^+$ requires 358.0683; for NMR data see Tables 1 and 2; UV λ_{max} (HPLC-DAD) 261, 272, 355 nm; TLC R_f 0.55; HPLC k' 6.5.

3.5. 3,6,8-Trimethoxy-5,7-dihydroxy-3',4'-methylenedioxyflavone (2)

Yellow crystals (80 mg); EI HRMS m/z 388.0783 (M^+), $C_{19}H_{16}O_9^+$ requires 388.0789; for NMR data see Tables 1 and 2; UV λ_{max} (HPLC-DAD) 262, 277, 348 nm; TLC R_f 0.49; HPLC k' 6.8.

3.6. 3,6,8,3',4'-Pentamethoxy-5,7-dihydroxyflavone (3)

Yellow crystals (8 mg); EI HRMS m/z 404.1170 (M^+), $C_{20}H_{20}O_9^+$ requires 404.1102; for NMR data see Tables 1 and 2; UV λ_{max} (HPLC-DAD) 260, 278, 348 nm; TLC R_f 0.35; HPLC k' 6.2.

3.7. 3,6,3'-Trimethoxy-5,7,4'-trihydroxyflavone (4)

Yellow powder (2 mg); UV λ_{max} (HPLC-DAD) 258, 351 nm; TLC R_f 0.25; HPLC k' 4.1.

3.8. 3,3-Dimethoxy-5,7,4'-trihydroxyflavone (5)

Yellow powder (1 mg); UV λ_{max} (HPLC-DAD) 258, 349 nm; TLC R_f 0.57; HPLC k' 7.4.

References

Ahsan, M., Armstrong, J.A., Gibbons, S., Gray, A.I., Waterman, P.G., 1994. Novel O -prenylated flavonoids from two varieties of *Boronia coerulescens*. *Phytochemistry* 37, 259–266.

Barbera, O., Marco, J.A., Sanz, J.F., Sanchez-Parerda, J., 1986. 3-Methoxyflavones and coumarins from *Artemisia incanescens*. *Phytochemistry* 25, 2357–2360.

Boers, F., Lemiere, G., Lepoivre, J.A., De, Groot, A., Domisse, R., De, Bruyne, T., Vlietinck, A.J., Berghe, A.A.V., 1998. Synthesis and antiviral activity of 7- O -(ω -substituted)-alkyl-3- O -methylquercetin derivatives. *Pharmazie* 53, 512–517.

Breitmaier, E., Voelter, W., 1990. *Carbon-13 NMR Spectroscopy*. CH Verlagsgesellschaft, Weinheim, pp. 450–453.

Calvert, D.J., Cambie, R.C., Davis, B.R., 1979. ^{13}C NMR spectra of polymethoxy- and methylenedioxyflavonols. *Org. Magn. Reson.* 12, 583–586.

Dong, H., Gou, Y.-L., Cao, S.-G., Chen, S.-X., Sim, K.-Y., Goh, S.-H., Kini, R.M., 1999. Eicosenones and methylated flavonoids from *Amomum koenigii*. *Phytochemistry* 50, 899–902.

Elavumoottil, L., Garnier, J., Mahuteau, J., Plat, M., 1991. Two methylenedioxyflavones from *Zieridium ignambiensis*. *Phytochemistry* 30, 3488–3489.

Fauvel, M.T., Gleye, J., Moulis, C., Blasco, F., Stanislas, E., 1981. Alkaloids and flavonoids of *Melicope indica*. *Phytochemistry* 20, 2059–2060.

Hartley, T.G., 2001. On the taxonomy and biogeography of *Euodia* and *Melicope* (Rutaceae). *Allertonia* 8, 1–319.

Hartley, T.G., Stone, B.C., 1989. Reduction of *Pelea* with new combinations in *Melicope* (Rutaceae). *Taxon* 38, 119–123.

Higa, M., Ohshiro, T., Ogihara, K., Yogi, S., 1990. Flavonoid constituents of *Melicope triphylla* Merr. II. *Yakugaku Zasshi* 110, 822–827.

Higa, T., Scheuer, P.J., 1974. Coumarins and flavones from *Pelea barbigera* (Gray) Hillebrand (Rutaceae). *J. Chem. Soc. Perkin Trans. 1*, 1350–1352.

Horie, T., Kawamura, Y., Yamamoto, H., Yamashita, K., 1995. A convenient method for synthesizing 3,5,6,7,8-pentaoxygenated flavones. *Chem. Pharm. Bull.* 43, 2054–2063.

Hou, R.-S., Duh, C.-Y., Wang, S.-K., Chang, T.-T., 1994. Cytotoxic flavonoids from the leaves of *Melicope triphylla*. *Phytochemistry* 35, 271–272.

Jong, T.-T., Wu, T.-S., 1989. Highly oxygenated flavonoids from *Melicope triphylla*. *Phytochemistry* 28, 245–246.

Lichius, J.J., Thoison, O., Montagnac, A., Pais, M., Gueritte-Voegelein, F., Sevenet, T., Cosson, J.-P., Hadi, A.H.A., 1994. Antimitotic and cytotoxic flavonols from *Zieridium pseudobutisifolium* and *Acronychia porteri*. *J. Nat. Prod.* 57, 1012–1016.

Markham, K.-R., Chari, V.M., Mabry, T.J., 1982. Carbon-13 NMR spectroscopy of flavonoids. In: Harborne, J.B., Mabry, T.J. (Eds.), *The Flavonoids: Advances in Research*. Chapman and Hall, London, pp. 19–134.

Miles, D.H., Chittawong, V., Hedin, P.A., Kokpol, U., 1993. Potential agrochemicals from leaves of *Wedelia biflora*. *Phytochemistry* 32, 1427–1429.

Murphy, S.T., Ritchie, E., Taylor, W.C., 1974. Constituents of *Melicope perspicuinervia* Rutaceae. The structures of halfordinine and melinervin, a new flavone. *Aust. J. Chem.* 27, 187–194.

Roitman, J.N., James, L.F., 1985. Chemistry of toxic range plants. Highly oxygenated flavonol methyl ethers from *Gutierrezia microcephala*. *Phytochemistry* 24, 835–848.

Wang, Y., Hamburger, M., Gueho, J., Hostettmann, K., 1989. Antibacterial flavonoids from *Psiadia trinervia* and their methylated and acetylated derivatives. *Phytochemistry* 28, 2323–2328.