

PHYTOCHEMISTRY

www.elsevier.com/locate/phytochem

Phytochemistry Vol. 68, No. 20, 2007

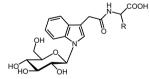
Contents

METABOLISM

Intermediates in the oxidative pathway from torulene to torularhodin in the red yeasts *Cystofilobasidium infirmominiatum* and *C. capitatum* (Heterobasidiomycetes, Fungi)

Stephanie Herz, Roland W.S. Weber, Heidrun Anke, Adele Mucci, Paolo Davoli*

16'-Hydroxytorulene and torularhodinaldehyde were fully characterized as end products of torulene oxidation in the red yeast *Cystofilobasidium infirmominiatum*. Their production increased under enhanced oxidative stress where unprecedented formation of β -apo-2'-carotenal was also observed. In cultures of *C. capitatum*, 16'-hydroxytorulene was the only torulene oxidation product.


pp 2503-2511

Metabolism of indole-3-acetic acid in rice: Identification and characterization of N- β -D-glucopyranosyl indole-3-acetic acid and its conjugates

Kenji Kai, Kyo Wakasa, Hisashi Miyagawa*

N-β-D-Glucopyranosyl indole-3-acetic acid (IAA-*N*-Glc) and its aspartate and glutamate amides were identified in rice plants by LC–ESI–MS/MS and chemical synthesis. This is the first report to demonstrate that endogenous IAA undergoes *N*-glucosylation in herbaceous plants.

pp 2512–2522

IAA-Asp-*N*-Glc: R=CH₂COOH IAA-Glu-*N*-Glc: R=(CH₂)₂COOH

Biotransformation of 20(S)-protopanaxatriol by *Mucor spinosus* and the cytotoxic structure activity relationships of the transformed products

Jie Zhang, Hongzhu Guo*, Yin Tian, Peng Liu, Na Li, Jianping Zhou, Dean Guo*

Microbial transformation of 20(S)-protopanaxatriol (1) by the fungus *Mucor spinosus* AS 3.3450 gave 10 metabolites. A possible biotransformation pathway was proposed and the in vitro cytotoxic activities of the metabolites against three human cancer cell lines were determined.

pp 2523–2530

BIOACTIVE PRODUCTS

Anticancer diarylheptanoid glycosides from the inner bark of Betula papyrifera

pp 2531-2536

Vakhtang Mshvildadze, Jean Legault, Serge Lavoie, Charles Gauthier, André Pichette *

An anticancer diarylheptanoid glycoside, (S)-1,7-bis-(4-hydroxyphenyl)-heptan-3-one-5-O- α -L-arabinofuranosyl-(1 \rightarrow 6)- β -D-glucopyranoside, papyriferoside A (1), was isolated from the inner bark of the white birch *Betula papyrifera*.

- 1 R¹ = O; R² = α -L-Araf-[1 \rightarrow 6]- β -D-Glcp
- **2** R¹ = O; R² = β-D-Api*f*-[1 \to 2]-β-D-Glc*p*
- **3** $R^1 = H_2$; $R^2 = \beta$ -D-Glcp
- 4 $R^1 = 0$; $R^2 = \beta$ -D-Glcp

Cytotoxic caged-polyprenylated xanthonoids and a xanthone from *Garcinia* cantleyana

Khalid A. Shadid, Khozirah Shaari*, Faridah Abas, Daud A. Israf, Ahmad S. Hamzah, Normawati Syakroni, Khoushik Saha, Nordin Hj. Lajis

Five caged-xanthonoids, cantleyanone A (1), 7-hydroxyforbesione (2), cantleyanones B–D (4–6) and a simple xanthone, 4-(1,1-dimethylprop-2-enyl)-1,3,5,8-tetrahydroxyxanthone (3) together with eight other known compounds were isolated from *Garcinia cantleyana*. Significant cytotoxicity against MDA-MB-231, CaOV-3, MCF-7 and HeLa cancer cell-lines were demonstrated by cantleyanones B–D, 7-hydroxyforbesione, deoxygaudichaudione A and macranthol, with IC₅₀ values ranging from 0.22 to 17.17 μ g/ml.

pp 2537-2544

An appetite suppressant from Hoodia species

Fanie R. van Heerden*, R. Marthinus Horak, Vinesh J. Maharaj*, Robert Vleggaar, Jeremiah V. Senabe, Philip J. Gunning

Two pregnane glycosides were isolated from *Hoodia gordonii* and *Hoodia pilifera*. The appetite-suppressant properties of the trisaccharide was determined using a rat model *in vivo* which showed significant decrease of food consumption over an 8 day period and a body mass decrease when compared to a control sample.

pp 2545-2553

pp 2554-2562

4-7

Steroidal saponins from Asparagus acutifolius

Marc Sautour, Tomofumi Miyamoto, Marie-Aleth Lacaille-Dubois*

Three furostanol (1–3) and four spirostanol saponins (4–7) were isolated from the roots of *Asparagus acutifolius* L. Compounds 4–7 demonstrated antifungal activity against the human pathogenic yeasts *Candida albicans*, *C. glabrata* and *C. tropicalis*.

CHEMISTRY

Very-long-chain hydroxyaldehydes from the cuticular wax of Taxus baccata needles

pp 2563-2569

Miao Wen, Reinhard Jetter*

In the cuticular wax of *Taxus baccata* needles, homologous series of very-long-chain 1,5-alkanediols and 5-hydroxyaldehydes were identified by various chemical transformations with product assignment using GC–MS.

On the propensity of lignin to associate: A size exclusion chromatography study with lignin derivatives isolated from different plant species

pp 2570-2583

Anderson Guerra, Armindo R. Gaspar, Sofía Contreras, Lucian A. Lucia, Claudia Crestini, Dimitris S. Argyropoulos*

Lignins isolated from softwoods were found to associate/dissociate to a greater extent than lignins from hardwoods and wheat straw. Extensive characterization of these lignins revealed salient features of these events: association/dissociation phenomena are governed by chain entanglements operating within different macromolecules and intermolecular orbital interactions, dominated by those of the HOMO–LUMO type.

Discrimination of truffle fruiting body versus mycelial aromas by stir bar sorptive extraction

pp 2584-2598

Richard Splivallo, Simone Bossi, Massimo Maffei, Paola Bonfante*

Investigation of the aromas of three truffle species reveals a large variety of previously undescribed volatile organic compounds and confirms deep metabolic changes between the vegetative (mycelium) and reproductive (ascocarp) stages.

OTHER CONTENTS

Announcement: The Phytochemical Society of North America

p I

* Corresponding author

The Editors encourage the submission of articles online, thus reducing publication times. For further information and to submit your manuscript, please visit the journal homepage at http://www.elsevier.com/locate/phytochem

INDEXED/ABSTRACTED IN: Current Awareness in Biological Sciences (CABS), Curr Cont ASCA. Chem. Abstr. BIOSIS Data, PASCAL-CNRS Data, CAB Inter, Cam Sci Abstr, Curr Cont/Agri Bio Env Sci, Curr Cont/Life Sci, Curr Cont Sci Cit Ind, Curr Cont SCISEARCH Data, Bio Agri Ind. Also covered in the abstract and citation database SCOPUS. Full text available on ScienceDirect.

ISSN 0031-9422

Available online at

