

PHYTOCHEMISTRY

Phytochemistry 61 (2002) 61-71

www.elsevier.com/locate/phytochem

Fig volatile compounds—a first comparative study

Laure Grison-Pigéa, Martine Hossaert-McKeya,*, Jaco M. Greeffb, Jean-Marie Bessièrec

^aCentre d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS, 1919 Route de Mende, F-34 293 Montpellier Cedex 5, France

^bDepartment of Genetics, University of Pretoria, Pretoria 0002, South Africa

^cLaboratoire de Chimie Appliquée, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, F-34296 Montpellier Cedex 5, France

Received 28 September 2001; received in revised form 21 May 2002

Abstract

We analysed the compounds of volatile blends released by receptive figs of twenty *Ficus* species to attract their specific pollinating wasps. In all, 99 different compounds were identified. The compounds are mainly terpenoids, aliphatic compounds and products from the shikimic acid pathway. In each species blend, there are few major compounds, which are generally common among floral fragrances. Most species blends also include rare compounds, but generally their proportion in the blend is low. A possible basis for species-specificity of *Ficus*-wasp interactions is discussed in relation to the patterns of volatiles found in this interspecies comparison. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Ficus; Moraceae; Fig wasps; Specificity; Headspace; Terpenoids; Compounds from the shikimic pathway; Simple aliphatic compounds

1. Introduction

The genus Ficus (Moraceae) comprises about 750 species, most of them living in the tropics. The pollination of Ficus inflorescences (the fig or syconium) is intimately linked to agaonid wasps (Hymenoptera: Chalcidoidea), which reproduce inside them. The relationship between Ficus and agaonid species is obligate for both partners and generally species-specific: one fig species is pollinated by one species of wasp (Janzen, 1979; Wiebes, 1979). In such a close-knit mutualism, the encounter between partners is a crucial step for the continuity of the life cycle of each partner. Efficient mechanisms for ensuring encounter are particularly important in these systems in which the tiny (1–2 mm in length) and short lived (3–5 h; Hossaert-McKey, personal observation) pollinating wasps have to travel as much as 14 km to locate receptive trees (Nason et al., 1998). It has been shown for numerous fig species that the attractant signal is chemical (Van Noort et al., 1989; Hossaert-McKey et al., 1994; Ware and Compton, 1994; Gibernau et al., 1998). In tropical forests, where several Ficus species can live in sympatry (for example, Borneo rainforests contain more than one hundred fig species (Corner, 1965), with often ca. 40 species sympatric at one site, the encounter is especially problematic and requires specific chemical signals for each species pair. Is this specificity due to very peculiar compounds, rare among floral volatiles, or is it due to unique proportions of common compounds in the blend of each species? A previous study suggested that both cases occur in tropical species (Grison et al., 1999), but the volatile compounds in that study were collected under unusual climatic conditions, during an El Niño drought. Further studies were needed to confirm these results or to detect differences in the blends collected during years without such strong climatic constraints.

In this study, we characterized the chemistry of the blends of volatile compounds emitted by receptive figs of 20 *Ficus* species in order to identify the compounds in the bouquet of receptive figs and to obtain insights into the basis for specific attraction of pollinating wasps by their host species.

2. Results and discussion

We identified a total number of 99 compounds in head space collections of the 20 receptive fig species. In each species blend, two (*F. uncinata*) to forty-seven (*F. deltoidea*) compounds were identified, with one or a few major compounds, representing up to 90% of the total

^{*} Corresponding author. Tel.: +33-4-67613230; fax: +33-4-67412138.

 $[\]label{lem:eq:constraint} \textit{E-mail address:} \ martine. hossaert@cefe.cnrs-mop.fr\\ (M.\ Hossaert-McKey).$

Table 1 (Part 1)—Relative abundance of the compounds identified in the blends of volatile compounds emitted by receptive figs of 20 *Ficus* species^a

Compound	N1	N2	F. condensa	F. fulva	F. deltoidea	F. microcarpa	F. xyllophylla	F. uncinata	F. spathulifolia
Shikimic pathway									
Benzaldehyde	44	5	0.3	0	0	0	0	0	0
Benzyl alcohol	43	1	0	0	0	0	0	0	0
4-Methylbenzaldehyde	0	3	0.2	0	0.1	1.3	0	0	0
Methyl benzoate	34	1 1	0	0	0.1	0	0	0	0
1-Phenylpropan-2-ol 1-Phenylpropan-2-one	3	1	0	0	0	0	0	0	0
Methyl salicylate	47	2	0	0	0	1.7	0	0	0
4-Ethylacetophenone	0	1	0	0	0	0	0	0	0
(Z)-3-Hexenyl benzoate	6	1	0	0	0	0	0	0	0
Indole	0	2	0	0	0.1	0	0	0	0
Simple aliphatics									
Decane	7	1	0	0	0	0	0	0	0
Undecane	8	1	0	0	0	0	0	0	0
Dodecane	8	1	0	0	0	0	0	0	0
Tridecane	10	7	0	0	0	0	0	0	0
Tetradecane	10	8 5	0	0	0	0	0	0	0
Pentadecane Hentanel	14 4	1	0	0	0	0	0	0	0
Heptanal Octanal	6	1	0	0	0	0	0	0	0
Decanal	10	4	0.7	0	0.1	0	0	0	0
Undecanal	3	1	0.7	0	0.1	0	0	0	0
(Z)-3-Hexenol	6	5	1.3	0	0	0	0	0	0
2-Heptanone	5	1	0	0	0	0	0	0	0
1-Hexanol	15	7	0	0	0	0	0	0	0
γ-Butyrolactone	1	2	0	0	0	0	0	0	0
(Z)-3-Hexenyl acetate	22	3	0	0	0	0	0	0	0
Nonanol	1	1	0	0	0	0	0	0	0
Octanoic acid	2	1	0	0	0	0	0	0	0
Lauric acid	0	1	0	0	0	0	0	0	0
Acyclic monoterpenes									
6-Methyl-5-hepten-2-One	0	2	0	0	0.1	0	0	0	0
2-Methyl-6-methylene-1,7-octadien-3-one		1	0	4.6	0	0	0	0	0
2-Methyl-6-methylene-1,7-octadien-3-ol	0	1	0	0	0	0	0	0	0
3.7-Dimethyl-1.7-octadien-3.6-diol	0 68	1 7	0	0 0.4	0 0.1	0 0.4	0	0	0
Myrcene (Z)-β-Ocimene	48	11	0.1	0.4	0.1	0.4	0	0	0
(E)-β-Ocimene	26	17	2.4	8.7	0.7	5.4	0.3	0	0
cis-Furanoid linalool oxide	15	2	0	0.7	1.0	0	0.5	0	0
trans-Furanoid Linalool oxide	15	3	0	0	1.5	0	0	0	0
Linalool	66	10	0.4	4.9	20.6	3.1	0	0	0
cis-Pyranoid linalool oxide	11	2	0	0	0.2	0	0	0	0
trans-Pyranoid linalool oxide	11	2	0	0	0.1	0	0	0	0
Hotrienol	3	1	0	0	0	0	0	0	0
Perillene	3	2	0	0	0	0	0	0	0
Cyclic monoterpenes	_	•	0	0	0	0	0		
α-Thujene	7	2	0	0	0	0	0	0	0
α-Pinene	63	8	0.1	1.3	0	1.9	0	50.3	0
Camphene Sabinene	14 24	4 5	0 0.5	0.1 0.3	0	0 9.4	0	0	0
β-Pinen	51	8	0.5	0.3	0	9.4 0.4	0	0	0
δ-2-Carene	0	3	0	0.0	0	0.4	0	0	0
α-Phellandrene	7	2	0	0	0	0	0	0	0
α-Terpinene	ó	4	0	0	0	0	0	0	0
p-Cymene	18	5	0	0	0	0	0	0	0
Limonene	75	11	0	0.5	0.1	0.8	0	0	0
1,8-Cineole	44	3	1.8	0.2	0	0	0	0	0
γ-Terpinene	10	3	0	0	0	0	0	0	0
8,9-Dehydro-p-cymene	0	4	0	0	0	0	0	0	0
Terpinolene	13	3	0	0	0	0	0	0	0
α-Terpineol	21	1	0	0	0	0	0	0	0

Table 1 (continued)

Compound	N1	N2	F. condensa	F. fulve	a F. deltoidea	F. microcar	pa F. xyll	ophylla H	F. uncinata	F. spath	ulifolia
Sesquiterpenes											
Dendrolasine	1	2	0	8.4	0.5	0	0		0	0	
α-Cubebene	1	9	0	0.3	0.3	1.9	0		0	0	
Cyclosativene	1	1	0	0	0.4	0	0		0	0	
Junipene	0	1	0	0	0	9.3	0		0	0	
α-Ylangene	0	6 18	0 1.3	0	0.4 6.4	0 38.2	-		-	0.2	
α-Copaene β-Bourbonene	7 1	7	0	6.2	0.4	0	1.2 0.1		19.7 0	0.2	
1,5-Diepi-β-bourbonene	0	1	0	0	0.7	0	0.1		0	0	
β-Cubebene	2	3	0	0	1.9	0.3	0.1		0	0	
β-Elemene	3	5	0.1	0.5	0.7	0.5	0.2		0	0	
α-Gurjunene	0	3	0.4	0	0.7	0	0.8		0	0	
α-cis-Bergamotene	0	1	0	0	0.2	0	0		0	0	
Isocaryophyllene	1	1	0	0	0	0	0		0	0	
β-caryophyllene	30	18	5.5	46.7	13.1	3.3	5.6		0	30.8	
α-santalene	2	1	0	0	0.4	0	0		0	0	
Selina-3,6-diene	0	1	0	0	0.2	0	0		0	0	
β-Copaene	1	2	0	0	0	6.8	0		0	0	
cda-trans Bergamotene	8	6	0	0	1.9	0	0		0	0	
Aromadendrene	1	9	0.2	0.4	0	5.3	0		0	0	
α-Humulene	9	14	0.8	5.6	5.8	0.9	1.1		0	6.2	
Alloaromadendrene	3	7	0.5	0.6	1.2	0	0.8		0	0	
(E) - β -Farnesene	5	1	0	0	0	0	0		0	0	
Aciphyllene	0	3	0.1	0	0.1	0	0.1		0	0	
Germacrene D	6	17	75.6	2.3	31.0	0.5	80.9		0	53.8	
β-Selinene δd-Selinene	1	1	0	0	0.9	0	0		0	0	
α-Selinene	0	2	0	0	0.3 0.1	0	0.4 0		0	0 0	
α-Sennene α-Curcumene	1	1	0	0	0.1	0	0		0	0	
Bicyclogermacrene	1	14	5.2	1.1	0.1	3.5	6.7		0	9.0	
α-muurolene	1	7	0.3	0	0.2	1.1	0.7		0	0	
Germacrene A	0	5	0.5	3.6	2.4	2.6	0.5		0	0	
δ-Amorphene	0	1	0	0	0.3	0	0		0	0	
(Z,E) - α -Farnesene	2	4	0	0	0	0	0		0	0	
δ-Cadinene	4	9	0	0	0.5	0.3	0.2		0	0	
(E,E) - α -Farnesene	1	8	1.2	0	1.6	0	0		0	0	
β-Bisabolene	6	3	0	0	0	0	0		0	0	
2- <i>epi</i> -α-Selinene	0	1	0	0	0.1	0	0		0	0	
δ-Cadinene	2	10	0.7	2.2	2.0	1.1	0.8		0	0	
Cadina-1,4-diene	1	1	0	0	0.1	0	0		0	0	
Germacrene B	0	1	0	0	0.4	0	0		0	0	
Nerolidol	8	1	0	0.2	0	0	0		0	0	
Caryophyllene oxide	4	2	0	0	0.1	0	0		0	0	
Compound	N1	N2	F. grossular	rioides	F. subgelderi	F. punctata	F. carica	F. salicif	olia F. ab	utilifolia	F. sur
Shikimic pathway											
Benzaldehyde	44	5	0		0	0	0.1	0	15.3		0
Benzyl alcohol	43	1	0		0	0	7.8	0	0		0
4-Methylbenzaldehyde	0	3	0		0	0	0	0	0		0
Methyl benzoate	34	1	0		0	0	0	0	0		0
1-Phenylpropan-2-ol	3	1	0		0	10.0	0	0	0		0
1-Phenylpropan-2-one	1	1	0		0	4.9	0	0	0		0
Methyl salicylate	47	2	0		0	0	0.4	0	0		0
4-Ethylacetophenone	0	1	0		0	0	0.2	0	0		0
(Z)-3-Hexenyl benzoate	6	1	0		0	0	0.2	0	0		0
Indole	0	2	0		0	0	0.1	0	0		0
Simple aliphatics Decane	7	1	0		0	0.3	0	0	0		0
Undecane	8	1	0		0	0.3	0	0	0		0
Dodecane	8	1	0		0	5.4	0	0	0		0
Doddenie	U	1	Ü		V	J.T	U	v	U		v

Table 1 (continued)

Tridecame	lia F. su
Pentadecane	1.8
Heptanal	0
Octanal	0
Decanal	0
Undecanal	0
(Z)-3-Hexenol 6 5 0 0 0 0 0.2 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0	0
2-Heptanone	0
1-Hexanol	3.8
1-Hexano	0
(Jr)-3-Hexenyl acetate 22 3 0 0 0 0.2 0 2.7 Nonanol 1 1 0 0 0 0.2 0 0 Octanoic acid 2 1 0 0 0 0.2 0 0 Cambrid-Genetorepenes 0 2 0 0 0 0.1 0 0 6-Methyl-5-hepten-2-one 0 2 0	0
Nonanol	0
Nonanol	0
Lauric acid 0 1 0 0 0.4 0 0 Acyclic monoterpenes 6 2 0 0 0 0.1 0 0 2-Methyl-5-hepten-2-one 0 1 0 0 0 0 0 0 2-Methyl-6-methylene-1,7-octadien-3-ol 0 1 0 0 0 1.8 0 0 3-7-Dimethyl-1,-octadien-3,6-diol 0 1 0 0 0 1.7 0 0 Myrcene 68 7 0 0 0.3 0 1.6 0 (B)-P-ocimene 48 11 0 0.2 0 0.2 0.5 1.5 (B)-P-ocimene 48 11 0 0.2 0 0 0.2 0.6 10.4 cis-Furanoid linalool oxide 15 2 0 0 0 17.0 0 0 cis-Pyranoid linalool oxide 11 2 0	0
Lauric acid 0 1 0 0 0.4 0 0 Acyclic monoterpenes 6 2 0 0 0 0.1 0 0 2-Methyl-5-hepten-2-one 0 1 0 0 0 0 0 0 2-Methyl-6-methylene-1,7-octadien-3-ol 0 1 0 0 0 1.8 0 0 3-7-Dimethyl-1,-octadien-3,6-diol 0 1 0 0 0 1.7 0 0 Myrcene 68 7 0 0 0.3 0 1.6 0 (B)-P-ocimene 48 11 0 0.2 0 0.2 0.5 1.5 (B)-P-ocimene 48 11 0 0.2 0 0 0.2 0.6 10.4 cis-Furanoid linalool oxide 15 2 0 0 0 17.0 0 0 cis-Pyranoid linalool oxide 11 2 0	0
6-Methyl-5-hepienz-2-one 0 2 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
2-Methyl-6-methylene-1,7-octadien-3-one 0 1 0 0 0 0 0 1.8 0 0 0 2-Methyl-6-methylene-1,7-octadien-3-ol 0 1 0 0 0 0 1.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
2-Methyl-6-methylene-1,7-octadien-3-one 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
2-Methyl-6-methylene-1,7-octadien-3-ol 0 1 0 0 0 1.8 0 0 0 3.7-Dimethyl-1.7-octadien-3.6-diol 0 1 0 0 0 0 1.7 0 0 0 0 0 0 1.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
3.7-Dimethyl-1.7-octadien-3.6-diol 0 1 0 0 0 0 0.3 0 1.7 0 0 Myrcene 68 7 0 0 0 0.3 0 1.6 0 0 (22)-β-ocimene 48 11 0 0.2 0 0.2 0.5 1.5 (E)-β-ocimene 26 17 0 0 11.0 0.2 0 0 0.2 0.6 10.4 e/cs-F-uranoid linalool oxide 15 2 0 0 0 17.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
Myrcene 68 7 0 0 0.3 0 1.6 0 (Z)-β-ocimene 48 11 0 0.2 0 0.2 0.5 1.5 (E)-β-ocimene 26 17 0 71.3 0.1 0.2 0.6 10.4 cis-Furanoid Linalool oxide 15 2 0 0 0.1 10.8 0 0 linalool 66 10 65.6 0 0 3.7 0.3 0.5 cis-Pyranoid Linalool oxide 11 2 0 0 0 1.1 0 0 totrans-Pyranoid Linalool oxide 11 2 0 0 0 0.3 0 0 Hotrienol 3 1 0 0 0 0.3 0 0 Perillene 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
(Z)-β-ocimene 48 11 0 0.2 0.2 0.5 1.5 (E)-β-ocimene 26 17 0 71.3 0.1 0.2 0.6 10.4 (E)-β-ocimene 26 17 0 71.3 0.1 0.2 0.6 10.4 (E)-β-ocimene 26 17 0 0 71.3 0.1 0.2 0.6 10.4 (E)-β-ocimene 26 17 0 0 0 0 17.0 0 0 0 17.0 0 0 17.0 0 0 17.0 0 0 17.0 0 0 17.0 0 0 17.0 0 0 17.0 0 0 17.0 0 0 17.0 0 0 17.0 0 0 17.0 0 0 17.0 0 0 17.0 0 0 17.0 0 0 17.0 0 0 17.0 0 0 17.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
E β-p-ocimene 26 17 0 71.3 0.1 0.2 0.6 10.4 c/s Furanoid linalool oxide 15 2 0 0 0 0 17.0 0 0 0 17.0 0 0 0 17.0 0 0 0 17.0 0 0 0 17.0 0 0 0 17.0 0 0 0 17.0 0 0 0 17.0 0 0 0 17.0 0 0 0 17.0 0 0 0 17.0 0 0 0 17.0 0 0 0 17.0 0 0 0 17.0 0 0 0 17.0 0 0 0 17.0 0 0 0 17.0 0 0 0 17.0 0 0 0 17.0 0 0 0 0 0 0 0 0 0	0
cis-Furanoid linalool oxide 15 2 0 0 0 17.0 0 0 trans-Furanoid Linalool oxide 15 3 0 0 0.1 10.8 0 0 cis-Pyranoid linalool oxide 11 2 0 0 0 1.1 0 0 thorienol 3 1 0 0 0 0 0.3 0 0 Perillene 3 2 0 0 0 0 0 0 Perillene 7 2 0 0 0 0 0 0 Cyclic monoterpenes 2 0 <td>40.8</td>	40.8
trans-Furanoid Linalool oxide 15 3 0 0 0.1 10.8 0 0 Linalool 66 10 65.66 0 0 36.7 0.3 0.5 cis-Pyranoid linalool oxide 11 2 0 0 0 0.1 0 0 Hotrienol 3 1 0 0 0 0.3 0 0 Perillene 3 1 0 0 0 7.3 0 0 Perillene 7 2 0 0 0 0 0 0 Zyclic monoterpenes 2 0	0
linalool 66 10 65.6 0 0 36.7 0.3 0.5 c/s-Pyranoid linalool oxide 11 2 0 0 0 1.1 0 0 Hotrienol 3 1 0 0 0 0.3 0 0 Perillene 3 2 0 0 0 7.3 0 0 Cyclic monoterpenes α-Thingene 7 2 0 0 0 0 0 0 α-Pinene 63 8 0 0 0 0 0 0 0 0 Camphene 14 4 0	0
cis-Pyranoid linalool oxide 11 2 0 0 0 1.1 0 0 trans-Pyranoid Linalool oxide 11 2 0 0 0 0.3 0 0 Hotrienol 3 1 0 0 0 7.3 0 0 Perillene 3 2 0 0 0 0 0 0 Cyclic monoterpenes 2 0 0 0 0 0 0 0 2-Pinene 63 8 0 0 0.6 0 50.1 0 Camphene 14 4 0 0 0 0 1.1 0 Sabinene 24 5 0 0 16.2 0 0 0 Sabinene 24 5 0 0 16.2 0 0 0 0 0 0 0 0 0 0 0 0 0 <th< td=""><td>0</td></th<>	0
trans-Pyranoid Linalool oxide 11 2 0 0 0 0.3 0 0 Hotrienol 3 1 0 0 0 7.3 0 0 Perillene 3 2 0 0 0 0 0 0 Cyclic monoterpenes 2 0 0 0 0 0 0 0 α-Pinene 63 8 0 0 0.6 0 50.1 0 Camphene 14 4 0	0
Hotrienol 3	0
Perillene 3 2 0 0 0 0 0 0 0 0 0 0 0 C Cyclic monoterpenes	0
α-Thujene 7 2 0 0 0 0 0 0.7 0 $α$ -Pinene 63 8 0 0 0 0.6 0 50.1 0 $α$ -Pinene 63 8 0 0 0 0.6 0 50.1 0 $α$ -Pinene 14 4 0 0 0 0 0 0 1.1 0 $α$ -Sabinene 24 5 0 0 16.2 0 0 0 $α$ -Pinene 51 8 0 0 0.2 0 5.4 2.0 $α$ -Pinene 51 8 0 0 0 0.2 0 5.4 2.0 $α$ -Phellandrene 7 2 0 0 0 0 0 0 0 0 1.0 $α$ -Phellandrene 7 2 0 0 0 0 0 0 0 0 0.1 0 $α$ -Prinene 18 5 0 0 0 1.4 0 5.5 8.1 Limonene 18 5 0 0 0 1.4 0 5.5 8.1 Limonene 75 11 9.6 0 0 0 19.9 18.2 18.8-Cincole 44 3 0 0 42.0 0 0 0 0 $α$ -Terpinene 10 3 0 0 0 42.0 0 0 0 $α$ -Terpinene 10 3 0 0 0 0 0 0 0 0 0 0 0 $α$ -Terpinene 10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.5
α-Thujene 7 2 0 0 0 0 0 0.7 0 $α$ -Pinene 63 8 0 0 0 0.6 0 50.1 0 $α$ -Pinene 63 8 0 0 0 0.6 0 50.1 0 $α$ -Pinene 14 4 0 0 0 0 0 0 1.1 0 $α$ -Sabinene 24 5 0 0 16.2 0 0 0 $α$ -Pinene 51 8 0 0 0.2 0 5.4 2.0 $α$ -Pinene 51 8 0 0 0 0.2 0 5.4 2.0 $α$ -Phellandrene 7 2 0 0 0 0 0 0 0 0 1.0 $α$ -Phellandrene 7 2 0 0 0 0 0 0 0 0 0.1 0 $α$ -Prinene 18 5 0 0 0 1.4 0 5.5 8.1 Limonene 18 5 0 0 0 1.4 0 5.5 8.1 Limonene 75 11 9.6 0 0 0 19.9 18.2 18.8-Cincole 44 3 0 0 42.0 0 0 0 0 $α$ -Terpinene 10 3 0 0 0 42.0 0 0 0 $α$ -Terpinene 10 3 0 0 0 0 0 0 0 0 0 0 0 $α$ -Terpinene 10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
α-Pinene 63 8 0 0 0.6 0 50.1 0 Camphene 14 4 0 0 0 0 1.1 0 Sabinene 24 5 0 0 16.2 0 0 0 β-Pinene 51 8 0 0 0.2 0 5.4 2.0 δ-2-Carene 0 3 0 0 0 0 0 1.0 α-Phellandrene 7 2 0 0 0 0 0 1.0 α-Phellandrene 7 2 0 0 0 0 0 1.0 α-Terpinene 0 4 0 0 0 0 0.1 0 ε-Yemene 18 5 0 0 1.4 0 5.5 8.1 Limonene 75 11 9.6 0 0 0 0 0 0	0
Camphene 14 4 0 0 0 0 1.1 0 Sabinene 24 5 0 0 16.2 0 0 0 β-Pinene 51 8 0 0 0.2 0 5.4 2.0 δ-2-Carene 0 3 0 0 0 0 0 1.0 α-Phellandrene 7 2 0 0 0 0 0.4 0 α-Terpinene 0 4 0 0 0 0 0.1 0.3 ρ-Cymene 18 5 0 0 1.4 0 5.5 8.1 Limonene 75 11 9.6 0 0 0 19.9 18.2 1,8-Cineole 44 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>1.6</td>	1.6
Sabinene 24 5 0 0 16.2 0 0 0 β-Pinene 51 8 0 0 0.2 0 5.4 2.0 δ-2-Carene 0 3 0 0 0 0 0 0 α-Phellandrene 7 2 0 0 0 0 0 0 α-Frepinene 0 4 0 0 0 0 0.1 0.3 p-Cymene 18 5 0 0 1.4 0 5.5 8.1 Limonene 75 11 9.6 0 0 0 19.9 18.2 1,8-Cineole 44 3 0 0 42.0 0 0 0 0 8,9-Dehydro-p-cymene 10 3 0 0 0 0 0 0 0 0 8-P-cyminele 13 3 0 0 0 0<	0
	0
δ-2-Carene 0 3 0 0 0 0 0 1.0 α-Phellandrene 7 2 0 0 0 0 0.4 0 α-Terpinene 0 4 0 0 0 0 0.1 0.3 p-Cymene 18 5 0 0 1.4 0 5.5 8.1 Limonene 75 11 9.6 0 0 0 19.9 18.2 1,8-Cineole 44 3 0 0 42.0 0 0 0 γ-Terpinene 10 3 0	0
α-Phellandrene 7 2 0 0 0 0 0.4 0 α-Terpinene 0 4 0 0 0 0 0.1 0.3 p-Cymene 18 5 0 0 1.4 0 5.5 8.1 Limonene 75 11 9.6 0 0 0 19.9 18.2 1,8-Cineole 44 3 0 0 42.0 0 0 0 γ-Terpinene 10 3 0 0 0 0 0 0 8,9-Dehydro-p-cymene 0 4 0 0 0 0 0.7 1.8 Terpinolene 13 3 0 0 0 0 0.7 1.8 Terpineol 21 1 0 0 0 0 0 0 0 Sesquiterpenes Dendrolasine 1 2 0 0 0 0 0 0 Cyclosativene 1 1 0 0 <td>0</td>	0
α-Terpinene 0 4 0 0 0 0 0.1 0.3 p -Cymene 18 5 0 0 1.4 0 5.5 8.1 Limonene 75 11 9.6 0 0 0 19.9 18.2 1,8-Cineole 44 3 0 0 42.0 0 0 0 γ -Terpinene 10 3 0 0 0 0 0 0 8,9-Dehydro- p -cymene 0 4 0 0 0 0 0.7 1.8 Terpinolene 13 3 0 0 0 0 0.7 1.8 Terpinolene 13 3 0 0 0 0 3.5 3.1 α -Terpineol 21 1 0 0 0.3 0 0 0 Sesquiterpenes 0 0 0 0 0 0 0 0 Pundrolasine 1 2 0 0 0 0 0	
p-Cymene 18 5 0 0 1.4 0 5.5 8.1 Limonene 75 11 9.6 0 0 0 19.9 18.2 1,8-Cineole 44 3 0 0 42.0 0 0 0 γ-Terpinene 10 3 0 0 0 0 6.3 5.2 8,9-Dehydro-p-cymene 0 4 0 0 0 0 0.7 1.8 Terpinolene 13 3 0 0 0 0 0.7 1.8 Terpinolene 13 3 0 0 0 0 3.5 3.1 α-Terpineol 21 1 0 0 0.3 0 0 0 Sesquiterpenes Dendrolasine 1 2 0 0 0 0 0 0 Cyclosativene 1 1 0 0 0 <td>0</td>	0
Limonene 75 11 9.6 0 0 0 19.9 18.2 1,8-Cineole 44 3 0 0 42.0 0 0 0 γ -Terpinene 10 3 0 0 0 0 0.3 5.2 8,9-Dehydro-p-cymene 0 4 0 0 0 0 0.7 1.8 Terpinolene 13 3 0 0 0 0 0.7 1.8 Terpinolene 13 3 0 0 0 0 3.5 3.1 α -Terpineol 21 1 0 0 0.3 0 0 0 Sesquiterpenes Dendrolasine 1 2 0 0 0 0 0 0 Dendrolasine 1 9 0 0 0 0 0 0 0 α -Cubebene 1 9 0 0 0 0 0 0 Cyclosativene 1 1 0 0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
γ -Terpinene 10 3 0 0 0 0 0 6.3 5.2 8,9-Dehydro- <i>p</i> -cymene 0 4 0 0 0 0 0 0.7 1.8 Terpinolene 13 3 0 0 0 0 0 3.5 3.1 α -Terpineol 21 1 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
Terpinolene 13 3 0 0 0 0 0 3.5 3.1 α-Terpineol 21 1 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
α-Cubebene 1 9 0 0 0 0 0.1 0 Cyclosativene 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
Junipene 0 1 0 0 0 0 0 0 0 0 α -Ylangene 0 6 0 0 0 0 0.1 0	0
α-Ylangene 0 6 0 0 0 0.1 0	0
e e	0
α-Copaene 7 18 0 19.3 0.1 0 0.2 4.1	0
*	4.9
β-Bourbonene 1 7 0 0 0 4.3 0.1 0	0
1,5-Diepi-β-bourbonene 0 1 0 0 0 0 0 0	0
β-Cubebene 2 3 0 0 0 0 0	0
β-Elemene 3 5 0 0 0 0 0	0
α -Gurjunene 0 3 0 0 0 0 0	0
α -cis-Bergamotene 0 1 0 0 0 0 0	0
Isocaryophyllene 1 1 0 0 0 0.1 0 0	0
β-Caryophyllene 30 18 0 5.5 0.3 3.5 1.3 3.0	9.5

Table 1 (continued)

Compound	N1	N2	F. grossularioides	F. subgelderi	F. punctata	F. carica	F. salicifolia	F. abutilifolia	F. sur
α-Santalene	2	1	0	0	0	0	0	0	0
Selina-3,6-diene	0	1	0	0	0	0	0	0	0
β-Copaene	1	2	0	0	0	0.1	0	0	0
α-trans Bergamotene	8	6	0	0	1.1	0	0	4.5	1.9
Aromadendrene	1	9	0	3.7	0	0	0.1	0	0
α-Humulene	9	14	0	0	0	0.1	0.1	0.8	0
Alloaromadendrene	3	7	0	0	0	0	0	0	0
(E) - β -Farnesene	5	1	0	0	1.01	0	0	0	0
Aciphyllene	0	3	0	0	0	0	0	0	0
Germacrene D	6	17	0.2	0	0	0.3	0.3	12.1	15.4
β-Selinene	1	1	0	0	0	0	0	0	0
δ-Selinene	0	2	0	0	0	0	0	0	0
α-Selinene	0	1	0	0	0	0	0	0	0
α-Curcumene	1	1	0	0	0.2	0	0	0	0
Bicyclogermacrene	1	14	24.6	0	0	0	1.1	0.5	0
α-Muurolene	1	7	0	0	0	0	0	0	0
Germacrene A	0	5	0	0	0	0	0	0	0
δ-Amorphene	0	1	0	0	0	0	0	0	0
(Z,E) - α -Farnesene	2	4	0	0	0.5	0	0.1	0	0
γ-Cadinene	4	9	0	0	0	0	0	1.3	0
(E,E) - α -Farnesene	1	8	0	0	0.6	0.2	0	0	11.4
β-Bisabolene	6	3	0	0	0	0	0	0	0
2- <i>epi</i> -α-Selinene	0	1	0	0	0	0	0	0	0
δ-Cadinene	2	10	0	0.1	0	0	0.1	0	0
Cadina-1,4-diene	1	1	0	0	0	0	0	0	0
germacrene B	0	1	0	0	0	0	0	0	0
Nerolidol	8	1	0	0	0	0	0	0	0
Caryophyllene oxide	4	2	0	0	0	1.6	0	0	0

Compound	N1	N2	F. tettensis	F. thonningii	F. polita	F. religiosa	F. macrophylla	F. glumosa
Shikimic pathway								
Benzaldehyde	44	5	0.4	0	0	0	5.5	0
Benzyl alcohol	43	1	0	0	0	0	0	0
4-Methylbenzaldehyde	0	3	0	0	0	0	0	0
Methyl benzoate	34	1	0	0	0	0	0	0
1-Phenylpropan-2-ol	3	1	0	0	0	0	0	0
1-Phenylpropan-2-one	1	1	0	0	0	0	0	0
Methyl salicylate	47	2	0	0	0	0	0	0
4-Ethylacetophenone	0	1	0	0	0	0	0	0
(Z)-3-Hexenyl benzoate	6	1	0	0	0	0	0	0
Indole	0	2	0	0	0	0	0	0
Simple aliphatics								
Decane	7	1	0	0	0	0	0	0
Undecane	8	1	0	0	0	1.9	0	0
Dodecane	8	1	0	0	0	0	0	0
Tridecane	10	7	0.2	0.5	0	1.4	0	0.6
Tetradecane	10	8	1.1	1.4	2.5	8.1	0.5	1.3
Pentadecane	14	5	0.7	0.6	0	0	0	0.4
Heptanal	4	1	0	0	0	0	0	0
Octanal	6	1	0	0	0	0	0	0
Decanal	10	4	0	0	0	0	0	0
Undecanal	3	1	0	0	0	0	0	0
(Z)-3-Hexenol	6	5	0	0	0	0.3	0.1	0
2-Heptanone	5	1	0	0	0	0	0	0
1-Hexanol	15	7	0	0.6	0	1.1	0.2	0
γ-butyrolactone	1	2	0	0	0	0	0.4	38.1
(Z)-3-Hexenyl acetate	22	3	0	0	0	1.1	0	0
Nonanol	1	1	0	0	0	0	0	0
Octanoic acid	2	1	0	0	0	0	0	0
Lauric acid	0	1	0	0	0	0	0	0

Table 1 (continued)

Table 1 (continuea)								
Compound	N1	N2	F. tettensis	F. thonningii	F. polita	F. religiosa	F. macrophylla	F. glumosa
Acyclic monoterpenes								
6-Methyl-5-hepten-2-one	0	2	0	0	0	0	0	0
2-Methyl-6-methylene-1,7-octadien-3-one	0	1	0	0	0	0	0	0
2-Methyl-6-methylene-1,7-octadien-3-ol	0	1	0	0	0	0	0	0
3.7-Dimethyl-1.7-octadien-3.6-diol	0	1	0	0	0	0	0	0
myrcene	68	7	0.1	0	0	0	1.3	0
(Z)-cdb-Ocimene	48	11	0.4	0	0	0.8	0.6	0.3
(E)-β-Ocimene	26	17	6.5	5.3	11.1	14.2	11.9	0.6
cis-Furanoid linalool oxide	15	2	0	0	0	0	0	0
trans-Furanoid Linalool oxide	15	3	0	0	0	0	0	0
Linalool	66	10	3.5	0	0	0	7.2	0
cis-Pyranoid linalool oxide	11 11	2 2	0 0	0	0	0	0	0
trans-Pyranoid linalool oxide Hotrienol		1	0	0	0	0	0	0
Perillene	3	2	0	0	0	0.8	0	0
	3	2	U	U	U	0.8	U	U
Cyclic monoterpenes α-Thujene	7	2	0	0	0	0	0.2	0
α-Pinene	63	8	0	0	0	28.7	0.2	0
Camphene	14	4	0	0	0	3.8	0.1	0
Sabinene	24	5	0	0	0	0	0.7	0
β-Pinene	51	8	0.7	0	0	2.6	0.8	0
δ-2-Carene	0	3	1.0	0	0	0	0.5	0
α-Phellandrene	7	2	0	0	0	0	0.1	0
α-Terpinene	0	4	0.2	0	0	3.1	0	0
ρ-Cymene	18	5	0	0	0	0	0.5	1.0
Limonene	75	11	0.5	0	0	1.8	0.9	1.5
1,8-Cineole	44	3	0	0	0	0	0	0
γ-Terpinene	10	3	0	0	0	0	0.3	0
8,9-Dehydro- <i>p</i> -cymene	0	4	0.7	0	0	0	0.3	0
Terpinolene	13	3	0.7	0	0	0	0	0
α-Terpineol	21	1	0	0	0	0	0	0
Sesquiterpenes								
Dendrolasine	1	2	0	0	0	0	0	0
α-cubebene	1	9	0.2	0.5	0	0.9	0.2	0.4
Cyclosativene	1	1	0	0	0	0	0	0
Junipene	0	1	0	0	0	0	0	0
α-Ylangene	0	6	0	0.9	2.6	1.4	0	0.5
α-Copaene	7	18	7.5	8.8	30.5	4.0	1.1	1.4
β-Bourbonene	1	7	0.3	0	0	1.7	0	0.3
1,5-Diepi-β-bourbonene	0	1	0	0	0	0	0	0
β-Cubebene	2	3	0	0	0	0	0	0
β-Elemene	3	5	0	0	0	0	0	0
α-Gurjunene	0	3	0	0	0	0	0	0
α-cis-Bergamotene	0	1	0	0	0	0	0	0
Isocaryophyllene	1	1	0	0	0	0	0	0
β-Caryophyllene α-Santalene	30	18	33.1	17.3	30	4.4 0	43.3	18.0
α-Santaiene Selina-3,6-diene	2	1 1	0	0	0	0	0	0
β-Copaene	1	2	0	0	0	0	0	0
α-trans Bergamotene	8	6	0.8	0	0	1.6	0	2.0
Aromadendrene	1	9	0.8	3.4	0	1.8	1.0	0.6
α-Humulene	9	14	2.5	2.0	0	1.3	4.0	4.0
Alloaromadendrene	3	7	2.1	0	0	1.0	0	3.3
(E) - β -Farnesene	5	1	0	0	0	0	0	0
Aciphyllene	0	3	0	0	0	0	0	0
Germacrene D	6	17	28.0	41.7	18.1	3.2	7.6	4.9
β-Selinene	1	1	0	0	0	0	0	0
δ-Selinene	0	2	0	0	0	0	0	0
α-Selinene	0	1	0	0	0	0	0	0
α-Curcumene	1	1	0	0	0	0	0	0
Bicyclogermacrene	1	14	1.7	6.8	0	0.8	9.5	0.8
α-Muurolene	1	7	2.4	1.8	0	0	0	1.1
	-				-	-	-	

Table 1 (continued)

Compound	N1	N2	F. tettensis	F. thonningii	F. polita	F. religiosa	F. macrophylla	F. glumosa
Germacrene A	0	5	0	0	0	0	0	0
δ-Amorphene	0	1	0	0	0	0	0	0
(Z,E) - α -Farnesene	2	4	0	0	0	0	0.7	1.1
γ-Cadinene	4	9	4.1	6.4	3.7	7.2	0	1.3
(E,E) - α -Farnesene	1	8	0	1.5	1.4	0	0	2.2
β-Bisabolene	6	3	0.7	0.4	0	0	0	0.9
2- <i>epi</i> -α-Selinene	0	1	0	0	0	0	0	0
δ-Cadinene	2	10	0	0	0	1.2	0.3	12.9
Cadina-1,4-diene	1	1	0	0	0	0	0	0
Germacrene B	0	1	0	0	0	0	0	0
Nerolidol	8	1	0	0	0	0	0	0
Caryophyllene oxide	4	2	0	0	0	0	0	0

^a N1: number of genera emitting this compound among the 174 genera reviewed by Knudsen et al. (1993). N2: number of *Ficus* species releasing this compound in our study.

mass. The bouquets are dominated by terpenes (monoterpenes and sesquiterpenes), aliphatic compounds and compounds from the shikimic acid pathway (Table 1). These chemical classes are well represented among compounds released by plants in floral fragrances (Williams, 1983; Knudsen et al., 1993), as well as among deterrent compounds functioning as defenses against herbivores (Finch, 1980; Gershenzon and Croteau, 1991). These bouquets are probably also responsible for the specificity of the fig/wasp relationship, as suggested by reciprocal tests with blends of volatile compounds of F. fulva, F. condensa and F. microcarpa and their pollinators: the insects were only stimulated by the blend from their host species (Grison-Pigé et al., 2002). Except for F. carica (Gibernau, 1997) we have not yet performed bioassays using the different volatiles. Thus, we do not know which chemicals act as specific signals to the wasps. However, examination of the abundance and distribution of compounds between species suggests several reasonable hypotheses.

Many chemicals (37 of 99) were found only once, and we refer to them as "specific" compounds. The great majority of chemicals were recorded in three or fewer species (Mann–Whitney U=51, P=0.009, Table 2). Notwithstanding, a number of compounds were very common. For example, (E)- β -ocimene and germacrene D were identified in 17 of the 20 species studied, and α -copaene and β -caryophyllene in 18 of them (Table 1). Six species contained at least one "specific" compound, identified only in its floral blend: F. fulva, F. deltoidea, F. microcarpa, F. punctata, F. carica and F. religiosa.

The mean relative abundance of each compound in the blend was recorded, as well as the number of fig species in which it occurred (Fig. 1). The shared compounds were also abundant compounds in the fig blends where they were found, and the greater the degree of restriction of compounds to a few species, the less abundant in the blends they were.

Table 2 Number of chemicals that were recorded in a given number of *Ficus* species^a

Number of chemicals	Number of species recorded in
37	1
13	2
11	3
5	4
7	5
1	6
8	7
4	8
3	9
2	10
2	11
0	12
0	13
2	14
0	15
0	16
2	17
2	18

^a The 37 compounds present in only one species of our sample are called "specific" in the text.

The compounds released by receptive figs were compared to those from Knudsen et al.'s checklist (1993), which reviews the floral fragrances (detected by head space techniques) of taxa belonging to 174 genera. Forty of the 99 total compounds identified in our study were listed in none or one of the 174 genera of the checklist (Table 1), and will be called "rare". Eighteen of the 20 *Ficus* species blends contained one or more of these compounds, rare among floral fragrances (Fig. 2). These rare compounds were mainly aliphatic compounds or sesquiterpenoids. In 13 cases these rare compounds represented more than 5% of the total compounds of the bouquet: for example, γ -butyrolactone represented 38% of the total compounds released by *F. glumosa*, bicyclogermacrene

represented 25% of the blend of *F. grossularioides*, and (E,E)- α -farnesene 11% of that of *F. sur*.

Most *Ficus* species released compounds that are rare among floral fragrances. Of the 40 compounds "rare" among floral fragrances, 20 were found among the volatiles of only one *Ficus* species (specific compounds).

However, only a small number of species accounted for the emission of such compounds and each emitted several rare compounds. The 20 rare and specific compounds were accounted for by only five species: *F. carica* (5 rare and specific compounds), *F. deltoidea* (10), *F. fulva* (1), *F. microcarpa* (1), and *F. punctata* (3).

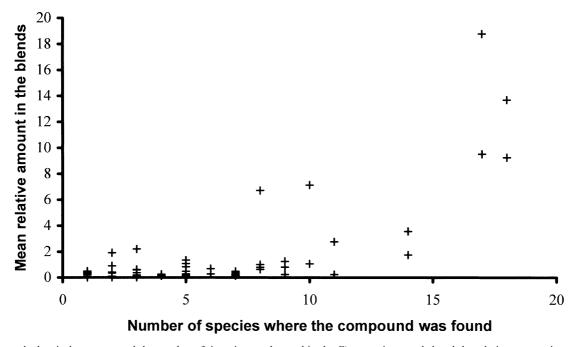


Fig. 1. For each chemical are presented the number of times it was observed in the *Ficus* species sampled and the relative amount it represented in the blends of each (for each compound, average of the relative abundances in all the fig blends where it was identified). The "specific" compounds (37 in number) are those that were present in only one of the fig species sampled.

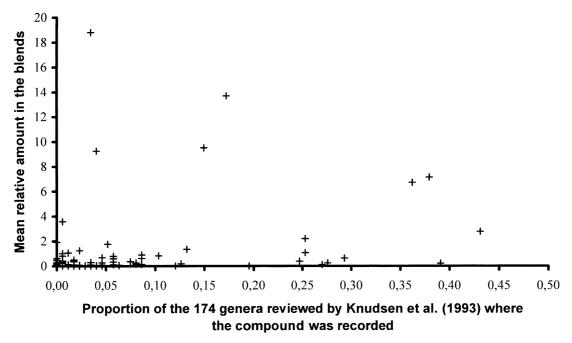


Fig. 2. Relationship between the proportion of the genera in which each compound was identified among the 174 genera reviewed by Knudsen et al. (1993), and the mean relative amount of the compound in the fig blends (for each compound, average of the relative abundances in all the fig blends where it was identified). The "rare" compounds (40 in number) are those present in fewer than 0.6% of the genera reviewed.

Table 3
Systematics and biological characters of the *Ficus* species studied

Species	Subgenus	Section	Place of study	Reproductive system	Biological form	Environment
F. fulva Reinw.	Ficus	Ficus	Brunei	Dioecy	Small tree	Forest understorey or secondary forests
F. deltoidea Jack.	Ficus	Ficus	Brunei	Dioecy	Epiphyte or shrub	Forest or open areas
F. grossularioides Burm.	Ficus	Ficus	Brunei	Dioecy	Shrub	Open areas
F. carica L.	Ficus	Ficus	France	Dioecy	Small tree	Open areas
F. punctata Thunb.	Ficus	Kalosyce	Brunei	Dioecy	Climber	forests
F. sur Forssk.	Sycomorus	Sycomorus	South Africa	Monoecy	Medium-size tree	Along streams
F. condensa King	Sycomorus	Sycocarpus	Brunei	Dioecy	Small tree	Forest understorey or secondary forests
F. uncinata Becc.	Sycomorus	Sycocarpus	Brunei	Dioecy	Small tree, geocarpic figs	Forest understorey or secondary forests
F. salicifolia Miq.	Urostigma	Urostigma	South Africa	Monoecy	Small tree	Woodland, often in rocky places
F. religiosa Linn.	Urostigma	Urostigma	South Africa ^a	Monoecy	Hemiepiphytic to terrestrial	Forests or secondary forests
F. microcarpa Linn.	Urostigma	Conosycea	Brunei	Monoecy	Hemiepiphytic to terrestrial	Forests or secondary forests
F. xyllophylla Wall.	Urostigma	Conosycea	Brunei	Monoecy	Hemiepiphytic to terrestrial	Forests or secondary forests
F. spathulifolia Corner	Urostigma	Conosycea	Brunei	Monoecy	Hemiepiphytic to terrestrial	Forests or secondary forests
F. subgelderi Corner	Urostigma	Conosycea	Brunei	Monoecy	Hemiepiphytic to terrestrial	Forests or secondary forests
F. abutilifolia Miq.	Urostigma	Galoglychia	South Africa	Monoecy	(Hemi-)epilithic	On rocks in savana woodland
F. polita Vahl.	Urostigma	Galoglychia	South Africa	Monoecy	Hemi-epiphytic/secondarily terrestrial	Evergreen forests
F. tettensis Hutch.	Urostigma	Galoglychia	Botswana	Monoecy	(Hemi-)epilithic	On rocks in dry areas
F. thonningi Bl.	Urostigma	Galoglychia	South Africa	Monoecy	Terrestrial to hemi-epiphytic	Wooded grasslands and tickets
F. glumosa Delile	Urostigma	Galoglychia	South Africa	Monoecy	Trees or shrubs	Savanna woodland, often on rocks
F. macrophylla Des.	Urostigma	Malvanthera	South Africa ^a	Monoecy	Hemiepiphytic to terrestrial	Forests

^a Introduced.

The most abundant compounds in the blend of a *Ficus* species were never compounds rare across the genera reviewed by Knudsen et al. (1993) (Fig. 2), except for γ -butyrolactone in *F. glumosa*. These compounds were limonene (11 species of the 20 studied), linalool (10 species), (*Z*)- β -ocimene (17 species), β -caryophyllene (18 species), (*E*)- β -ocimene (17 species), α -copaene (18 species), and germacrene D (17 species), which were found in 43, 38, 27, 17, 15, 4 and 3%, respectively, of the 174 genera reviewed by Knudsen et al. (1993).

The patterns we document suggest reasonable hypotheses about the chemical basis of specificity of wasp attraction. First, 37 of the 99 compounds identified were found in only a single species, suggesting that in some cases specificity of attraction could theoretically be based on a single compound. However, specificity probably seldom has such a simple basis, because these "speific" compounds were accounted for by only 6 of the 20 species. In the majority of species studied here, the specificity of the signal is thus unlikely to be due to a single compound and must instead be based on a unique mixture of several compounds. For F. carica, Gibernau (1997) showed that a mixture of linalool, benzyl alcohol and linalool oxides was responsible for the attraction of the pollinating wasp. These three compounds are common among floral fragrances, and linalool is the main compound in the *F. carica* blend (Gibernau et al., 1997). In this case the efficiency of the attraction is, therefore, not generated by rare compounds, but depends on the relative proportions of the compounds in the mixture.

3. Concluding remarks

This study showed that the major compounds produced by most *Ficus* species are generally not rare among floral fragrances and that in our sample, the specificity is not likely to be the result of one specific signal. Our results point to the need for biological tests in species pairs other than *F. carica* and its specific pollinator and suggest hypotheses to guide the design of such tests. Further work should also include determination of the enantiomeric composition of compounds in fig odours and investigations on the role of enantiomeric compositions of chiral volatiles in attraction and specificity.

4. Experimental

4.1. Plant material

This study involved 20 species of figs belonging to three of the four extant subgenera. Within each subgenus several sections were represented (Table 3). These species also represent diverse biological forms. Some of them, such as *F. microcarpa*, are hemi-epiphytes, others are lianas (e.g. *F. punctata*) or small trees (e.g. *F. fulva*). Their natural environment is forest understory (e.g. *F. condensa*), open forests (e.g. *F. fulva*, *F. subgelderi*), mangroves (e.g. *F. microcarpa*), forest canopies (e.g. *F. xyllophylla*, *F. spathulifolia*) or non-forested areas (e.g. *F. carica*, *F. salicifolia*, *F. tettensis*...) (Table 3). Herbarium specimens of the species studied in Brunei are

deposited in the Herbarium of the Forestry Department of Brunei Darussalam. The South African fig species studied here are all well known, and specimens can be obtained from J.M.G.

4.2. Collection of volatile compounds

To allow collection from many figs, branches bearing receptive figs were cut. The leaves were removed to prevent transpiration, and the branches were enclosed in humid air inside plastic bags. Collection of the volatile compounds was conducted at the Universiti Brunei Darussalam, where the branches were brought within 1 h, and around Pretoria (South Africa) or in Botswana. The cut branches were placed in receptacles with water during collection of volatile compounds. Volatile compounds were collected by the adsorption—desorption (headspace) technique as described in Grison et al. (1999). The effect of cutting branches on the emission by receptive figs was previously examined in some of the species studied here.

4.3. Chemical analyses

Solutions obtained were combined to form a more concentrated solution (one per species) that was analyzed using a gas chromatograph-mass spectrometer (GC: Hewlett-Packard, MS: HP 5870; FID, column DB5, 30 m, ID 0.25 mm, film thickness 0.25 µm, carrier gas: helium, oven temperature program: 50–180 °C, 3 °C/min). Non-combined solutions were indeed not sufficiently concentrated for GC or GC-MS analysis. Percentages of each compound in the scent are given on the basis of the total chromatogram obtained. Component identification was based on computer matching of the mass spectra. Using Library Search System HP-5872 (Hewlett-Packard), we consulted the following databases: Wiley 138 and NBS 75K libraries (McLafferty, 1988), NIST98 (Stephen, 1998), and the compilation by Adams (1995). If needed we used retention indices reported in the literature (Adams, 1995) and additional libraries (Joualin, Casabianca) for identification of the mass spectra. With the GC and the column used in this study, we were not able to determine the enantiomeric composition of the compounds present in the blend.

4.4. Data analyses

To estimate the abundance in plant taxa of the volatile compounds found in the *Ficus* blends, we used the checklist compiled by Knudsen et al. (1993). These authors reviewed the composition of volatile blends, collected by headspace techniques, of plant taxa belonging to 174 genera.

Acknowledgements

This work was supported by a Brunei Shell Environmental Studies Fellowship and by a grant "Dynamique de la Biodiversité et Environnement" from the French government. A NRF-CNRS grant made the South African collections possible. We are grateful to the Brunei Museum Director for providing access to the tree collection in the museum garden, to Dr. D. S. Edwards, Dr. A. A. Edwards, Dr. P. Becker and to the staffs of the Biology and Chemistry Departments of Universiti Brunei Darussalam for their help during this work. We thank Michelle Beltrand for her technical support during the analysis of the solutions, and Finn Kjellberg and Doyle McKey for their helpful comments on the manuscript.

References

- Adams, R.P., 1995. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy. Allured Publishing Corporation, Carol Stream, IL.
- Corner, E.J.H., 1965. Checklist of *Ficus* in Asia and Australia with keys to identification. The Garden Bulletin, Singapore 21, 1–185.
- Finch, S., 1980. Chemical attraction of plant-feeding insects to plants. Applied Biology 5, 67–143.
- Gershenzon, J., Croteau, R., 1991. Terpenoids. In: Rosenthal, G.A., Berenbaum, M.R. (Eds.), Herbivores: their Interactions with Secondary Plant Metabolites, Vol. 1. Academic Press, New York, pp. 165–219.
- Gibernau, M., 1997. Odeurs et Spécificité dans les Mutualismes figuier-pollinisateur: le Cas de *Ficus carica* L. et de *Blastophaga psenes* L. PhD thesis, Montpellier II University, France.
- Gibernau, M., Buser, H.R., Frey, J.E., Hossaert-McKey, M., 1997.Volatile compounds from extracts of syconia (figs) of *Ficus carica* (Moraceae). Phytochemistry 46, 241–244.
- Gibernau, M., Hossaert-McKey, M., Frey, J.E., Kjellberg, F., 1998.
 Are olfactory signals sufficient to attract fig pollinators? Ecoscience 5, 306–311.
- Grison, L., Edwards, A.A., Hossaert-McKey, M., 1999. Interspecies variation in floral fragrances emitted by tropical *Ficus* species. Phytochemistry 52, 1293–1299.
- Grison-Pigé, L., Bessiere J.M., Hossaert-McKey, M., 2002. Specific attraction of fig pollinating wasps: role of the volatile compounds released by tropical figs. Journal of Chemical Ecology 28, 283–295.
- Hossaert-McKey, M., Gibernau, M., Frey, J.E., 1994. Chemosensory attraction of fig wasps to substances produced by receptive figs. Entomologia Experimentalis et Applicata 70, 185–191.
- Janzen, D.H., 1979. How to be a fig. Annual Review of Ecology and Systematics 10, 13–51.
- Knudsen, J.T., Tollsten, L., Bergström, G., 1993. Floral scents- a checklist of volatile compounds isolated by headspace techniques. Phytochemistry 33, 253–280.
- McLafferty, F.W., 1988. Wiley/NBS Registry of Mass Spectral Data, fourth ed. Wiley, New York, USA.
- Nason, J.D., Herre, A.E., Hamrick, J.L., 1998. The breeding structure of a tropical keystone plant resource. Nature 391, 685–687.
- Stephen, S., 1998. NIST98 Mass Spectral Library. The NIST Mass Spectroscopy Data Center, Gaithersburg, MD.
- Van Noort, S., Ware, A.B., Compton, S.G., 1989. Pollinator-specific volatile attractants released from figs of *Ficus burtt-davyi*. South African Journal of Science 85, 323–324.

Ware, A.B., Compton, S.G., 1994. Responses of fig wasps to host plant volatile cues. Journal of Chemical Ecology 23, 785–802. Wiebes, J.T., 1979. Co-evolution of figs and their insect pollinators. Annual Review of Ecology and Systematics 10, 1–12.

Williams, N.H., 1983. Floral fragrances as cues in animal behavior. In: Jones, C.E., Little, R.J. (Eds.), Handbook for Experimental Pollination Biology. Scientific & Academic Editions. Van Nostrand Reinhold Company, New York, pp. 50–72.