

PHYTOCHEMISTRY

Phytochemistry 67 (2006) 1686-1698

www.elsevier.com/locate/phytochem

Review

S-Adenosyl-L-methionine: Beyond the universal methyl group donor

Sanja Roje *

Institute of Biological Chemistry, Washington State University, 299 Clark Hall, Pullman, WA 99164, USA

Received 22 September 2005; received in revised form 7 April 2006 Available online 12 June 2006

Dedicated to Prof. Rodney Croteau at the occasion of his 60th birthday.

Abstract

S-Adenosyl-L-methionine (AdoMet or SAM) is a substrate in numerous enzyme-catalyzed reactions. It not only provides methyl groups in many biological methylations, but also acts as the precursor in the biosynthesis of the polyamines spermidine and spermine, of the metal ion chelating compounds nicotianamine and phytosiderophores, and of the gaseous plant hormone ethylene. AdoMet is also the source of catalytic 5'-deoxyadenosyl radicals, produced as reaction intermediates by the superfamily of radical AdoMet enzymes. This review aims to summarize the present knowledge of catalytic roles of AdoMet in plant metabolism.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: S-Adenosyl-L-methionine; Methyltransferases; Polyamines; Nicotianamine; Phytosiderophores; Ethylene; 5'-Deoxyadenosyl radicals

Contents

1.	Introduction	1686
2.	AdoMet as the precursor of polyamines	1687
3.	AdoMet as the precursor of nicotianamine and phytosiderophores	1687
4.	AdoMet as the precursor of ethylene	1688
5.	AdoMet as the source of 5'-deoxyadenosyl radicals	1688
6.	AdoMet as the universal methyl group donor	1690
	6.1. <i>O</i> -methyltransferases	1690
	6.2. <i>N</i> -methyltransferases	1692
	6.3. <i>C</i> -methyltransferases	1693
	6.4. Thiol and halide ion methyltransferases	1694
	References	1695

1. Introduction

The number of known enzymes that utilize S-adenosyl-L-methionine (1) (AdoMet or SAM, Fig. 1) has increased

E-mail address: sanja@wsu.edu.

steadily in recent years. It is now clear that the transfer of methyl groups is only one role of this metabolite. Because of the vast number of methylated secondary products, methyltransferases are the most numerous among the AdoMet-utilizing enzymes in plants. Considering the richness of flora on Earth, and the fact that many identified or yet to be identified secondary products are produced only

^{*} Tel.: +1 509 335 3008; fax: +1 509 335 7643.

S-Adenosyl-L-Methionine, 1

Fig. 1. Chemical structure of AdoMet. The sulfonium and the S-bound methyl group are highlighted in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

by some plant species, many more AdoMet-utilizing methyltransferases will likely be discovered in the future. AdoMet (1) is also recognized as the substrate of a decarboxylase, of enzymes that catalyze transfer of aminopropyl or carboxypropyl groups, and of enzymes that catalyze generation of 5'-deoxyadenosyl radicals in plants. Reactions catalyzed by these enzymes lead to the biosynthesis of ethylene, polyamines, nicotianamine, phytosiderophores, and biotin. Finding enzymes that use AdoMet (1) as a substrate for entirely novel reactions in plants would not be surprising, as such enzymes are still being found in other organisms. For example, the recently discovered enzyme aclacinomycin-10-hydroxylase from *Streptomyces purpurascens* catalyzes an AdoMet-dependent hydroxylation reaction (Jansson et al., 2005).

AdoMet (1) is synthesized from methionine and ATP in a reaction catalyzed by the enzyme AdoMet synthetase (Aarnes, 1977; Espartero et al., 1994; Izhaki et al., 1995; Konze and Kende. 1979: Schröder et al., 1997: Van Breusegem et al., 1994). The biosynthesis of methionine, and other members of the aspartate family of amino acids, is regulated by AdoMet (1) in plants. AdoMet (1) inhibits an isozyme of aspartate kinase in the presence of lysine (Azevedo et al., 1997), activates threonine synthase (Curien et al., 1998; Madison and Thompson, 1976), and affects stability of the mRNA for cystathionine γ-synthase (Chiba et al., 2003). Through these interactions, AdoMet (1) also regulates its own biosynthesis. This review focuses on Ado-Met (1) as substrate in enzyme-catalyzed reactions in plants. Other related reviews have dealt with the biosynthesis of aspartate-derived amino acids and AdoMet (1) (Amir et al., 2002; Azevedo et al., 1997; Azevedo and Lea, 2001; Galili and Höfgen, 2002; Hesse et al., 2004; Hesse et al., 2001; Ravanel et al., 1998).

2. AdoMet as the precursor of polyamines

As the aminopropyl group donor in the biosynthesis of the polyamines spermidine (3) and spermine (4), AdoMet (1) is first decarboxylated to S-adenosyl-methioninamine in a reaction catalyzed by AdoMet decarboxylase (Dresselhaus et al., 1996; Hao et al., 2005; Mad Arif et al., 1994; Thu-Hang et al., 2002). Spermidine synthase (Yoon et al., 2000) then catalyzes transfer of the aminopropyl moiety of S-adenosyl-methioninamine to putrescine (2), yielding spermidine (3). Addition of another aminopropyl moiety to spermidine (3), catalyzed by spermine synthase (Hanzawa et al., 2000), yields spermine (4) (Fig. 2). Putrescine (2), spermidine (3), and spermine (4) are positively charged at cellular pH values, and are known to chemically interact with DNA, RNA, phospholipids, and some proteins. Abnormal phenotypes of plant mutants modified in polyamine metabolism suggest that these molecules are involved in the regulation of plant development (Clay and Nelson, 2005; Hanzawa et al., 2000; Imai et al., 2004a). Polyamines also appear to be involved in plant stress responses (Imai et al., 2004b; Kasukabe et al., 2004). Yet, their exact mode of action is unknown.

3. AdoMet as the precursor of nicotianamine and phytosiderophores

Nicotianamine (5) (Fig. 3), a strong chelator of iron and various transition metals, occurs widely in higher plants

$$H_2N$$

Putrescine, 2

Spermidine, 3

Spermine, 4

Fig. 2. Biosynthesis of spermidine and spermine. Abbreviations: 1, spermidine synthase; 2, spermine synthase; DC-AdoMet, S-adenosylmethioninamine; 5-MTA, 5-methylthioadenosine.

3 S-Adenosyl-L-Methionine, 1

Fig. 3. Biosynthesis of nicotianamine. The AdoMet-derived moieties used in the synthesis of nicotianamine are highlighted in green, blue, and gray. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

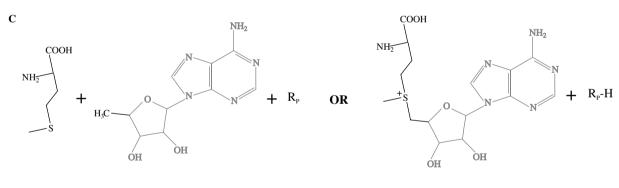
(Mori, 1999; Takahashi et al., 2003). The synthesis of nicotianamine (5) from three molecules of AdoMet (1) includes two carboxypropyl group transfers and one azetidine ring formation, with three molecules of 5'-methylthioadenosine (5'-MTA) (6) released (Fig. 3). All three reactions are catalyzed by the enzyme nicotianamine synthase (Herbik et al., 1999; Higuchi et al., 1999; Ling et al., 1999). In non-graminaceous plants, nicotianamine (5) is thought to bind metal ions and to participate in their trafficking inside the plant (Higuchi et al., 2001; Takahashi et al., 2003). In graminaceous plants, nicotianamine (5) is also the precursor of phytosiderophores, which are essential in acquiring iron from soil (Mizuno et al., 2003). The roots of these plants secrete phytosiderophores into the soil, where they form complexes with poorly soluble Fe(III) ions. Phytosiderophore–Fe(III) complexes are then taken up by the roots via specific transporters, thus providing these plants with iron needed for various metabolic processes (Mori, 1999).

4. AdoMet as the precursor of ethylene

The biosynthesis of the plant hormone ethylene from AdoMet (1) proceeds in two steps. The enzyme 1-aminocy-

clopropane-1-carboxylate (ACC) synthase first catalyzes conversion of AdoMet to ACC and 5'-MTA (6). The enzyme ACC oxidase then catalyzes the conversion of ACC to ethylene (Adams and Yang, 1979; Bleecker and Kende, 2000; Boller et al., 1979; Hamilton et al., 1991; Kende, 1993; Spanu et al., 1991; Van der Straeten et al., 1990; Yu et al., 1979). Ethylene participates in regulation of growth, development, and responses to stress and pathogen attack in plants (Bleecker and Kende, 2000; Kende, 1993). The physiological roles of ethylene, regulation of ethylene biosynthesis, and ethylene signal transduction have recently been reviewed elsewhere (Chae and Kieber, 2005; Chang, 2003; Chen et al., 2005; Guo and Ecker, 2004; Klee, 2004; Wang et al., 2002).

5. AdoMet as the source of 5'-deoxyadenosyl radicals


Radical AdoMet enzymes catalyze reductive cleavage of AdoMet (1) to yield methionine (7) and a catalytic, highly oxidizing 5'-deoxyadenosyl radical intermediate (Fig. 4A) (Jarrett, 2003; Layer et al., 2004). This reactive radical abstracts hydrogen from a carbon atom of a substrate molecule to yield 5'-deoxyadenosine (8) and a substrate radical (Fig. 4B). The substrate radical is then converted into the

A COOH NH2 NH2 + COOH
$$\frac{1}{2}$$
 COOH $\frac{1}{2}$ COO

B
$$+ R_{s}-H$$

$$+ R_{s}-H$$

$$= 5'-Deoxyadenosyl Radical]$$
Substrate
$$= 5'-Deoxyadenosine, 8$$
[Substrate Radical]

L-Methionine, 7 5'-Deoxyadenosine, 8 Product

S-Adenosyl-L-Methionine, 1 Product

Fig. 4. AdoMet as the source of 5'-deoxyadenosyl radicals. (A) Reductive cleavage of AdoMet; (B) generation of a substrate radical; (C) the final reaction products.

final reaction product(s). In most cases, methionine (7) and 5'-deoxyadenosine (8) are released with the final reaction product (Fig. 4C). In few cases, however, AdoMet (1) is released instead, after being restored when the product radical re-abstracts a hydrogen from 5'-deoxyadenosine (8) (Fig. 4C) (Jarrett, 2003; Layer et al., 2004).

The substrate of a radical AdoMet enzyme can be a small molecule or a catalytic glycine residue of another protein. All radical AdoMet enzymes contain a catalytically essential iron–sulfur (4Fe–4S) cluster, which initiates

cleavage of AdoMet (1) by transfer of an electron to its sulfonium ion; and a signature sequence motif, which binds the iron–sulfur cluster (Sofia et al., 2001).

Biotin synthase catalyzes conversion of dethiobiotin (9) to biotin (10) (Fig. 5); it is the only radical AdoMet enzyme that has been cloned and characterized in plants (Baldet et al., 1997; Baldet and Ruffet, 1996; Patton et al., 1996; Picciocchi et al., 2001; Picciocchi et al., 2003; Weaver et al., 1996). Considering that the superfamily of radical AdoMet enzymes is predicted to contain more than 600

Fig. 5. The reaction catalyzed by biotin synthase.

enzymes (Sofia et al., 2001), the discovery of new members of this superfamily in plants is likely.

6. AdoMet as the universal methyl group donor

AdoMet (1) is the methyl group donor in a wide variety of enzyme-catalyzed reactions in plants. O-, N-, and C-methyltransferases are the three major families of methyltransferases based on the chemical nature of the substrate. Enzymes that act on halide ions, and that catalyze the addition of a methylene group to the cis-double bond of fatty acids, also exist in plants.

The substrates of AdoMet-dependent methyltransferases form a chemically diverse group of compounds that participate in both primary and secondary metabolism. Examples include lipids, pectin, alkaloids, phytosterols, osmoprotectants, the precursors of lignins, lignans, suberins, hydroxycinnamic acids, flavonoids, stilbenes and other aromatics, as well as various volatile fragrance and aroma compounds. Some methyltransferases exhibit strict specificity for a single substrate; many others accept a broad range of substrates. All share three highly conserved motifs that have been implied in AdoMet (1) binding (Kagan and Clarke, 1994).

6.1. O-methyltransferases

Most known plant *O*-methyltransferases (OMTs) act on hydroxyl and carboxyl moieties of small molecules. A classification of plant OMTs that act on small molecules has been proposed, based on the chemical nature of the methyl acceptor molecule (Ibrahim et al., 1998). According to this classification, plant OMTs are assigned to Class "A" if they act on the hydroxyl groups of phenylpropanoids, Class "B" if they act on flavonoids, Class "C" if they act on alkaloids, and Class "D" if they act on aliphatic substrates. Since this classification was proposed, new OMTs that do not fall into any of the four classes above have been identified in plants (see below).

Plants also contain an OMT that does not act on a small molecule. This enzyme is protein-L-isoaspartate *O*-methyltransferase (Amaral et al., 2001; Mudgett and Clarke, 1993; Mudgett and Clarke, 1994; Mudgett and Clarke, 1996; Thapar and Clarke, 2000), which catalyzes the transfer of methyl groups to protein-bound L-isoaspartyl (12) and D-aspartyl residues that result from spontaneous protein damage. Methylation of these abnormal residues into an α-methyl ester (13) initiates their repair to L-aspartyl residues (11) (Fig. 6).

Class A OMTs act on phenylpropanoids and include caffeoyl coenzyme A 3-O-methyltransferase (CCOMT) and caffeic acid 3-O-methyltransferase (COMT). These two enzymes are essential to the biosynthesis of coniferyl and sinapyl alcohols, the precursors of lignins, lignans, and other phenylpropanoids. CCOMTs catalyze methylation of caffeoyl CoA to feruloyl CoA, and of 5-hydroxyferuloyl CoA to sinapoyl CoA, in vitro and probably in vivo (Anterola and Lewis, 2002; Boerjan et al., 2003; Dixon et al., 2001; Lewis et al., 1999; Ye et al., 2001). Since the discovery (Pakusch et al., 1989) and subsequent cloning (Schmitt et al., 1991) of the first plant CCOMT from parsley cell suspension cultures, these enzymes, and their roles in tissue lignification, have been studied extensively. Advances in the understanding of their biochemical and physiological roles have been comprehensively covered in recent reviews (Anterola and Lewis, 2002; Boerjan et al., 2003; Dixon et al., 2001; Lewis et al., 1999; Ye et al., 2001).

Although *O*-methylation of caffeic acid by plant extracts was discovered more than 40 years ago (Finkle and Nelson, 1963), the in vivo substrates of COMTs are still being debated (Anterola and Lewis, 2002; Boerjan et al., 2003; Dixon et al., 2001; Gauthier et al., 1998; Kota et al., 2004; Lewis et al., 1999; Maury et al., 1999). The in vitro substrates of these enzymes reportedly include caffeic acid, caffeoyl CoA, caffeyl aldehyde, caffeyl alcohol, 5-hydroxyferulic acid, 5-hydroxyferuloyl CoA, 5-hydroxyconiferyl alcohol, protocatechuic aldehyde, protocatechuic acid, 3,4-dihydroxy, 5-methoxybenzaldehyde, isovanillin, luteolin, and quercetin. Each COMT can *O*-methylate caffeic acid and 5-hydroxyferulic

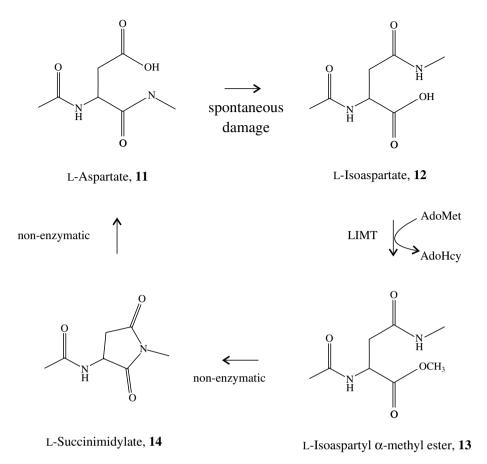


Fig. 6. Repair of protein-bound L-isoaspartyl residues. LIMT, protein-L-isoaspartate O-methyltransferase.

acid, as well as one or more of the other compounds listed above (Anterola and Lewis, 2002; Boerjan et al., 2003; Dixon et al., 2001; Gauthier et al., 1998; Kota et al., 2004; Lewis et al., 1999; Maury et al., 1999). Advances in the understanding of the biochemical and physiological roles of COMTs have been reviewed recently (Anterola and Lewis, 2002; Boerjan et al., 2003; Dixon et al., 2001; Lewis et al., 1999; Ye et al., 2001).

Another Class A OMT, β-peltatin 6-O-methyltransferase, catalyzes a step in the biosynthesis of 6-methoxypodophyllotoxin, a cytotoxic lignan from Linum nodiflorum (Kranz and Petersen, 2003). Class A OMTs also participate in the biosynthesis of many fruit flavor and floral scent components in various plant species (Gang, 2005). For example, chavicol and eugenol O-methyltransferases catalyze, respectively, the final step in the biosynthesis of methylchavicol and methyleugenol in sweet basil (Gang et al., 2002); orcinol O-methyltransferase (Lavid et al., 2002b; Scalliet et al., 2002) and phloroglucinol O-methyltransferase catalyze the three methylation steps in the biosynthesis of 1,3,5-trimethoxybenzene in chinese rose (Wu et al., 2004); and furaneol O-methyltransferase catalyzes the methylation of furaneol to methoxyfuraneol in strawberry (Lavid et al., 2002a; Wein et al., 2002).

Class B OMTs catalyze methylation of the hydroxyl groups of flavonoids and include chalcone and isoflavone

O-methyltransferases. Chalcone O-methyltransferase (also known as isoliquiritigenin 2'-O-methyltransferase) catalyzes methylation of 4,2',4'-trihydroxychalcone to 4,4'dihydroxy-2'-methoxychalcone, an inducer of nodulation genes (Maxwell et al., 1992; Maxwell et al., 1993). Isoflavone 7-O-methyltransferase in vitro catalyzes methylation of the 7-hydroxyl-group of the isoflavonoids daidzein, genistein, and 6,7,4'-trihydroxyisoflavone; and of the pterocarpans 6a-hydroxymaackiain and maackiain (He and Dixon, 1996; He et al., 1998). The proposed role of this enzyme in vivo is methylation of 2,4',7-trihydroxyisoflavanone, an unstable product of isoflavone synthase, into 2,7-dihydroxy-4'-methoxyisoflavanone (Liu and Dixon, 2001). This reaction is a step in the biosynthesis of medicarpin, a phytoalexin present in alfalfa. A related class B OMT, 6ahydroxymaackiain 3-O-methyltransferase, catalyzes the final step in pisatin synthesis in pea (Wu et al., 1997). Chalcone O-methyltransferase and isoflavone 7-O-methyltransferase from alfalfa are the first plant methyltransferases to be structurally characterized (Zubieta et al., 2001). Besides the AdoMet-binding catalytic domain, which is structurally conserved among all family members investigated since the X-ray crystal structure of an OMT was first elucidated (Vidgren et al., 1994), plant OMTs contain a second domain involved in enzyme dimerization and substrate binding (Zubieta et al., 2001).

Class C OMTs catalyze methylation of alkaloids and include reticuline 7-*O*-methyltransferase and norcoclaurine 6-*O*-methyltransferase from opium poppy (Ounaroon et al., 2003), as well as norcoclaurine 6-*O*-methyltransferase, 3'-hydroxy-*N*-methylcoclaurine 4'-*O*-methyltransferase, and scoulerine 9-*O*-methyltransferase, all three catalyzing steps in benzylisoquinoline alkaloid biosynthesis in *Coptis* (*Ranuculaceae*) (Choi et al., 2002). A class D representative, *myo*-inositol *O*-methyltransferase, catalyzes the biosynthesis of the osmoprotectant D-ononitol in *Mesembryanthe-mum crystallinum* (Rammesmayer et al., 1995).

A novel family of *O*-methyltransferases was discovered in plants after the classification above was proposed. This family includes the enzymes that catalyze methylation of the carboxyl group of benzoic (16), salicylic (18), or jasmonic (20) acid to produce the corresponding volatile methyl esters (Fig. 7) (Dudareva et al., 2000; Effmert et al., 2005; Murfitt et al., 2000; Negre et al., 2003; Ross et al., 1999; Seo et al., 2001; Zubieta et al., 2003). All three methyl esters occur in fruit flavor and floral scent in various plant species (Effmert et al., 2005; Negre et al., 2003; Ross et al., 1999). Methyl salicylate (19) and methyl jasmonate (21) participate in plant responses to pathogen attack (Farmer and Ryan, 1990; Shulaev et al., 1997). Methyl jasmonate (21) is also involved in the regulation of various

developmental processes in plants (Creelman and Mullet, 1995; Creelman and Mullet, 1997). The X-ray crystal structure of salicylic acid carboxyl methyltransferase from *Clarkia breweri* (Zubieta et al., 2003) revealed a dimer structure broadly similar to those of chalcone *O*-methyltransferase and isoflavone 7-*O*-methyltransferase from alfalfa (Zubieta et al., 2001).

6.2. N-methyltransferases

Plant N-methyltransferases act on proteins, DNA, phosphoethanolamine, and secondary metabolites. N-methylation of histones and DNA plays a crucial role in the organization of chromatin structure, and thus transcriptional regulation, in plants and animals. Histones can be methylated in ε-amino groups of selected lysine residues by histone lysine methyltransferases (HKMTs) (Cheng et al., 2005). All the investigated plant HKMTs carry a signature SET domain, which contains the active site of the enzyme. The first two SET domain HKMTs have been characterized from mammalian sources (Rea et al., 2000). Characterization of plant SET domain HKMTs and investigation of their physiological roles are currently active research areas (Jackson et al., 2002; Naumann et al., 2005; Springer et al., 2003).

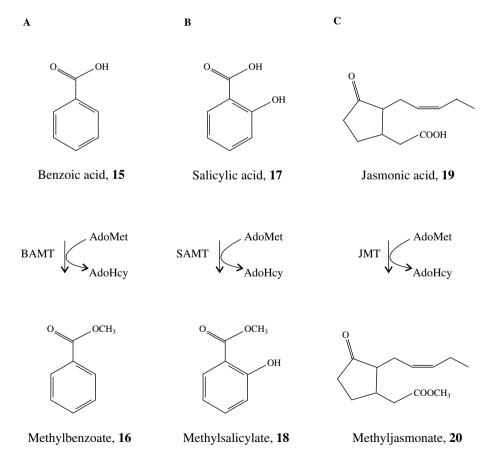


Fig. 7. Biosynthesis of volatile methyl esters. (A) methylbenzoate; (B) methylsalicylate; (C) methyljasmonate. BAMT, benzoic acid carboxyl methyltransferase; SAMT, salicylic acid carboxyl methyltransferase; JAMT, jasmonic acid carboxyl methyltransferase.

Histones can also be methylated in the guanidino group of selected arginine residues by protein arginine methyltransferases (PRMTs) (Cheng et al., 2005). Histone PRMT activity has been detected in plants (Disa et al., 1986; Gupta et al., 1982), and multiple putative PRMT genes have been found in plant genomes (Cheng et al., 2005). However, no plant histone PRMTs have yet been cloned and characterized.

Three types of cytosine DNA methyltransferases exist in plants (Tariq and Paszkowski, 2004). The first type maintains CpG methylation and is represented by MET1 from *Arabidopsis* (Ronemus et al., 1996). The second type maintains CpNpG methylation and is represented by chromomethylase (CMT) from *Arabidopsis* (Lindroth et al., 2001). The third type methylates DNA de novo (Cao and Jacobsen, 2002) and is represented by the domains rearranged methylase (DRM) from *Arabidopsis*. Studies of DNA methylation and histone *N*-methylation suggest that these two processes act in concert to regulate transcription in plants (Lindroth et al., 2004; Naumann et al., 2005; Tariq and Paszkowski, 2004).

Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) is another substrate of protein N-methyltransferases in plants. This enzyme consists of eight large and eight small subunits; it is methylated at a lysine residue of the large subunit, and at the α-amino group of the N-terminal methionine of the mature form of the small subunit (Ying et al., 1999). Methylation of the large subunit is mediated by a SET domain protein methyltransferase (Trievel et al., 2002; Trievel et al., 2003). The physiological roles of Rubisco methylation are unknown. Targeting of proteins that interact with Rubisco is one role proposed for the large subunit methylation (Trievel et al., 2002).

In addition to protein and DNA methyltransferases, which serve regulatory roles, N-methyltransferases involved in the biosynthesis of various plant metabolites have been characterized. For example, phosphoethanolamine N-methyltransferase catalyzes the three sequential methyl group transfers that convert phosphoethanolamine (22) to phosphocholine (23) (Fig. 8A), the precursor of choline (Nuccio et al., 2000). Choline is used in the biosynthesis of the phospholipid phosphatidylcholine, which makes up 40-60% of lipids in non-plastid membranes (Bolognese and McGraw, 2000; Moore, 1990). Choline is also used in the biosynthesis of the osmoprotectant glycine betaine in some plants (Rathinasabapathi et al., 1997). Another N-methyltransferase, β-alanine N-methyltransferase from the plant Limonium latifolium, is also involved in the biosynthesis of an osmoprotectant. This enzyme catalyzes the three sequential methyl group transfers that convert β -alanine (24) to the osmoprotectant β -alanine betaine (25) (Fig. 8B) (Raman and Rathinasabapathi, 2003).

Plant N-methyltransferases also participate in the biosynthesis of many alkaloids, some of which are pharmaceutically important. Methylation of putrescine to N-methylputrescine by putrescine N-methyltransferase is the first committed step in the biosynthesis of tropane, nico-

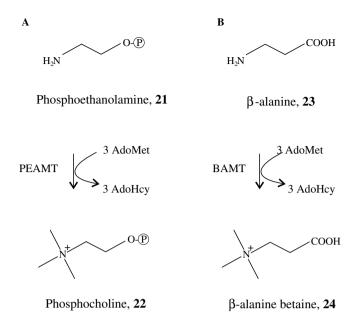


Fig. 8. Biosynthesis of the N-methylated products of phosphoethanolamine and β -alanine. (A) phosphocholine; (B) β -alanine betaine. PEAMT, phosphoethanolamine *N*-methyltransferase; BAMT, β -alanine *N*-methyltransferase.

tine, and probably calystegine alkaloids in Solanaceae and Convolvulaceae (Sato et al., 2001; Stenzel et al., 2005; Zhang et al., 2004). Methylation of coclaurine to N-methvlcoclaurine by coclaurine N-methyltransferase, along with the three O-methylations (see above), is a step in benzylisoquinoline alkaloid biosynthesis in Coptis (Choi et al., 2002). Three N-methylation steps are required for the biosynthesis of caffeine in tea and coffee (Fig. 9) (Ashihara et al., 1996; Kato et al., 2000; Kato et al., 1999; Mösli Waldhauser et al., 1997; Ogawa et al., 2001; Uefuji et al., 2003). The first step is methylation of xanthosine (26) by xanthosine methyltransferase, yielding 7-methylxanthosine (27). Ribose removal from this product is then catalyzed by 7methylxathosine nucleosidase, yielding 7-methylxathine (28). Methylation of 7-methylxanthine (28) to 3,7-dimethylxanthine (theobromine) (29) is catalyzed by 7-methylxanthine methyltransferase (also known as theobromine synthase). Theobromine (29) is then methylated by 3,7dimethylxanthine methyltransferase to yield 1.3.7-trimethylxanthine (caffeine) (30). Plants contain multiple enzymes, which differ in biochemical properties and substrate specificities, capable of catalyzing these methylation steps in vitro and possibly in vivo (Kato et al., 1999; Ogawa et al., 2001; Uefuji et al., 2003).

6.3. C-methyltransferases

Only four types of *C*-methyltransferases have so far been identified in plants: two act on lipids (Bao et al., 2003; Nes, 2003), one catalyzes a step in the biosynthesis of the cofactor siroheme (Leustek et al., 1997), and one a step in the biosynthesis of vitamin E (Cho et al., 2005).

Xanthosine, 25

7-Methylxanthosine, 26

7-Methylxanthine, 27

3,7-Dimethylxanthine (Theobromine). **28**

1,3,7-Trimethylxanthine (Caffeine), **29**

Fig. 9. Biosynthesis of caffeine. XMT, xanthosine methyltransferase; 7-MXN, 7-methylxanthosine nucleosidase; Rib, ribose; 7-MXMT, 7-methylxantine methyltransferase; 3,7-DMXMT, 3,7-dimethylxanthine methyltransferase.

Sterol methyltransferases catalyze addition of a methyl group to the carbon-24 of the side chain of C_{28} and C_{29} steroids. This addition creates a chiral center in the sterol side chain. The generated phytosterols become components of plant membranes, or are further metabolized to brassinosteroid hormones. *C*-methylation of phytosterols is one origin of their structural and functional diversity (Bouvier-Navé et al., 1998; Diener et al., 2000; Nes, 2003; Nes et al., 2003).

Cyclopropane fatty-acid synthases catalyze the addition of a methyl group across a double bond of unsaturated fatty acids to yield products containing a three-member carbocyclic ring (Fig. 10) (Bao et al., 2002; Bao et al., 2003). Carbocyclic fatty acids occur in several plant orders (Bao et al., 2002; Bohannon and Kleiman, 1978). Their functions may include carbon and energy storage in seeds (Kleiman et al., 1969), and resistance to fungal attack (Schmid and Patterson, 1988).

Uroporphyrinogen III methyltransferase acts on uroporphyrinogen III to yield precorrin-2. Precorrin-2 is a pre-

Fig. 10. The reaction catalyzed by cyclopropane fatty-acid synthase.

cursor of siroheme, the cofactor for sulfate and nitrate reductases. Uroporphyrinogen III methyltransferase from *Arabidopsis* has been cloned, and shown to be localized in plastids (Leustek et al., 1997). Another enzyme that participates in the cofactor metabolism is γ -tocopherol methyltransferase. This enzyme catalyzes methylation of γ -tocopherol (one chemical form of vitamin E) into the biologically more potent α -tocopherol (Cho et al., 2005).

6.4. Thiol and halide ion methyltransferases

Thiol methyltransferases, found in *Brassicaceae*, act on various organic thiols such as thiophenol, thiocyanate, thiosalicylic acid, and 4,4'-thiobisbenzenethiol (Attieh et al., 2002; Attieh et al., 2000). The proposed role of these enzymes in vivo is methylation of the hydrolysis products of glucosinolates to volatile sulfur compounds, which are thought to participate in the defense against insects and pathogens (Attieh et al., 2002). These thiol methyltransferases also accept halide ions (chloride, bromide, and iodide) as substrates to produce methyl halides; these activities, however, are probably of little or no relevance in vivo (Attieh et al., 2000; Attieh et al., 1995).

Halide methyltransferases are present in the salt-marsh plant *Batis maritima* (Ni and Hager, 1998; Ni and Hager, 1999), and in the marine microalga *Pavlova pinguis* (Ohsawa et al., 2001). Thiols are not the preferred substrates of the enzyme from *B. maritima*. It is therefore improbable that this enzyme is involved in the metabolism of sulfur compounds (Ni and Hager, 1998). One view is that it maintains the concentration of chloride ions in the cytosol (Ni and Hager, 1999).

References

- Aarnes, H., 1977. Partial purification and characterization of methionine adenosyltransferase from pea seedlings. Plant Sci. Lett. 10, 381–390.
- Adams, D.O., Yang, S.F., 1979. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA 76, 170–174.
- Amaral, M.D., Chen, L., Chattopadhyay, D., Smith, C.D., Meehan, E.J., 2001. Crystallization and preliminary X-ray diffraction analysis of protein L-isoaspartyl O-methyltransferase from wheat germ. Acta Cryst. D 57, 304–305.
- Amir, R., Hacham, Y., Galili, G., 2002. Cystathionine γ-synthase and threonine synthase operate in concert to regulate carbon flow towards methionine in plants. Trends Plant Sci. 7, 153–156.
- Anterola, A.M., Lewis, N.G., 2002. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61, 221– 294.
- Ashihara, H., Monteiro, A.M., Gillies, F.M., Crozier, A., 1996. Biosynthesis of caffeine in leaves of coffee. Plant Physiol. 111, 747–753.
- Attieh, J.M., Hanson, A.D., Saini, H.S., 1995. Purification and characterization of a novel methyltransferase responsible for biosynthesis of halomethanes and methanethiol in *Brassica oleracea*. J. Biol. Chem. 270, 9250–9257.
- Attieh, J., Sparace, S.A., Saini, H.S., 2000. Purification and properties of multiple isoforms of a novel thiol methyltransferase involved in the production of volatile sulfur compounds from *Brassica oleracea*. Arch. Biochem. Biophys. 380, 257–266.
- Attieh, J., Djiana, R., Koonjul, P., Étienne, C., Sparace, S.A., Saini, H.S., 2002. Cloning and functional expression of two plant thiol methyltransferases: a new class of enzymes involved in the biosynthesis of sulfur volatiles. Plant Mol. Biol. 50, 511–521.
- Azevedo, R.A., Lea, P.J., 2001. Lysine metabolism in higher plants. Amino Acids 20, 261–279.
- Azevedo, R.A., Arruda, P., Turner, W.L., Lea, P.J., 1997. The biosynthesis and metabolism of the aspartate derived amino acids in higher plants. Phytochemistry 46, 395–419.
- Baldet, P., Ruffet, M.L., 1996. Biotin synthesis in higher plants: isolation of a cDNA encoding *Arabidopsis thaliana bioB*-gene product equivalent by functional complementation of a biotin auxotroph mutant *bioB105* of *Escherichia coli* K12. C. R. Acad. Sci. III 319, 99–106.
- Baldet, P., Alban, C., Douce, R., 1997. Biotin synthesis in higher plants: purification and characterization of bioB gene product equivalent from Arabidopsis thaliana overexpressed in Escherichia coli and its subcellular localization in pea leaf cells. FEBS Lett. 419, 206–210.
- Bao, X., Katz, S., Pollard, M., Ohlrogge, J., 2002. Carbocyclic fatty acids in plants: biochemical and molecular genetic characterization of cyclopropane fatty acid synthesis of *Sterculia foetida*. Proc. Natl. Acad. Sci. USA 99, 7172–7177.
- Bao, X., Thelen, J.J., Bonaventure, G., Ohlrogge, J.B., 2003. Characterization of cyclopropane fatty-acid synthase from *Sterculia foetida*. J. Biol. Chem. 278, 12846–12853.
- Bleecker, A.B., Kende, H., 2000. Ethylene: a gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 16, 1–18.
- Boerjan, W., Ralph, J., Baucher, M., 2003. Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519–546.
- Bohannon, M.B., Kleiman, R., 1978. Cyclopropene fatty acids of selected seed oils from *Bombacaceae*, *Malvaceae*, and *Sterculiaceae*. Lipids 13, 270–273.
- Boller, T., Herner, R.C., Kende, H., 1979. Assay for an enzymatic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid. Planta 145, 293–303.
- Bolognese, C.P., McGraw, P., 2000. The isolation and characterization in yeast of a gene for Arabidopsis S-adenosylmethionine:phosphoethanolamine N-methyltransferase. Plant Physiol. 124, 1800–1813.
- Bouvier-Navé, P., Husselstein, T., Benveniste, P., 1998. Two families of sterol methyltransferases are involved in the first and the second

- methylation steps of plant sterol biosynthesis. Eur. J. Biochem. 256, 88-96
- Cao, X., Jacobsen, S.E., 2002. Role of the *Arabidopsis DRM* methyltransferases in de novo DNA methylation and gene silencing. Curr. Biol. 12, 1138–1144.
- Chae, H.S., Kieber, J.J., 2005. Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci. 10, 291–296.
- Chang, C., 2003. Ethylene signaling: the MAPK module has finally landed. Trends Plant Sci. 8, 365–368.
- Chen, Y.F., Etheridge, N., Schaller, G.E., 2005. Ethylene signal transduction. Ann. Bot. (Lond.) 95, 901–915.
- Cheng, X., Collins, R.E., Zhang, X., 2005. Structural and sequence motifs of protein (histone) methylation enzymes. Annu. Rev. Biophys. Biomol. Struct. 34, 267–294.
- Chiba, Y., Sakurai, R., Yoshino, M., Ominato, K., Ishikawa, M., Onouchi, H., Naito, S., 2003. S-adenosyl-L-methionine is an effector in the posttranscriptional autoregulation of the cystathionine γ-synthase gene in *Arabidopsis*. Proc. Natl. Acad. Sci. USA 100, 10225–10230.
- Cho, E.A., Lee, C.A., Kim, Y.S., Baek, S.H., de los Reyes, B.G., Yun, S.J., 2005. Expression of γ-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (*Latuca sativa* L.). Mol. Cells 19, 16–22.
- Choi, K.B., Morishige, T., Shitan, N., Yazaki, K., Sato, F., 2002. Molecular cloning and characterization of coclaurine *N*-methyltransferase from cultured cells of *Coptis japonica*. J. Biol. Chem. 277, 830–835.
- Clay, N.K., Nelson, T., 2005. Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cellspecific spermine synthase involved in vein definition and in polar auxin transport. Plant Physiol. 138, 767–777.
- Creelman, R.A., Mullet, J.E., 1995. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc. Natl. Acad. Sci. USA 92, 4114–4119.
- Creelman, R.A., Mullet, J.E., 1997. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 355–381.
- Curien, G., Job, D., Douce, R., Dumas, R., 1998. Allosteric activation of Arabidopsis threonine synthase by S-adenosylmethionine. Biochemistry 37, 13212–13221.
- Diener, A.C., Li, H., Zhou, W., Whoriskey, W.J., Nes, W.D., Fink, G.R., 2000. Sterol methyltransferase 1 controls the level of cholesterol in plants. Plant Cell 12, 853–870.
- Disa, S.G., Gupta, A., Kim, S., Paik, W.K., 1986. Site specificity of histone H4 methylation by wheat germ protein–arginine N-methyltransferase. Biochemistry 25, 2443–2448.
- Dixon, R.A., Chen, F., Guo, D., Parvathi, K., 2001. The biosynthesis of monolignols: a "metabolic grid", or independent pathways to guaiacyl and syringyl units? Phytochemistry 57, 1069–1084.
- Dresselhaus, T., Barcelo, P., Hagel, C., Lörz, H., Humbeck, K., 1996. Isolation and characterization of a *Tritordeum* cDNA encoding S-adenosylmethionine decarboxylase that is circadian-clock-regulated. Plant Mol. Biol. 30, 1021–1033.
- Dudareva, N., Murfitt, L.M., Mann, C.J., Gorenstein, N., Kolosova, N., Kish, C.M., Bonham, C., Wood, K., 2000. Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell 12, 949–961.
- Effmert, U., Saschenbrecker, S., Ross, J., Negre, F., Fraser, C.M., Noel, J.P., Dudareva, N., Piechulla, B., 2005. Floral benzenoid carboxyl methyltransferases: from in vitro to in planta function. Phytochemistry 66, 1211–1230.
- Espartero, J., Pintor-Toro, J.A., Pardo, J.M., 1994. Differential accumulation of *S*-adenosylmethionine synthetase transcripts in response to salt stress. Plant Mol. Biol. 25, 217–227.
- Farmer, E.E., Ryan, C.A., 1990. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 87, 7713–7716.
- Finkle, B.J., Nelson, R.F., 1963. Enzyme reactions with phenolic compounds: a *meta-O*-methyltransferase in plants. Biochim. Biophys. Acta 78, 747–749.

- Galili, G., Höfgen, R., 2002. Metabolic engineering of amino acids and storage proteins in plants. Metab. Eng. 4, 3–11.
- Gang, D.R., 2005. Evolution of flavors and scents. Annu. Rev. Plant Biol. 56, 301–325.
- Gang, D.R., Lavid, N., Zubieta, C., Chen, F., Beuerle, T., Lewinsohn, E., Noel, J.P., Pichersky, E., 2002. Characterization of phenylpropene Omethyltransferases from sweet basil: facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family. Plant Cell 14, 505–519.
- Gauthier, A., Gulick, P.J., Ibrahim, R.K., 1998. Characterization of two cDNA clones which encode *O*-methyltransferases for the methylation of both flavonoid and phenylpropanoid compounds. Arch. Biochem. Biophys. 351, 243–249.
- Guo, H., Ecker, J.R., 2004. The ethylene signaling pathway: new insights. Curr. Opin. Plant Biol. 7, 40–49.
- Gupta, A., Jensen, D., Kim, S., Paik, W.K., 1982. Histone-specific protein-arginine methyltransferase from wheat germ. J. Biol. Chem. 257, 9677–9683.
- Hamilton, A.J., Bouzayen, M., Grierson, D., 1991. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc. Natl. Acad. Sci. USA 88, 7434–7437.
- Hanzawa, Y., Takahashi, T., Michael, A.J., Burtin, D., Long, D., Pineiro, M., Coupland, G., Komeda, Y., 2000. ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J. 19, 4248–4256.
- Hao, Y.J., Zhang, Z., Kitashiba, H., Honda, C., Ubi, B., Kita, M., Moriguchi, T., 2005. Molecular cloning and functional characterization of two apple S-adenosylmethionine decarboxylase genes and their different expression in fruit development, cell growth and stress responses. Gene 350, 41–50.
- He, X.Z., Dixon, R.A., 1996. Affinity chromatography, substrate/product specificity, and amino acid sequence analysis of an isoflavone Omethyltransferase from alfalfa (*Medicago sativa L.*). Arch. Biochem. Biophys. 336, 121–129.
- He, X.Z., Reddy, J.T., Dixon, R.A., 1998. Stress responses in alfalfa (*Medicago sativa* L). XXII. cDNA cloning and characterization of an elicitor-inducible isoflavone 7-O-methyltransferase. Plant Mol. Biol. 36, 43-54.
- Herbik, A., Koch, G., Mock, H.P., Dushkov, D., Czihal, A., Thielmann, J., Stephan, U.W., Bäumlein, H., 1999. Isolation, characterization and cDNA cloning of nicotianamine synthase from barley. A key enzyme for iron homeostasis in plants. Eur. J. Biochem. 265, 231– 239.
- Hesse, H., Kreft, O., Maimann, S., Zeh, M., Willmitzer, L., Höfgen, R., 2001. Approaches towards understanding methionine biosynthesis in higher plants. Amino Acids 20, 281–289.
- Hesse, H., Kreft, O., Maimann, S., Zeh, M., Hoefgen, R., 2004. Current understanding of the regulation of methionine biosynthesis in plants. J. Exp. Bot. 55, 1799–1808.
- Higuchi, K., Suzuki, K., Nakanishi, H., Yamaguchi, H., Nishizawa, N.K., Mori, S., 1999. Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol. 119, 471–480.
- Higuchi, K., Tani, M., Nakanishi, H., Yoshiwara, T., Goto, F., Nishizawa, N.K., Mori, S., 2001. The expression of a barley *HvNAS1* nicotianamine synthase gene promoter-*gus* fusion gene in transgenic tobacco is induced by Fe-deficiency in roots. Biosci. Biotechnol. Biochem. 65, 1692–1696.
- Ibrahim, R.K., Bruneau, A., Bantignies, B., 1998. Plant O-methyltransferases: molecular analysis, common signature and classification. Plant Mol. Biol. 36, 1–10.
- Imai, A., Matsuyama, T., Hanzawa, Y., Akiyama, T., Tamaoki, M., Saji, H., Shirano, Y., Kato, T., Hayashi, H., Shibata, D., Tabata, S., Komeda, Y., Takahashi, T., 2004a. Spermidine synthase genes are essential for survival of *Arabidopsis*. Plant Physiol. 135, 1565–1573.
- Imai, R., Ali, A., Pramanik, H.R., Nakaminami, K., Sentoku, N., Kato, H., 2004b. A distinctive class of spermidine synthase is involved in chilling response in rice. J. Plant Physiol. 161, 883–886.

- Izhaki, A., Shoseyov, O., Weiss, D., 1995. A petunia cDNA encoding S-adenosylmethionine synthetase. Plant Physiol. 108, 841–842.
- Jackson, J.P., Lindroth, A.M., Cao, X., Jacobsen, S.E., 2002. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556–560.
- Jansson, A., Koskiniemi, H., Erola, A., Wang, J., Mantsala, P., Schneider, G., Niemi, J., 2005. Aclacinomycin 10-hydroxylase is a novel substrate-assisted hydroxylase requiring S-adenosyl-L-methionine as cofactor. J. Biol. Chem. 280, 3636–3644.
- Jarrett, J.T., 2003. The generation of 5'-deoxyadenosyl radicals by adenosylmethionine-dependent radical enzymes. Curr. Opin. Chem. Biol. 7, 174–182.
- Kagan, R.M., Clarke, S., 1994. Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Arch. Biochem. Biophys. 310, 417–427.
- Kasukabe, Y., He, L., Nada, K., Misawa, S., Ihara, I., Tachibana, S., 2004. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic *Arabidopsis thaliana*. Plant Cell Physiol. 45, 712–722.
- Kato, M., Mizuno, K., Fujimura, T., Iwama, M., Irie, M., Crozier, A., Ashihara, H., 1999. Purification and characterization of caffeine synthase from tea leaves. Plant Physiol. 120, 579–586.
- Kato, M., Mizuno, K., Crozier, A., Fujimura, T., Ashihara, H., 2000. Caffeine synthase gene from tea leaves. Nature 406, 956–957.
- Kende, H., 1993. Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 283–307.
- Klee, H.J., 2004. Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol. 135, 660–667.
- Kleiman, R., Earle, F.R., Wolff, I.A., 1969. Dihydrosterculic acid, a major fatty acid component of *Euphoria longana* seed oil. Lipids 4, 317–320.
- Konze, J.R., Kende, H., 1979. Interactions of methionine and selenomethionine with methionine adenosyltransferase and ethylene-generating systems *Ipomoea tricolor*. Plant Physiol. 63, 507–510.
- Kota, P., Guo, D., Zubieta, C., Noel, J., Dixon, R.A., 2004. O-Methylation of benzaldehyde derivatives by "lignin specific" caffeic acid 3-O-methyltransferase. Phytochemistry 65, 837–846.
- Kranz, K., Petersen, M., 2003. β-peltatin 6-O-methyltransferase from suspension cultures of *Linum nodiflorum*. Phytochemistry 64, 453–458.
- Lavid, N., Schwab, W., Kafkas, E., Koch-Dean, M., Bar, E., Larkov, O., Ravid, U., Lewinsohn, E., 2002a. Aroma biosynthesis in strawberry: S-adenosylmethionine:furaneol O-methyltransferase activity in ripening fruits. J. Agric. Food Chem. 50, 4025–4030.
- Lavid, N., Wang, J., Shalit, M., Guterman, I., Bar, E., Beuerle, T., Menda, N., Shafir, S., Zamir, D., Adam, Z., Vainstein, A., Weiss, D., Pichersky, E., Lewinsohn, E., 2002b. O-methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals. Plant Physiol. 129, 1899–1907.
- Layer, G., Heinz, D.W., Jahn, D., Schubert, W.D., 2004. Structure and function of radical SAM enzymes. Curr. Opin. Chem. Biol. 8, 468–476.
- Leustek, T., Smith, M., Murillo, M., Singh, D.P., Smith, A.G., Woodcock, S.C., Awan, S.J., Warren, M.J., 1997. Siroheme biosynthesis in higher plants. Analysis of an *S*-adenosyl-L-methionine-dependent uroporphyrinogen III methyltransferase from *Arabidopsis thaliana*. J. Biol. Chem. 272, 2744–2752.
- Lewis, N.G., Davin, L.B., Sarkanen, S., 1999. The nature and function of lignins. In: Barton, D.H.R., Sir Nakanishi, K., Meth-Cohn, O. (Eds.), Comprehensive Natural Products Chemistry, vol. 3, pp. 617–745.
- Lindroth, A.M., Cao, X., Jackson, J.P., Zilberman, D., McCallum, C.M., Henikoff, S., Jacobsen, S.E., 2001. Requirement of *CHROMOMETH-YLASE3* for maintenance of CpXpG methylation. Science 292, 2077–2080.
- Lindroth, A.M., Shultis, D., Jasencakova, Z., Fuchs, J., Johnson, L., Schubert, D., Patnaik, D., Pradhan, S., Goodrich, J., Schubert, I., Jenuwein, T., Khorasanizadeh, S., Jacobsen, S.E., 2004. Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. EMBO J. 23, 4286–4296.

- Ling, H.Q., Koch, G., Baumlein, H., Ganal, M.W., 1999. Map-based cloning of *chloronerva*, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc. Natl. Acad. Sci. USA 96, 7098–7103.
- Liu, C.J., Dixon, R.A., 2001. Elicitor-induced association of isoflavone O-methyltransferase with endomembranes prevents the formation and 7-O-methylation of daidzein during isoflavonoid phytoalexin biosynthesis. Plant Cell 13, 2643–2658.
- Mad Arif, S.A., Taylor, M.A., George, L.A., Butler, A.R., Burch, L.R., Davies, H.V., Stark, M.J., Kumar, A., 1994. Characterisation of the Sadenosylmethionine decarboxylase (SAMDC) gene of potato. Plant Mol. Biol. 26, 327–338.
- Madison, J.T., Thompson, J.F., 1976. Threonine synthetase from higher plants: stimulation by *S*-adenosylmethionine and inhibition by cysteine. Biochem. Biophys. Res. Commun. 71, 684–691.
- Maury, S., Geoffroy, P., Legrand, M., 1999. Tobacco O-methyltransferases involved in phenylpropanoid metabolism. The different caffeoyl-coenzyme A/5-hydroxyferuloyl-coenzyme A 3/5-O-methyltransferase and caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase classes have distinct substrate specificities and expression patterns. Plant Physiol. 121, 215–224.
- Maxwell, C.A., Edwards, R., Dixon, R.A., 1992. Identification, purification, and characterization of *S*-adenosyl-L-methionine: isoliquiritigenin 2'-O-methyltransferase from alfalfa (*Medicago sativa L.*). Arch. Biochem. Biophys. 293, 158–166.
- Maxwell, C.A., Harrison, M.J., Dixon, R.A., 1993. Molecular characterization and expression of alfalfa isoliquiritigenin 2'-O-methyltransferase, an enzyme specifically involved in the biosynthesis of an inducer of *Rhizobium meliloti* nodulation genes. Plant J. 4, 971–981.
- Mizuno, D., Higuchi, K., Sakamoto, T., Nakanishi, H., Mori, S., Nishizawa, N.K., 2003. Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status. Plant Physiol. 132, 1989–1997.
- Moore, T., 1990. Biosynthesis of phosphatidylinositol. Inositol Metab. Plant 9, 107–112.
- Mori, S., 1999. Iron acquisition by plants. Curr. Opin. Plant Biol. 2, 250–253
- Mösli Waldhauser, S.S., Gillies, F.M., Crozier, A., Baumann, T.W., 1997. Separation of the N-7 methyltransferase, the key enzyme in caffeine biosynthesis. Phytochemistry 45, 1407–1414.
- Mudgett, M.B., Clarke, S., 1993. Characterization of plant L-isoaspartyl methyltransferases that may be involved in seed survival: purification, cloning, and sequence analysis of the wheat germ enzyme. Biochemistry 32, 11100–11111.
- Mudgett, M.B., Clarke, S., 1994. Hormonal and environmental responsiveness of a developmentally regulated protein repair L-isoaspartyl methyltransferase in wheat. J. Biol. Chem. 269, 25605–25612.
- Mudgett, M.B., Clarke, S., 1996. A distinctly regulated protein repair Lisoaspartylmethyltransferase from *Arabidopsis thaliana*. Plant Mol. Biol. 30, 723–737.
- Murfitt, L.M., Kolosova, N., Mann, C.J., Dudareva, N., 2000. Purification and characterization of S-adenosyl-L-methionine:benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methyl benzoate in flowers of Antirrhinum majus. Arch. Biochem. Biophys. 382, 145–151.
- Naumann, K., Fischer, A., Hofmann, I., Krauss, V., Phalke, S., Irmler, K., Hause, G., Aurich, A.C., Dorn, R., Jenuwein, T., Reuter, G., 2005. Pivotal role of AtSUVH2 in heterochromatic histone methylation and gene silencing in *Arabidopsis*. EMBO J. 24, 1418–1429.
- Negre, F., Kish, C.M., Boatright, J., Underwood, B., Shibuya, K., Wagner, C., Clark, D.G., Dudareva, N., 2003. Regulation of methylbenzoate emission after pollination in snapdragon and petunia flowers. Plant Cell 15, 2992–3006.
- Nes, W.D., 2003. Enzyme mechanisms for sterol C-methylations. Phytochemistry 64, 75–95.
- Nes, W.D., Song, Z., Dennis, A.L., Zhou, W., Nam, J., Miller, M.B., 2003. Biosynthesis of phytosterols. Kinetic mechanism for the enzymatic C-methylation of sterols. J. Biol. Chem. 278, 34505–34516.

- Ni, X., Hager, L.P., 1998. cDNA cloning of *Batis maritima* methyl chloride transferase and purification of the enzyme. Proc. Natl. Acad. Sci. USA 95, 12866–12871.
- Ni, X., Hager, L.P., 1999. Expression of *Batis maritima* methyl chloride transferase in *Escherichia coli*. Proc. Natl. Acad. Sci. USA 96, 3611–3615.
- Nuccio, M.L., Ziemak, M.J., Henry, S.A., Weretilnyk, E.A., Hanson, A.D., 2000. cDNA cloning of phosphoethanolamine N-methyltransferase from spinach by complementation in Schizosaccharomyces pombe and characterization of the recombinant enzyme. J. Biol. Chem. 275, 14095–14101.
- Ogawa, M., Herai, Y., Koizumi, N., Kusano, T., Sano, H., 2001. 7-Methylxanthine methyltransferase of coffee plants. Gene isolation and enzymatic properties. J. Biol. Chem. 276, 8213–8218.
- Ohsawa, N., Tsujita, M., Morikawa, S., Itoh, N., 2001. Purification and characterization of a monohalomethane-producing enzyme *S*-adenosyl-L-methionine: halide ion methyltransferase from a marine microalga, *Pavlova pinguis*. Biosci. Biotechnol. Biochem. 65, 2397–2404.
- Ounaroon, A., Decker, G., Schmidt, J., Lottspeich, F., Kutchan, T.M., 2003. (*R*,*S*)-Reticuline 7-*O*-methyltransferase and (*R*,*S*)-norcoclaurine 6-*O*-methyltransferase of *Papaver somniferum* cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Plant J. 36, 808–819.
- Pakusch, A.E., Kneusel, R.E., Matern, U., 1989. S-adenosyl-L-methionine: trans-caffeoyl-coenzyme A 3-O-methyltransferase from elicitortreated parsley cell suspension cultures. Arch. Biochem. Biophys. 271, 488–494.
- Patton, D.A., Johnson, M., Ward, E.R., 1996. Biotin synthase from Arabidopsis thaliana. cDNA isolation and characterization of gene expression. Plant Physiol. 112, 371–378.
- Picciocchi, A., Douce, R., Alban, C., 2001. Biochemical characterization of the *Arabidopsis* biotin synthase reaction. The importance of mitochondria in biotin synthesis. Plant Physiol. 127, 1224–1233.
- Picciocchi, A., Douce, R., Alban, C., 2003. The plant biotin synthase reaction. Identification and characterization of essential mitochondrial accessory protein components. J. Biol. Chem. 278, 24966–24975.
- Raman, S.B., Rathinasabapathi, B., 2003. β-alanine *N*-methyltransferase of *Limonium latifolium*. cDNA cloning and functional expression of a novel *N*-methyltransferase implicated in the synthesis of the osmoprotectant β-alanine betaine. Plant Physiol. 132, 1642–1651.
- Rammesmayer, G., Pichorner, H., Adams, P., Jensen, R.G., Bohnert, H.J., 1995. Characterization of IMT1, myo-inositol O-methyltransferase, from Mesembryanthemum crystallinum. Arch. Biochem. Biophys. 322, 183–188.
- Rathinasabapathi, B., Burnet, M., Russell, B.L., Gage, D.A., Liao, P.C., Nye, G.J., Scott, P., Golbeck, J.H., Hanson, A.D., 1997. Choline monooxygenase, an unusual iron–sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. Proc. Natl. Acad. Sci. USA 94, 3454–3458.
- Ravanel, S., Gakiere, B., Job, D., Douce, R., 1998. The specific features of methionine biosynthesis and metabolism in plants. Proc. Natl. Acad. Sci. USA 95, 7805–7812.
- Rea, S., Eisenhaber, F., O'Carroll, D., Strahl, B.D., Sun, Z.W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C.P., Allis, C.D., Jenuwein, T., 2000. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599.
- Ronemus, M.J., Galbiati, M., Ticknor, C., Chen, J., Dellaporta, S.L., 1996. Demethylation-induced developmental pleiotropy in *Arabidopsis*. Science 273, 654–657.
- Ross, J.R., Nam, K.H., D'Auria, J.C., Pichersky, E., 1999. S-Adenosyl-L-methionine:salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases. Arch. Biochem. Biophys. 367, 9–16
- Sato, F., Hashimoto, T., Hachiya, A., Tamura, K., Choi, K.B., Morishige, T., Fujimoto, H., Yamada, Y., 2001. Metabolic engineering of plant alkaloid biosynthesis. Proc. Natl. Acad. Sci. USA 98, 367–372.
- Scalliet, G., Journot, N., Jullien, F., Baudino, S., Magnard, J.L., Channeliere, S., Vergne, P., Dumas, C., Bendahmane, M., Cock,

- J.M., Hugueney, P., . Biosynthesis of the major scent components 3,5-dimethoxytoluene and 1,3,5-trimethoxybenzene by novel rose *O*-methyltransferases. FEBS Lett. 523, 113–118.
- Schmid, K.M., Patterson, G.W., 1988. Effects of cyclopropenoid fatty acids on fungal growth and lipid composition. Lipids 23, 248–252.
- Schmitt, D., Pakusch, A.E., Matern, U., 1991. Molecular cloning, induction and taxonomic distribution of caffeoyl-CoA 3-O-methyl-transferase, an enzyme involved in disease resistance. J. Biol. Chem. 266, 17416–17423.
- Schröder, G., Eichel, J., Breinig, S., Schröder, J., 1997. Three differentially expressed S-adenosylmethionine synthetases from Catharanthus roseus: molecular and functional characterization. Plant Mol. Biol. 33, 211–222.
- Seo, H.S., Song, J.T., Cheong, J.J., Lee, Y.H., Lee, Y.W., Hwang, I., Lee, J.S., Choi, Y.D., 2001. Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc. Natl. Acad. Sci. USA 98, 4788–4793.
- Shulaev, V., Silverman, P., Raskin, I., 1997. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385, 718–721.
- Sofia, H.J., Chen, G., Hetzler, B.G., Reyes-Spindola, J.F., Miller, N.E., 2001. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 29, 1097–1106.
- Spanu, P., Reinhardt, D., Boller, T., 1991. Analysis and cloning of the ethylene-forming enzyme from tomato by functional expression of its mRNA in *Xenopus laevis* oocytes. EMBO J. 10, 2007–2013.
- Springer, N.M., Napoli, C.A., Selinger, D.A., Pandey, R., Cone, K.C., Chandler, V.L., Kaeppler, H.F., Kaeppler, S.M., 2003. Comparative analysis of SET domain proteins in maize and *Arabidopsis* reveals multiple duplications preceding the divergence of monocots and dicots. Plant Physiol. 132, 907–925.
- Stenzel, O., Teuber, M., Drager, B., 2005. Putrescine *N*-methyltransferase in *Solanum tuberosum* L., a calystegine-forming plant. Planta, 1–13.
- Takahashi, M., Terada, Y., Nakai, I., Nakanishi, H., Yoshimura, E., Mori, S., Nishizawa, N.K., 2003. Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15, 1263–1280.
- Tariq, M., Paszkowski, J., 2004. DNA and histone methylation in plants. Trends Genet. 20, 244–251.
- Thapar, N., Clarke, S., 2000. Expression, purification, and characterization of the protein repair L-isoaspartyl methyltransferase from *Arabidopsis thaliana*. Protein Expr. Purif. 20, 237–251.
- Thu-Hang, P., Bassie, L., Safwat, G., Trung-Nghia, P., Christou, P., Capell, T., 2002. Expression of a heterologous S-adenosylmethionine decarboxylase cDNA in plants demonstrates that changes in S-adenosyl-tmethionine decarboxylase activity determine levels of the higher polyamines spermidine and spermine. Plant Physiol. 129, 1744–1754.
- Trievel, R.C., Beach, B.M., Dirk, L.M., Houtz, R.L., Hurley, J.H., 2002. Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell 111, 91–103.
- Trievel, R.C., Flynn, E.M., Houtz, R.L., Hurley, J.H., 2003. Mechanism of multiple lysine methylation by the SET domain enzyme Rubisco LSMT. Nat. Struct. Biol. 10, 545–552.
- Uefuji, H., Ogita, S., Yamaguchi, Y., Koizumi, N., Sano, H., 2003. Molecular cloning and functional characterization of three distinct N-methyltransferases involved in the caffeine biosynthetic pathway in coffee plants. Plant Physiol. 132, 372–380.
- Van Breusegem, F., Dekeyser, R., Gielen, J., Van Montagu, M., Caplan, A., 1994. Characterization of a S-adenosylmethionine synthetase gene in rice. Plant Physiol. 105, 1463–1464.
- Van der Straeten, D., Van Wiemeersch, L., Goodman, H.M., Van Montagu, M., 1990. Cloning and sequence of two different cDNAs

- encoding 1-aminocyclopropane-1-carboxylate synthase in tomato. Proc. Natl. Acad. Sci. USA 87, 4859–4863.
- Vidgren, J., Svensson, L.A., Liljas, A., 1994. Crystal structure of catechol *O*-methyltransferase. Nature 368, 354–358.
- Wang, K.L., Li, H., Ecker, J.R., 2002. Ethylene biosynthesis and signaling networks. Plant Cell 14 (Suppl.), S131–S151.
- Weaver, L.M., Yu, F., Wurtele, E.S., Nikolau, B.J., 1996. Characterization of the cDNA and gene coding for the biotin synthase of *Arabidopsis thaliana*. Plant Physiol. 110, 1021–1028.
- Wein, M., Lavid, N., Lunkenbein, S., Lewinsohn, E., Schwab, W., Kaldenhoff, R., 2002. Isolation, cloning and expression of a multifunctional *O*-methyltransferase capable of forming 2,5-dimethyl-4-methoxy-3(2H)-furanone, one of the key aroma compounds in strawberry fruits. Plant J. 31, 755–765.
- Wu, Q., Preisig, C.L., VanEtten, H.D., 1997. Isolation of the cDNAs encoding (+)6a-hydroxymaackiain 3-O-methyltransferase, the terminal step for the synthesis of the phytoalexin pisatin in *Pisum sativum*. Plant Mol. Biol. 35, 551–560.
- Wu, S., Watanabe, N., Mita, S., Dohra, H., Ueda, Y., Shibuya, M., Ebizuka, Y., 2004. The key role of phloroglucinol *O*-methyltransferase in the biosynthesis of *Rosa chinensis* volatile 1,3,5-trimethoxybenzene. Plant Physiol. 135, 95–102.
- Ye, Z.H., Zhong, R., Morrison 3rd, W.H., Himmelsbach, D.S., 2001. Caffeoyl coenzyme A O-methyltransferase and lignin biosynthesis. Phytochemistry 57, 1177–1185.
- Ying, Z., Mulligan, R.M., Janney, N., Houtz, R.L., 1999. Rubisco small and large subunit *N*-methyltransferases. Bi- and mono-functional methyltransferases that methylate the small and large subunits of Rubisco. J. Biol. Chem. 274, 36750–36756.
- Yoon, S.O., Lee, Y.S., Lee, S.H., Cho, Y.D., 2000. Polyamine synthesis in plants: isolation and characterization of spermidine synthase from soybean (*Glycine max*) axes. Biochim. Biophys. Acta 1475, 17– 26
- Yu, Y.B., Adams, D.O., Yang, S.F., 1979. 1-Aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesis. Arch. Biochem. Biophys. 198, 280–286.
- Zhang, L., Ding, R., Chai, Y., Bonfill, M., Moyano, E., Oksman-Caldentey, K.M., Xu, T., Pi, Y., Wang, Z., Zhang, H., Kai, G., Liao, Z., Sun, X., Tang, K., 2004. Engineering tropane biosynthetic pathway in *Hyoscyamus niger* hairy root cultures. Proc. Natl. Acad. Sci. USA 101, 6786–6791.
- Zubieta, C., He, X.Z., Dixon, R.A., Noel, J.P., 2001. Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant *O*-methyltransferases. Nat. Struct. Biol. 8, 271–279.
- Zubieta, C., Ross, J.R., Koscheski, P., Yang, Y., Pichersky, E., Noel, J.P., 2003. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Plant Cell 15, 1704–1716.

Sanja Roje is an Assistant Professor at the Institute of Biological Chemistry at Washington State University. She received a Bachelor's degree in Molecular Biology from the University of Zagreb, Croatia, and a Doctoral degree in Molecular Biophysics from the Florida State University. Upon graduation, Dr. Roje held a post-doctoral position with Dr. Andrew Hanson at the University of Florida. Her research interests focus on metabolism of tetrahydrofolate-bound one-carbon units and on biosynthesis of riboflavin and flavin nucleotides in plants.