

Triterpene saponins from *Silphium radula*

Lalita M. Calabria ^{a,*}, Sonia Piacente ^b, Ireneusz Kapusta ^c,
Suranganie F. Dharmawardhane ^{d,e}, Frances M. Segarra ^{d,e}, Peter J. Pessiki ^f, Tom J. Mabry ^a

^a School of Biological Sciences, Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, TX 78712, USA

^b Dipartimento di Scienze Farmaceutiche, Università degli Studi di Salerno, Via Ponte Don Melillo, 84084 Fisciano, Salerno, Italy

^c Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100 Pulawy, Poland

^d Department of Anatomy and Cell Biology, Universidad Central del Caribe School of Medicine, Bayamon, PR 00960, United States

^e Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, United States

^f The Evergreen State College, Lab II, 2700 Evergreen Parkway NW, Olympia, Washington 98505, United States

Received 12 June 2007; received in revised form 16 August 2007

Available online 26 November 2007

Abstract

Nine triterpene saponins (**1–9**) were isolated from leaves and stems of *Silphium radula* Nutt. (Asteraceae). Their structures were determined by extensive 1D (¹³C, ¹H, DEPT, TOCSY) and 2D NMR (NOESY, HSQC, HMBC) and ESI-MS studies. The compounds were identified as 3 β ,6 β ,16 β -trihydroxyolean-12-en-23-al-3-*O*- β -glucopyranosyl-16-*O*- β -glucopyranoside (**1**), urs-12-ene-3 β ,6 β ,16 β -triol-3-*O*- β -galactopyranosyl-(1 → 2)- β -glucopyranoside (**2**), 3 β ,6 β ,16 β -trihydroxyolean-12-en-23-oic acid-3-*O*- β -glucopyranosyl-16-*O*- β -glucopyranoside (**3**), urs-12-ene-3 β ,6 β ,16 β ,21 β -tetraol-3-*O*- β -glucopyranoside (**4**), olean-12-ene-3 β ,6 β ,16 β ,21 β -tetraol-3-*O*- β -glucopyranoside (**5**), olean-12-ene-3 β ,6 β ,16 β ,21 β ,23-pentaol-3-*O*- β -glucopyranosyl-16-*O*- β -glucopyranoside (**6**), olean-12-ene-3 β ,6 β ,16 β -triol-3-*O*- β -glucopyranosyl-16-*O*- α -arabinopyranosyl-(1 → 2)- β -glucopyranoside (**7**), olean-12-ene-3 β ,6 β ,16 β ,23-tetraol-3-*O*- β -glucopyranosyl-16-*O*- α -arabinopyranosyl-(1 → 2)- β -glucopyranoside (**8**), 3 β ,6 β ,16 β ,21 β -tetrahydroxyolean-12-en-23-al-3-*O*- β -glucopyranoside (**9**). The presence of a 6 β -hydroxyl function was not common in the oleanene or ursene class and the aglycones of these compounds were not found previously in the literature. Moreover, the cytotoxic activities of the isolated compounds were tested against human breast cancer cell line MDA-MB-231. Results showed that compound **2** decreased cell proliferation in a statistically significant manner at 25 μ g/ml.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: *Silphium radula*; Asteraceae; Triterpene saponins; Anti-proliferative activity

1. Introduction

Silphium L. (Asteraceae) is a small genus of 11 species common to the prairies and woodlands of central North America (Clevinger and Panero, 2000). Native American tribes, including the Cherokee Indians, considered *Silphium* a medicinal herb and prepared extracts of the leaves and flowers for respiratory and kidney ailments and also applied the roots of *Silphium* as a poultice for bleeding wounds, backaches and hemorrhaging (Hamel and Chiltoskey, 1975). The potential of *Silphium* as a natural remedy is also well known in parts of Europe, where it is cultivated as a

garden ornamental and herbal medicine. Several chemical investigations of European-grown *Silphium* species including *S. perfoliatum*, *S. integrifolium* and *S. trifoliatum* (now considered a subspecies of *S. asteriscus*, Clevinger and Panero, 2000) have appeared in the literature in recent years (Kowalski, 2004; Kowalski et al., 2005). For example, chemical analysis of *Silphium perfoliatum* resulted in the isolation of flavonoids (El-Sayed et al., 2002), phenolic acids (Kowalski and Wolski, 2003), essential oils (Kowalski and Wolski, 2005), sesquiterpenes (Bohlmann and Jakupovic, 1979, 1980), diterpenes (Pcolinski et al., 1994), and oleanolic-type triterpene saponins (Davidyants et al., 1984a,b,c; Davidyants et al., 1985; Davidyants et al., 1986). The saponin mixture showed blood cholesterol-lowering activity as well as fungicidal properties (Syrov et al.,

* Corresponding author. Tel.: +1 512 626 1517.

E-mail address: lalitamaria@mail.utexas.edu (L.M. Calabria).

1992; Davidyants et al., 1997). In addition, there has been an increasing interest in European-cultivated species of *Silphium* as commercial sources for oleanolic and ursolic-type triterpenes (Kowalski, 2007).

In an effort to further characterize triterpene saponins of chemosystematic and medicinal significance from *Silphium*, our research group has undertaken chemical investigations of all *Silphium* species harvested from their native habitats across North America. We report here the isolation and structural elucidation of nine new pentacyclic oleanene and ursene-type triterpene saponins (**1–9**) from leaf and stem methanolic extracts of *Silphium radula* Nutt., a species found in prairie remnants and rocky open forests of the southeastern United States (Rickett, 1967). To our knowledge, this is the first chemical report for this species.

2. Results and discussion

The concentrated methanolic extract of a mixture of *S. radula* leaves and stems was subjected to solid phase extraction on reversed phase C-18, CC on silica gel and MPLC on reversed phase C-18, affording nine new saponins (**1–9**). Their structures were established by 1D and 2D NMR spectroscopy and ESI-MS analyses.

The HR-ESI-MS (negative-ion mode) of compound **1** exhibited a pseudomolecular ion peak at m/z 795.4531 $[M-H]^-$, ascribable to a molecular formula of $C_{42}H_{68}O_{14}$. The ESI-MS experiment gave (negative-ion mode) a quasi-molecular ion peak at m/z 795 $[M-H]^-$ indicating a molecular weight of 796 for compound **1**. Further fragment ion peaks in the ESI-MS-MS spectrum were observed

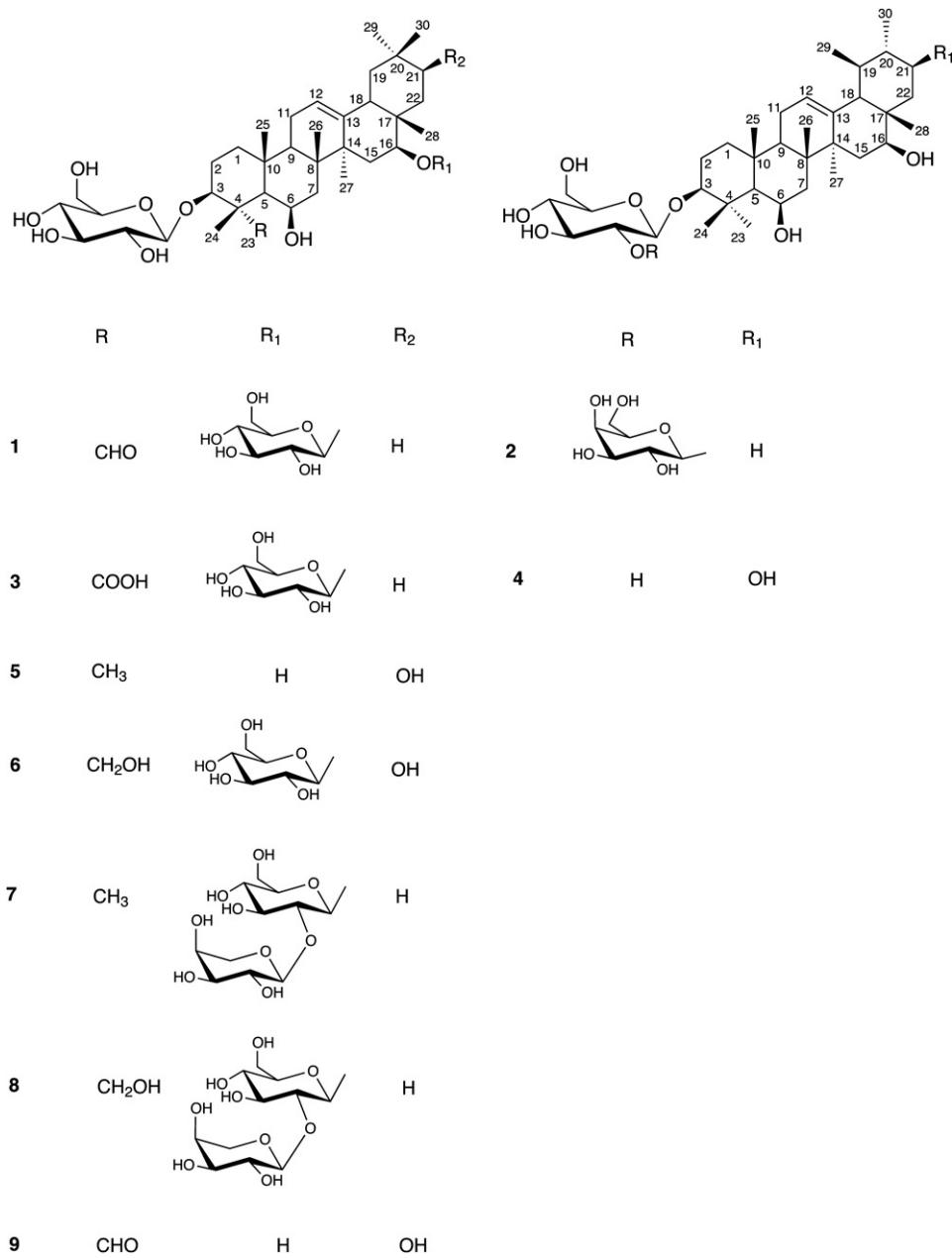


Table 1
 ^{13}C and ^1H NMR spectroscopic data of compounds **1–5** (**1, 2, 4, 5** in $\text{C}_5\text{D}_5\text{N}$; **3** in CD_3OD)

Position	1		2		3		4		5	
	δ_{C}	δ_{H} (J in Hz)								
1	40.5	1.54, 1.03, <i>m</i>	41.4	1.53, 0.92, <i>m</i>	42.0	1.63, 1.07, <i>m</i>	41.4	1.57, 0.97, <i>m</i>	41.2	1.57, 1.04, <i>m</i>
2	25.6	2.30, 2.03, <i>m</i>	27.0	2.30, 2.06, <i>m</i>	26.7	1.93, 1.78, <i>m</i>	27.0	2.37, 2.10, <i>m</i>	26.9	2.36, 2.10, <i>m</i>
3	82.3	4.22, <i>dd</i> (11.0, 4.5)	89.4	3.38, <i>dd</i> (11.0, 4.5)	87.1	4.00, <i>dd</i> (11.0, 4.5)	89.3	3.47, <i>dd</i> (11.0, 4.5)	89.2	3.45, <i>dd</i> (11.0, 4.5)
4	56.4		40.7		55.3		40.7		40.7	
5	49.3	1.50, <i>br s</i>	56.3	0.85, <i>br s</i>	53.6	1.52, <i>br s</i>	56.3	0.94, <i>br s</i>	56.3	0.95, <i>br s</i>
6	69.4	4.13, <i>br s</i>	67.1	4.79, <i>br s</i>	71.4	4.10, <i>br s</i>	67.3	4.81, <i>br s</i>	67.3	4.81, <i>br s</i>
7	40.7	1.73, 1.66, <i>m</i>	41.4	1.83, 1.53, <i>m</i>	41.3	1.76, 1.53, <i>m</i>	41.4	1.90, 1.87, <i>m</i>	41.2	1.88, 1.87, <i>m</i>
8	40.2		39.9		40.9		39.9		40.6	
9	47.6	1.80, <i>m</i>	47.9	1.66, <i>m</i>	48.9	1.65, <i>m</i>	47.9	1.72, <i>m</i>	47.8	1.80, <i>m</i>
10	35.9		36.5		37.0		36.6		36.7	
11	23.8	2.11, <i>dd</i> (12.0, 3.5)	23.8	2.17, <i>dd</i> (12.0, 3.5)	24.7	2.06, <i>dd</i> (12.0, 3.5)	23.9	2.18, <i>dd</i> (12.0, 3.5)	24.0	2.20, <i>dd</i> (12.0, 3.5)
		1.97, <i>dd</i> (12.0, 3.5)		2.02, <i>dd</i> (12.0, 3.5)		1.94, <i>dd</i> (12.0, 3.5)		2.03, <i>dd</i> (12.0, 3.5)		2.06, <i>dd</i> (12.0, 3.5)
12	122.6	5.38, <i>t</i> (3.5)	125.5	5.38, <i>t</i> (3.5)	123.4	5.28, <i>t</i> (3.5)	126.0	5.42, <i>t</i> (3.5)	123.0	5.49, <i>t</i> (3.5)
13	143.5		138.5		144.4		138.6		143.1	
14	44.5		44.7		45.3		44.8		44.5	
15	34.8	2.20, <i>dd</i> (12.0, 11.5)	36.5	2.24, <i>dd</i> (13.0, 11.5)	35.4	1.83, <i>dd</i> (12.0, 11.5)	37.1	2.29, 1.69, <i>m</i>	36.6	2.25, <i>dd</i> (12.0, 11.5)
		2.03, <i>dd</i> (12.0, 4.5)		1.66, <i>dd</i> (13.0, 4.5)		1.57, <i>dd</i> (12.0, 4.5)				1.69, <i>dd</i> (12.0, 4.5)
16	76.4	4.58, <i>dd</i> (11.5, 4.5)	65.7	4.55, <i>dd</i> (11.5, 4.5)	77.6	4.15, <i>dd</i> (11.5, 4.5)	67.0	4.56, <i>dd</i> (11.5, 4.5)	65.8	4.65, <i>dd</i> (11.5, 4.5)
17	38.3		39.3		38.9		40.8		39.7	
18	49.9	2.31, <i>m</i>	61.2	1.67, <i>d</i> (11.5)	51.0	2.15, <i>m</i>	61.0	1.83, <i>d</i> (11.5)	49.3	2.51, <i>m</i>
19	47.2	1.97, 1.20, <i>m</i>	40.0	1.56, <i>m</i>	48.0	1.77, 1.05, <i>m</i>	39.0	1.82, <i>m</i>	47.8	2.16, 1.42, <i>m</i>
20	31.2		39.9	0.98, <i>m</i>	31.9		48.2	1.29, <i>m</i>	36.9	
21	35.2	1.80, 1.27, <i>m</i>	31.3	1.54, 1.46, <i>m</i>	35.8	1.43, 1.14, <i>m</i>	70.5	3.97, <i>dd</i> (11.0, 4.0)	72.7	4.12, <i>dd</i> (11.0, 4.0)
22	30.7	2.80, 1.33, <i>m</i>	36.0	2.60, 1.17, <i>m</i>	31.2	2.17, 1.13, <i>m</i>	45.9	3.21, <i>dd</i> (11.0, 4.0)	40.2	2.98, <i>dd</i> (11.0, 4.0)
								1.50, <i>dd</i> (11.0, 11.0)		1.63, <i>dd</i> (11.0, 11.0)
23	207.6	9.87, <i>s</i>	28.1	1.54, <i>s</i>	183.1	—	28.2	1.54, <i>s</i>	28.1	1.54, <i>s</i>
24	11.9	2.00, <i>s</i>	18.6	1.84, <i>s</i>	13.9	1.52, <i>s</i>	18.7	1.73, <i>s</i>	18.7	1.74, <i>s</i>
25	18.4	1.56, <i>s</i>	17.4	1.62, <i>s</i>	17.7	1.36, <i>s</i>	17.4	1.62, <i>s</i>	17.2	1.62, <i>s</i>
26	17.3	1.51, <i>s</i>	18.8	1.66, <i>s</i>	18.8	1.27, <i>s</i>	18.8	1.65, <i>s</i>	18.6	1.64, <i>s</i>
27	27.4	1.44, <i>s</i>	25.0	1.33, <i>s</i>	27.7	1.21, <i>s</i>	25.0	1.35, <i>s</i>	27.4	1.44, <i>s</i>
28	23.2	1.15, <i>s</i>	23.0	1.15, <i>s</i>	23.3	0.87, <i>s</i>	22.9	1.22, <i>s</i>	22.6	1.23, <i>s</i>
29	33.4	0.95, <i>s</i>	18.0	0.99, <i>d</i> (6.5)	33.8	0.91, <i>s</i>	18.2	1.08, <i>d</i> (6.5)	30.1	1.29, <i>s</i>
30	24.2	0.98, <i>s</i>	21.7	0.98, <i>d</i> (6.5)	24.4	0.93, <i>s</i>	16.8	1.41, <i>d</i> (6.5)	18.0	1.26, <i>s</i>
	Glc at C-3		Glc at C-3		Glc at C-3		Glc at C-3		Glc at C-3	
1'	104.9	4.89, <i>d</i> (7.5)	105.0	4.98, <i>d</i> (7.5)	105.3	4.30, <i>d</i> (7.5)	107.0	5.01, <i>d</i> (7.5)	106.9	5.00, <i>d</i> (7.5)
2'	75.4	3.95, <i>dd</i> (9.0, 7.5)	84.6	4.24, <i>dd</i> (9.0, 7.5)	75.5	3.14, <i>dd</i> (9.0, 7.5)	75.9	4.10, <i>dd</i> (9.0, 7.5)	75.9	4.10, <i>dd</i> (9.0, 7.5)
3'	78.6	4.19, <i>dd</i> (9.0, 9.0)	78.4	4.32, <i>dd</i> (9.0, 9.0)	77.6	3.30, <i>dd</i> (9.0, 9.0)	78.8	4.29, <i>dd</i> (9.0, 9.0)	78.8	4.28, <i>dd</i> (9.0, 9.0)
4'	71.6	4.18, <i>dd</i> (9.0, 9.0)	71.6	4.19, <i>dd</i> (9.0, 9.0)	71.6	3.30, <i>dd</i> (9.0, 9.0)	72.0	4.26, <i>dd</i> (9.0, 9.0)	71.9	4.27, <i>dd</i> (9.0, 9.0)
5'	78.5	3.96, <i>m</i>	78.0	3.95, <i>m</i>	78.0	3.27, <i>m</i>	78.4	4.06, <i>m</i>	78.3	4.05, <i>m</i>
6'	62.9	4.40, <i>dd</i> (12.0, 5.0)	62.9	4.38, <i>dd</i> (12.0, 5.0)	62.8	3.67, <i>dd</i> (12.0, 5.0)	63.2	4.47, <i>dd</i> (12.0, 5.0)	63.1	4.45, <i>dd</i> (12.0, 5.0)
		4.58, <i>dd</i> (12.0, 2.5)		4.58, <i>dd</i> (12.0, 2.5)		3.82, <i>dd</i> (12.0, 2.5)		4.64, <i>dd</i> (12.0, 2.5)		4.3, <i>dd</i> (12.0, 2.5)

(continued on next page)

Position	1		2		3		4		5	
	δ_c	$\delta_H (J \text{ in Hz})$	δ_c	$\delta_H (J \text{ in Hz})$	δ_c	$\delta_H (J \text{ in Hz})$	δ_c	$\delta_H (J \text{ in Hz})$	δ_c	$\delta_H (J \text{ in Hz})$
Glc at C-16			Glc at C-2'glc		Glc at C-16					
1"	106.3	5.06, <i>d</i> (7.5)	107.3	5.25, <i>d</i> (7.5)	106.1	4.30, <i>d</i> (7.5)				
2"	75.8	4.03, <i>dd</i> (9.0, 7.5)	74.8	4.61, <i>dd</i> (8.6, 7.5)	75.7	3.16, <i>dd</i> (9.0, 7.5)				
3"	78.8	4.26, <i>dd</i> (9.0, 9.0)	75.0	4.18, <i>dd</i> (8.6, 4.0)	77.9	3.30, <i>dd</i> (9.0, 9.0)				
4"	71.9	4.25, <i>dd</i> (9.0, 9.0)	69.6	4.70, <i>dd</i> (4.0, 2.0)	71.8	3.30, <i>dd</i> (9.0, 9.0)				
5"	78.1	3.99, <i>m</i>	76.9	4.07, <i>m</i>	78.3	3.34, <i>m</i>				
6"	63.0	4.36, <i>dd</i> (12.0, 5.0)	61.4	4.41, <i>dd</i> (12.0, 4.5)	62.9	3.68, <i>dd</i> (12.0, 5.0)				
		4.48, <i>dd</i> (12.0, 2.5)		4.58, <i>dd</i> (12.0, 2.0)		3.82, <i>dd</i> (12.0, 2.5)				

at m/z 633 [$\text{M}-\text{H}-162$] $^-$ and m/z 472 [$\text{M}-\text{H}-162-162$] $^-$ corresponding to the successive loss of two hexosyl moieties. This result suggested that saponin **1** contained two sugar units. The ^{13}C NMR spectrum of compound **1** showed 42 signals, of which 30 were assigned to a triterpenoid moiety and 12 to the saccharide portion. The ^1H NMR spectrum of the aglycone moiety of **1** showed signals for seven tertiary methyl groups (δ 0.95, 0.98, 1.15, 1.44, 1.51, 1.56, 2.00), along with the resonances at δ 5.38 (1H, *t*, J = 3.7 Hz) and 9.87 (1H, *s*) ascribable, respectively, to olefinic and aldehydic protons. Further features were signals at δ 4.13 (1H, *br s*), 4.22 (1H, *dd*, J = 11.0, 4.5 Hz), and 4.58 (1H, *dd*, J = 11.5, 4.5 Hz), indicative of secondary alcoholic functions (Table 1).

In the ^{13}C NMR spectrum, the signals at δ 122.6 and 143.5 ascribable to C-12 and C-13 suggested a Δ^{12} oleanene skeleton (Mahato and Kundu, 1994). Full assignments of the proton and carbon resonances of the aglycone (Table 1) were secured by analyses of the ^1H - ^1H DQF-COSY and HSQC spectra. The aldehyde function was located at C-23 on the basis of the downfield shift exhibited by C-4 (δ 56.4) and the highfield shifts exhibited, respectively, by C-3 (δ 82.3), C-5 (δ 49.3), and C-24 (δ 11.9) in comparison with the same carbon resonances in an oleanene skeleton bearing a Me-23 (Mahato and Kundu, 1994). Also, the chemical shift of Me-24 in the ^1H NMR spectrum (δ_H 2.00) was diagnostic for a 23-CHO (De Tommasi et al., 1998). The HMBC spectrum of **1** confirmed the position of the aldehyde function showing significant cross-peaks, due to $^2J_{\text{C}-\text{H}}$ and $^3J_{\text{C}-\text{H}}$ correlations between H-23 (δ 9.87) and C-3 (δ 82.3), C-4 (δ 56.4), and C-24 (δ 11.9). The signal at δ 4.22 (*dd*, J = 11.0, 4.5 Hz) attributed to H-3ax suggested the presence of a β -OH group at C-3. The location of a hydroxyl group at C-6 was determined by the correlation between H-6 (δ 4.13, *br s*) and C-5 (δ 56.4). H-5 α and H-6 resonated as broad singlets at δ 1.50 and 4.13, respectively, indicating an axial-equatorial relationship. Thus, the β -orientation of the C-6 hydroxyl group was defined (Wang et al., 2006a,b). Furthermore, a NOESY correlation between the signal at δ 4.13 (H-6) and the resonances 4.22 (H-3) and 9.87 (Me-23) confirmed the α -orientation of H-3 and H-6. The third secondary alcoholic function was located at C-16 on the basis of the carbon resonances of ring D and of the HMBC correlation between the signal at δ 1.15 (Me-28) and the carbon resonance at δ 76.4 (C-16). The coupling constants of H-16 (δ 4.58, *dd*, J = 11.5, 4.5 Hz) suggested the β -orientation of the C-16 hydroxyl group (Ukiya et al., 2001), which is in good agreement with the nOe effect between H-16 (δ 4.58) and Me-27 (δ 1.44) observed in the NOESY spectrum.

Thus, the aglycone of **1** was identified as $3\beta,6\beta,16\beta$ -tri-hydroxyolean-12-en-23-al. Glycosidation of the alcohol groups functions at C-3 and C-16 were indicated by the downfield shift (~ 10 ppm) observed for these carbon resonances in **1**, if compared to the corresponding signals in non-glycosidated model compounds (Mahato and Kundu, 1994).

Table 2
 ^{13}C and ^1H NMR spectroscopic data of compounds **6–9** (**6**, **7** in CD_3OD ; **8**, **9** in $\text{C}_5\text{D}_5\text{N}$)

Position	6		7		8		9	
	δ_{C}	δ_{H} (J in Hz)	δ_{C}	δ_{H} (J in Hz)	δ_{C}	δ_{H} (J in Hz)	δ_{C}	δ_{H} (J in Hz)
1	41.8	1.57, 0.96, <i>m</i>	41.5	1.75, 1.57, <i>m</i>	40.7	1.80, 1.97, <i>m</i>	40.6	1.58, 1.05, <i>m</i>
2	26.4	1.94, 1.83, <i>m</i>	27.2	1.84, 1.78, <i>m</i>	25.7	2.35, 2.16, <i>m</i>	25.5	2.33, 2.05, <i>m</i>
3	83.3	3.59, <i>dd</i> (11.0, 4.5)	90.5	3.13, <i>dd</i> (11.0, 4.5)	81.8	4.29, <i>dd</i> (11.0, 4.5)	82.5	4.24, <i>dd</i> (11.0, 4.5)
4	44.8		40.3	—	44.2		56.3	
5	48.2	1.23, <i>br s</i>	57.3	0.76, <i>br s</i>	47.9	1.83, <i>br s</i>	49.3	1.59, <i>br s</i>
6	68.4	4.45, <i>br s</i>	68.5	4.51, <i>br s</i>	66.7	4.99, <i>br s</i>	69.6	4.27, <i>br s</i>
7	41.0	1.83, 1.54, <i>m</i>	42.1	1.57, 0.97, <i>m</i>	40.4	1.59, 1.09, <i>m</i>	40.4	1.83, 1.70, <i>m</i>
8	41.2		41.0	—	39.4		40.5	
9	47.8	1.63, <i>m</i>	49.0	1.58, <i>m</i>	47.4	1.74, <i>m</i>	47.6	1.84, <i>m</i>
10	37.0		37.2	—	36.1		35.8	
11	24.6	2.04, <i>dd</i> (12.0, 3.5) 1.93, <i>dd</i> (12.0, 3.5)	24.6	2.05, <i>dd</i> (12.0, 3.5) 1.89, <i>dd</i> (12.0, 3.5)	23.6	2.17, <i>dd</i> (12.0, 3.5) 2.01, <i>dd</i> (12.0, 3.5)	23.9	2.15, <i>dd</i> (12.0, 3.5) 2.03, <i>dd</i> (12.0, 3.5)
12	124.2	5.29, <i>t</i> (3.5)	123.4	5.25, <i>t</i> (3.5)	122.3	5.38, <i>t</i> (3.5)	123.8	5.47 <i>t</i> (3.5)
13	143.2		144.3	—	143.2		143.1	
14	45.3		45.2	—	44.2		44.5	
15	35.2	1.83, <i>dd</i> (12.0, 11.5) 1.56 <i>dd</i> (12.0, 4.5)	35.5	1.84, <i>dd</i> (12.0, 11.5) 1.57, <i>dd</i> (12.0, 4.5)	34.7	2.23, <i>dd</i> (12.0, 11.5) 1.96, <i>dd</i> (12.0, 4.5)	36.3	2.20, <i>dd</i> (12.0, 11.5) 1.62, <i>dd</i> (12.0, 4.5)
16	78.0	4.10, <i>dd</i> (12.0, 4.0)	77.2	4.16, <i>dd</i> (11.5, 4.5)	75.9	4.54, <i>dd</i> (11.5, 4.5)	65.7	4.61, <i>dd</i> (11.5, 4.5)
17	40.3		38.9	—	37.9		40.0	
18	50.2	2.18, <i>m</i>	51.0	2.14, <i>m</i>	49.6	2.32, <i>m</i>	49.2	2.50, <i>m</i>
19	47.4	1.84, 1.14, <i>m</i>	48.2	1.76, 1.04, <i>m</i>	46.9	1.59, 1.16, <i>m</i>	47.7	2.14, 1.39, <i>m</i>
20	37.0		31.8		30.8		36.8	
21	74.2	3.55, <i>dd</i> (11.8, 4.5)	35.9	1.38, 1.13, <i>m</i>	34.9	1.66, 1.27, <i>m</i>	72.6	4.10, <i>dd</i> (11.8, 4.5)
22	40.2	1.82, <i>dd</i> (11.0, 4.0) 1.53, <i>dd</i> (11.0, 4.0)	30.8	2.28, 1.06, <i>m</i>	29.9	2.84, <i>dd</i> (11.0, 4.0) 1.34, <i>dd</i> (11.0, 4.0)	40.7	2.95, <i>dd</i> (11.0, 4.0) 1.64, <i>dd</i> (11.0, 4.0)
23	64.6	3.48, <i>dd</i> (12.0) 3.74, <i>dd</i> (12.0)	28.2	1.13, <i>s</i>	64.0	4.00, <i>dd</i> (12.0) 4.50, <i>dd</i> (12.0)	207.7	9.91, <i>s</i>
24	15.0	1.09, <i>s</i>	18.5	1.23, <i>s</i>	15.0	1.62, <i>s</i>	11.9	2.01, <i>s</i>
25	18.0	1.27, <i>s</i>	17.5	1.33, <i>s</i>	17.4	1.64, <i>s</i>	17.2	1.59, <i>s</i>
26	18.8	1.35, <i>s</i>	18.8	1.27, <i>s</i>	18.0	1.54, <i>s</i>	18.5	1.62, <i>s</i>
27	27.5	1.19, <i>s</i>	27.5	1.18, <i>s</i>	27.0	1.38, <i>s</i>	27.4	1.39, <i>s</i>
28	23.3	0.89, <i>s</i>	23.2	0.86, <i>s</i>	22.8	1.22, <i>s</i>	22.5	1.20, <i>s</i>
29	29.8	0.97, <i>s</i>	31.8	0.90, <i>s</i>	33.0	0.86, <i>s</i>	30.0	1.27, <i>s</i>
30	17.9	0.88, <i>s</i>	24.4	0.91, <i>s</i>	23.9	0.94, <i>s</i>	17.9	1.26, <i>s</i>
	Glc at C-3		Glc at C-3		Glc at C-3		Glc at C-3	
1'	105.7	4.40, <i>d</i> (7.5)	106.6	4.32, <i>d</i> (7.5)	105.2	5.17, <i>d</i> (7.5)	104.8	4.90, <i>d</i> (7.5)
2'	75.6	3.20, <i>dd</i> (9.0, 7.5)	75.6	3.20, <i>dd</i> (9.0, 7.5)	75.4	4.05, <i>dd</i> (9.0, 7.5)	75.3	3.95, <i>dd</i> (9.0, 7.5)
3'	78.3	3.35, <i>dd</i> (9.0, 9.0)	78.2	3.33, <i>dd</i> (9.0, 9.0)	78.2	4.19, <i>dd</i> (9.0, 9.0)	78.5	4.21, <i>dd</i> (9.0, 9.0)
4'	71.7	3.33, <i>dd</i> (9.0, 9.0)	71.6	3.31, <i>dd</i> (9.0, 9.0)	71.1	4.20, <i>dd</i> (9.0, 9.0)	71.5	4.27, <i>dd</i> (9.0, 9.0)
5'	77.5	3.27, <i>m</i>	77.6	3.26, <i>m</i>	77.8	3.90, <i>m</i>	78.5	3.96, <i>m</i>
6'	62.8	3.85, <i>dd</i> (12.0, 2.5) 3.67, <i>dd</i> (12.0, 5.0)	62.8	3.86, <i>dd</i> (12.0, 2.5) 3.65, <i>dd</i> (12.0, 5.0)	62.3	4.50, <i>dd</i> (12.0, 2.5) 4.33, <i>dd</i> (12.0, 5.0)	62.8	4.56, <i>dd</i> (12.0, 2.5) 4.40, <i>dd</i> (12.0, 5.0)

(continued on next page)

Table 2 (continued)

Position	6		7		8		9	
	δ_C	δ_H (J in Hz)	δ_C	δ_H (J in Hz)	δ_C	δ_H (J in Hz)	δ_C	δ_H (J in Hz)
1"	105.5	4.37, <i>d</i> (7.5) 3.20, <i>dd</i> (9.0, 7.5)	104.5	4.43, <i>d</i> (7.5) 3.40, <i>dd</i> (9.0, 7.5)	Glc at C-16	103.9	Glc at C-16	4.99, <i>d</i> (7.5) 4.09, <i>dd</i> (9.0, 7.5)
2"	75.6	3.35, <i>dd</i> (9.0, 9.0)	83.5	3.55, <i>dd</i> (9.0, 9.0)		82.9		4.28, <i>dd</i> (9.0, 9.0)
3"	78.3	3.27, <i>dd</i> (9.0, 9.0)	78.0	3.29, <i>dd</i> (9.0, 9.0)		77.8		4.20, <i>dd</i> (9.0, 9.0)
4"	71.5	3.33, <i>m</i>	71.6	3.26, <i>m</i>		71.2		3.87, <i>m</i>
5"	77.6	3.85, <i>dd</i> (12.0, 2.5)	77.3	3.86, <i>dd</i> (12.0, 2.5)		77.2		4.50, <i>dd</i> (12.0, 2.5)
6"	62.7	3.67, <i>dd</i> (12.0, 5.0)	62.7	3.65, <i>dd</i> (12.0, 5.0)		62.3		4.33, <i>dd</i> (12.0, 5.0)
					Ara at C-2glcI'		Ara at C-2glcI	
					106.4	4.48, <i>d</i> (6.5)	106.0	5.18, <i>d</i> (6.5)
					73.6	3.65, <i>dd</i> (8.5, 6.5)	73.2	4.55, <i>dd</i> (8.5, 6.5)
					74.0	3.55, <i>dd</i> (8.5, 3.0)	73.8	4.19, <i>dd</i> (8.5, 3.0)
					69.5	3.80, <i>m</i>	68.7	4.32, <i>m</i>
					67.3	3.84, <i>dd</i> (12.0, 2.0)	66.6	4.02, <i>dd</i> (12.0, 2.0)
						3.50, <i>dd</i> (12.0, 3.0)		3.74, <i>dd</i> (12.0, 3.0)

For the sugar portion, the ^1H -NMR spectrum of **1** (Table 1), showed two anomeric proton signals (δ 4.89, *d*, J = 7.5 Hz; δ 5.06, *d*, J = 7.5 Hz). 1D-TOCSY spectra obtained by selectively irradiating anomeric resonances gave in both cases the spin-system of a β -glucopyranosyl. HSQC experiments, which correlated all the proton resonances with those of each corresponding carbon, showed no glycosidation shifts, suggesting that the two sugars were terminal units. The location of the sugar residues at C-3 and C-16 were unambiguously defined by the HMBC experiment, which showed long-range correlations between C-3 (δ 82.3) and H-1glcI (δ 4.89) and C-16 (δ 76.4) and H-1glcII (δ 5.06) (Table 1). On the basis of the above data, compound **1** was identified as 3 β ,6 β ,16 β -trihydroxyolean-12-en-23-al-3-*O*- β -glucopyranosyl-16-*O*- β -glucopyranoside.

The negative HR-ESI-MS of compound **2** showed a molecular ion peak at m/z 781.4752 [$\text{M}-\text{H}$] $^-$, in accordance with an empirical molecular formula of $\text{C}_{32}\text{H}_{70}\text{O}_{13}$. The negative ESI-MS spectrum showed a pseudomolecular ion peak at 781 [$\text{M}-\text{H}$] $^-$ indicating a molecular weight of 782 for compound **2**. ESI-MS-MS experiments showed further fragment ions at 619 [$\text{M}-\text{H}-162$] $^-$ and 457 [$\text{M}-\text{H}-162-162$] $^-$, suggesting the presence of two hexosyl moieties. Compound **2** displayed 42 carbon resonances in its ^{13}C NMR spectrum (Table 1), of which 30 could be assigned to the aglycone and 12 to the sugar moiety. The ^{13}C NMR spectrum of the aglycone portion exhibited eight methyl resonances at δ 17.4, 18.0, 18.6, 18.8, 21.7, 23.0, 25.0, 28.1, two sp^2 -hybridized carbons at δ 125.5 and 138.5, resonances for three hydroxymethine groups (δ 65.7, 67.1 and 89.4). These data, when correlated with information from the ^1H NMR spectrum (Table 1) [six methyl singlets at δ 1.33, 1.45, 1.54, 1.62, 1.66, 1.84, two methyl doublets at δ 0.98 (J = 6.5 Hz) and 0.99 (J = 6.5 Hz) one olefinic proton at δ 5.38, and three oxymethyne protons at δ 3.38, 4.55 and 4.79], indicated that the aglycone of **2** is based on a olean-12-ene-3,6,16-tetraol skeleton (Table 1). The orientations of the hydroxy groups were assigned as 3 β ,6 β ,16 β on the basis of ^1H NMR coupling constants and by comparison with compound **1**. Assignments of all chemical shifts of protons and carbons of the aglycone portion were ascertained from a combination of 1D-TOCSY, DQF-COSY, HSQC and HMBC analysis. The ^1H NMR spectrum for the sugar portion of compound **2** showed two anomeric proton signals at δ 4.98 (1H, *d*, J = 7.5 Hz) and 5.25 (1H, *d*, J = 7.5 Hz). The chemical shifts of all the individual protons of the two sugar units were attributed on the basis of 2D-TOCSY and DQF-COSY spectral analysis, and the ^{13}C chemical shifts of their relative attached carbons were clearly assigned from the HSQC spectrum (Table 2). These data showed the presence of a terminal β -galactopyranosyl (δ 5.25) and a 2-substituted β -glucopyranosyl (δ 4.98) as indicated by the downfield shift of C-2_{glc} (δ 84.6) signal. An unambiguous determination of the linkage site was obtained from the HMBC spectrum, which showed key correlation peaks

between the proton signal at δ 4.98 (H-1_{glc}) and the carbon resonance at δ 89.4 (C-3), and between the proton signal at δ 5.25 (H-1_{gal}) and the carbon resonance at δ 84.6 (C-3_{glc}). Thus, compound **2** was defined as urs-12-ene-3 β ,6 β ,16 β -triol-3-*O*- β -galactopyranosyl-(1 \rightarrow 2)- β -glucopyranoside.

Compound **3** exhibited a quasi-molecular ion peak at m/z 811.4463 [M-H]⁻ in the HR-ESI-MS-spectrum (negative mode), in accordance with an empirical molecular formula of C₄₂H₆₈O₁₅. The negative ESI-MS spectrum showed a pseudomolecular ion peak at m/z 811 [M-H]⁻ indicating a molecular weight of 812 for compound **3**. A detailed analysis of the NMR spectroscopic data (¹H, ¹³C, 2D-TOCSY, DQF-COSY, HSQC) of compound **3** in comparison with those of **1** (Table 1) showed a difference in the replacement of the 23-CHO function in **1** by a 23-COOH group in **3**. In particular, the HMBC correlations between the proton signal at δ 1.52 (Me-24) and the carbon resonances at δ 53.6 (C-5), 55.3 (C-4), 87.1 (C-3) and 183.1 (C-23) supported the occurrence of a 23-COOH group (Mahato and Kundu, 1994). From these data, the structure of **3** was determined as 3 β ,6 β ,16 β -trihydroxyolean-12-en-23-oic acid-3-*O*- β -glucopyranosyl-16-*O*- β -glucopyranoside.

The negative HR-ESI-MS of compound **4** gave a pseudomolecular ion peak at m/z 635.4173 [M-H]⁻, in agreement with a molecular formula of C₃₆H₆₀O₉. Compound **4** displayed a molecular peak at m/z 635 [M-H]⁻ in ESI-MS negative mode indicating a molecular weight of 636, as well as a fragment ion of m/z 473 [M-H-162]⁻ corresponding to the loss of a hexosyl moiety. Compound **4** displayed 36 carbon resonances in its ¹³C NMR spectrum (Table 1). For the aglycone portion along with eight methyl resonances (δ 16.8, 17.4, 18.2, 18.7, 18.8, 22.9 and 25.0) and two sp²-hybridized carbon signals (δ 126.0 and 138.6), signals for four hydroxymethine groups (δ 67.0, 67.3, 70.5 and 89.3) could be observed. A detailed analysis of the NMR spectroscopic data (¹H, ¹³C, 2D-TOCSY, DQF-COSY, HSQC) of the aglycone moiety of compound **4** in comparison with those of **2** showed differences in the carbon resonances of ring E. In the HMBC spectrum, the methyl signal at δ 1.41 (Me-30) showed a long-range correlation with the carbon resonance at δ 70.5, allowing us to deduce the occurrence of an additional secondary alcoholic function at C-21 (Mimaki et al., 2004). The coupling constants of H-21 (δ 3.97, *dd*, *J* = 11.0, 4.0 Hz) and the NOESY correlation between H-21 and Me-29 suggested the β -orientation of the C-21 hydroxyl group (Mimaki et al., 2004). The sugar unit, identified as β -glucopyranosyl, was placed at C-3 of the aglycone on the basis of the HMBC correlation between the anomeric proton at δ 5.01 and the carbon resonance at δ 89.3 (C-3). Thus, compound **4** was defined as urs-12-ene-3 β ,6 β ,16 β ,21 β -tetraol-3-*O*- β -glucopyranoside.

Compound **5** showed the same molecular formula as compound **4** (C₃₆H₆₀O₉), indicated by both HR-ESI-MS (m/z 635.4163 [M-H]⁻) and ESI-MS analysis (m/z 635 [M-H]⁻). Eight tertiary methyl signals (δ 1.23, 1.26, 1.29, 1.44, 1.54, 1.62, 1.64, 1.74) in the ¹H NMR spectrum

along with resonances of ring E in the ¹³C NMR spectrum showed that compound **5** differed from **4** only in the olean-12-ene skeleton instead of an urs-12-ene skeleton, being identical for the other structural features (Table 1). Thus, compound **5** was defined as olean-12-ene-3 β ,6 β ,16 β ,21 β -tetraol-3-*O*- β -glucopyranoside.

The molecular formula for compound **6** was established as C₄₂H₇₀O₁₅ by the negative-ion mode HR-ESI-MS showing a pseudo-molecular ion peak at m/z 813.4649 [M-H]⁻. Compound **6** also exhibited a quasi-molecular ion peak in negative-ion mode ESI-MS at 813 [M-H]⁻, indicating a molecular weight of 814. Data from the ¹³C NMR spectrum (Table 2) of **6** suggested also in this case a polyhydroxylated-olean-12-ene glycoside structure. The ¹³C NMR spectrum showed 42 resonances, of which 30 were assigned to a triterpenoid moiety and 12 to the glycosyl portion. The following NMR data exhibited the structural features of olean-12-en-3 β ,6 β ,16 β ,21 β ,23-pentaol as the aglycone: seven tertiary methyl resonances (δ 0.88, 0.89, 0.97, 1.09, 1.19, 1.27 and 1.35), resonances at δ 3.55 (*dd*, *J* = 12.0, 4.0 Hz) 3.59 (*dd*, *J* = 11.0, 4.5 Hz), 4.10 (*dd*, *J* = 11.5, 4.5 Hz), 4.45 (*br s*) ascribable, respectively, to the 21 β ,3 β ,16 β ,6 β -protons on hydroxymethine carbons, one hydroxymethylene (δ 3.48 and 3.78, each a doublet, *J* = 12.0 Hz), and the resonance of H-12 at δ 5.29 (*t*, *J* = 3.5 Hz). On the basis of the HMBC experiment that provided unambiguous correlations between the methyl signal at δ 1.09 (Me-24) and the carbon resonances at δ 44.8 (C-4), 48.2 (C-5), 83.3 (C-3) and 64.6 (C-23), the primary alcoholic function was located at C-23 (Mahato and Kundu, 1994). Analysis of the NMR spectroscopic data of the sugar portion indicated the occurrence of two β -glucopyranosyl units linked at C-3 and C-16, as in compound **1**. Thus the structure of **6** was defined as olean-12-ene-3 β ,6 β ,16 β ,21 β ,23-pentaol-3-*O*- β -glucopyranosyl-16-*O*- β -glucopyranoside.

The negative HR-ESI-MS of compound **7** showed a molecular ion peak at m/z 913.5189 [M-H]⁻, in accordance with an empirical molecular formula of C₄₇H₇₈O₁₇. Compound **7** displayed a molecular peak at m/z 913 [M-H]⁻ in ESI-MS negative mode indicating a molecular weight of 914. The ¹³C NMR spectrum of compound **7** showed 47 signals, of which 30 were assigned to the aglycone and 17 to the saccharide portion. Analysis of the ¹H and ¹³C NMR spectra of the aglycone moiety (Table 2) clearly showed that it differed from that of compound **5** for the absence of the secondary alcoholic function at C-21. The sugar portion of **1** exhibited, in the ¹H NMR spectrum (Table 2), three anomeric proton resonances (δ 4.32, *d*, *J* = 7.5 Hz; 4.43, *d*, *J* = 7.5 Hz; 4.48, *d*, *J* = 6.5 Hz). The structures of the oligosaccharide moieties were deduced using 1D-TOCSY and 2D NMR experiments, which indicated that two β -glucopyranosyl units and one α -arabinopyranosyl unit were present (Table 2). The absence of any ¹³C NMR glycosidation shift for one glucopyranosyl residue (δ 4.32) and the arabinopyranosyl unit suggested that these sugars were terminal units. Gly-

cosidation shifts were observed for C-2_{glc} (δ 83.5) (Table 2). Direct evidence for the sugar sequence and their linkage sites to the aglycone was derived from the results of the HMBC experiment that showed unequivocal correlations between resonances at δ 4.32 and 90.5 (H-1_{glc}-C-3), δ 4.43 and 77.2 (H-1_{glc}-C-16), and δ 4.48 and 83.5 (H-1_{ara}-C-2_{glc}). Thus, compound 7 was identified as olean-12-ene-3 β ,6 β ,16 β -triol-3-O- β -glucopyranosyl-16-O- α -arabinopyranosyl-(1 \rightarrow 2)- β -glucopyranoside.

The HR-ESI-MS spectrum (negative-ion mode) of compound 8 exhibited a pseudomolecular ion peak at m/z 929.5114 [M-H]⁻, ascribable to a molecular formula of C₄₇H₇₇O₁₈. The ESI-MS experiment (negative-ion mode) also showed a quasi-molecular ion peak at m/z 929 [M-H]⁻ indicating a molecular weight of 796. Analysis of the ¹H and ¹³C NMR spectra of the aglycone moiety of compound 8 (Table 2) clearly showed that it differed from that of compound 6 for the absence of the secondary alcoholic function at C-21. Analysis of the glycosidic NMR data demonstrated that they were superimposable with those of 7. Thus, compound 8 was defined as olean-12-ene-3 β ,6 β ,16 β ,23-tetraol-3-O- β -glucopyranosyl-16-O- α -arabinopyranosyl-(1 \rightarrow 2)- β -glucopyranoside.

The molecular formula for compound 9 was established as C₃₆H₅₈O₁₀ by the negative-ion mode HR-ESI-MS spectrum showing a pseudo-molecular ion peak at m/z 649.3945 [M-H]⁻. Compound 9 also exhibited a quasi-molecular ion peak in negative-ion mode ESI-MS at 649 [M-H]⁻, indicating a molecular weight of 650. Analysis of NMR spectroscopic data of compound 9 (Table 2) in comparison with those of 5 clearly indicated that 9 differed from 5 (Table 1) only for the replacement of the 23-Me group with an aldehydic function. On the basis of the foregoing data the structure 3 β ,6 β ,16 β ,21 β -tetrahydroxyolean-12-en-23-al-3-O- β -glucopyranoside was assigned to compound 9.

To the best of our knowledge, the aglycones of compounds 1–9 are reported here for the first time. Most unusual is the co-occurrence of 6 β -OH and 16 β -OH functions in an olean-12-ene or an urs-12-ene series. The only other compound reported in the literature from this rare class of 6 β -hydroxylated β -amryin derivatives is daturadiol, isolated first from *Datura innoxia* (Kocor and St. Pyrek, 1973), and more recently from *Terminalia brasiliensis* (Araujo and Chaves, 2005). However, daturadiol does not possess a 16 β -OH.

Several studies have demonstrated that polyhydroxylated triterpenes isolated from members of the Asteraceae exhibit potent anti-inflammatory effects, as well as, anti-tumor and cytotoxic activities (Akihisa et al., 1996; Ukiya et al., 2001; Ukiya et al., 2002; Neukirch et al., 2005). Moreover, recent studies on an oleanane triterpenoid possessing both 3- β and 6- α hydroxyl groups have exhibited anti-tumor activity against a diverse panel of tumor cell lines (Wang et al., 2006a). Taking into account the unusual structural features of *Silphium* saponins to determine their possible functional role as cancer preventives, we tested their effect on breast cancer cell proliferation. Initially, we

tested the effect of 25 μ g/ml of compounds 1–9 on growth of MDA-MB-231 human breast cancer cells for 96 h with fresh compounds added every 48 h. At the concentration tested, only one of the saponins, compound 2 (urs-12-ene-3 β ,6 β ,16 β -triol-3-O- β -galactopyranosyl-(1 \rightarrow 2)- β -glucopyranoside) reduced cell number compared to the vehicle alone (DMSO). The effective concentration of compound 2 was determined in Fig. 1A and B, where we show that compared to the vehicle control, there was an 80% reduction in cell number at 25 μ g/ml. This effect was almost 100% at 50 and 100 μ g/ml. Since the observed decrease in cell number appears to be due to decreased cell proliferation (i.e. reduced number of viable nuclei) and not due to increased membrane permeability, saponins may induce inhibitory effects in cell cycle progression. This result indicates *Silphium* as a potential source for anti-breast cancer compounds.

Compound 2 was the only saponin tested in this study that possesses a galactopyranosyl residue, suggesting that this sugar residue may be involved in the cytotoxic activity. Structure-activity studies of saponins have demonstrated that the nature of the sugar moiety is very important for cytotoxic activity (Bader et al., 1996). Compound 2 also differs from all other saponins tested here by the presence of a monodesmosidic disaccharide chain attached to the C-3 position, while all other saponins tested are either bidesmosidic or monodesmosidic with a single glucopyranosyl residue attached to the C-3 position, indicating that the length and linkage of the sugar chain may also influence cytotoxicity. A survey of 16 triterpenoid saponins with different sugar linkages found monodesmosides more active than bidesmosides in killing cancer cells (Quetin-Leclercq et al., 1992).

Triterpenoid saponins from other plant sources have also been shown to activate estrogen receptors (Lee et al., 2003) as well as inhibit breast cancer cell proliferation via suppression of cell cycle progression and cell survival signaling and promotion of apoptosis (Mujoo et al., 2001; Chen et al., 2003). Future studies will focus on the exact mechanism by which compound 2 exerts its anti-proliferative effects on breast cancer cells.

3. Experimental

3.1. General experimental procedure

Optical rotations were measured in MeOH with a Perkin-Elmer 241 polarimeter equipped with a sodium lamp (589 nm) and a 1 dm microcell. ESI-MS was performed on a Finnigan LCQ Ion Trap mass spectrometer and HR-ESI-MS experiments were performed on Fourier transform ion cyclotron mass spectrometer (Ion Spec, Varian). The spectra were recorded by infusion into the ESI (electrospray ionization) source using MeOH as a solvent. ¹H and ¹³C NMR spectra were recorded in either pyridine-*d*₅ or CD₃OD on a Varian Inova 500 Mz spectrometer. All

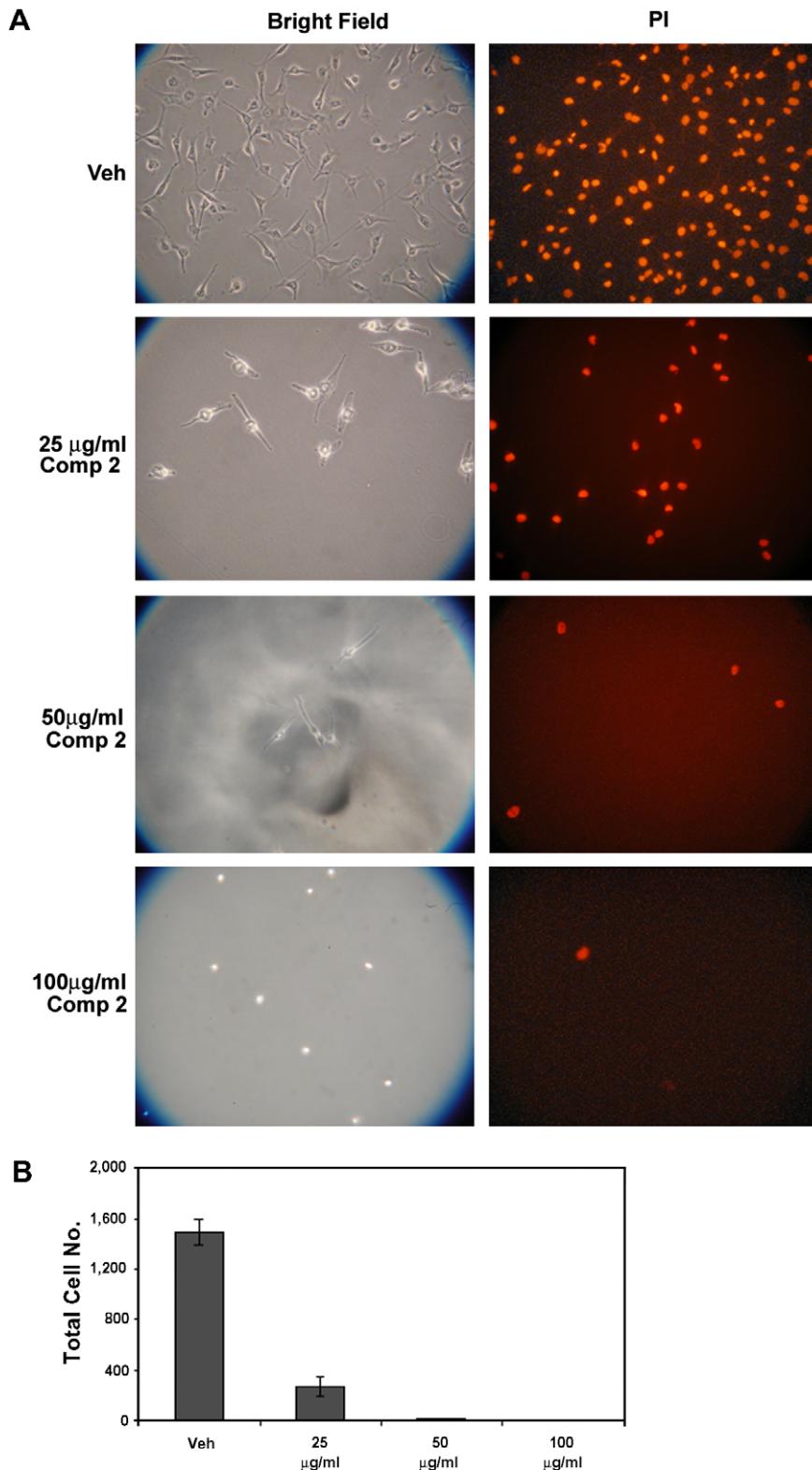


Fig. 1. Effect of compound **2** on breast cancer cell proliferation. Semi-confluent MDA-MB-231 cells were treated with vehicle (0.1% DMSO) or compound **2** at 25, 50, or 100 µg/ml every 48 h for 96 h. (A) Representative cells from either bright field (left) or fluorescence microscopy following propidium iodide (PI) staining to visualize nuclei (right). (B) Total number of cells with intact, viable nuclei following vehicle or compound **2** at 25, 50, or 100 µg/ml. Cell number was quantified from 30 microscopic fields/well. Error bars are standard deviations for $N = 3$.

chemical shifts (δ) are given in ppm units with reference to TMS as an internal standard and the coupling constants (J) are given in Hz.

Column chromatography was carried out on Kieselgel 60 (60–200 µm, Merck) or LiChroprep RP-18 (40–60 µm, Merck). MPLC was performed on a Beckman 120B pump

using Millipore Vantage-L (16 × 250, 32 × 250 mm) columns with a flow rate of 2 ml min⁻¹. Fractions were monitored by TLC on silica gel plates (Merck precoated silica gel 60 F₂₅₄) and developed in the solvent system, EtOAc:HOAc:H₂O (9:2:2). Spots were visualized by heating after spraying with 10% H₂SO₄.

3.2. Plant material

Aerial parts of *S. radula* were collected by Dr. Jeffery Williams in Lee County, Texas in July 2002 near a rest area on Hwy 290 west of Giddings, Texas. Samples of *S. radula* were identified by Prof. Mark Bierner and a voucher specimen was deposited at the University of Texas at Austin Plant Resource Center (No. JW2002/7/3).

3.3. Extraction and isolation

The dried mixture of leaves and stems of *S. radula* (500 g) was successively extracted for 48 h with CH₂Cl₂–MeOH (1:1), MeOH and MeOH–H₂O (1:1) at room temperature to give three separate crude residues. The conc. MeOH and MeOH–H₂O extracts were combined and dried under vacuum and the concentrate (70 g) was dissolved in H₂O and loaded onto a 7.5 × 10 cm C-18 column. The column was washed with water to remove sugars and then with MeOH–H₂O (2:3, v/v) to remove phenolics. Saponins were removed with MeOH–H₂O (85:15, v/v) and the crude saponin fraction was subjected to silica gel CC eluted with a gradient of CHCl₃:MeOH:H₂O (9:1:0.1 to 6:4:0.4) to give seven major fractions (I–VII). Fraction I was subjected to reversed phase C-18 MPLC with a gradient of CH₃CN:H₂O with 1% H₃PO₄ affording compound **1** (128.6 mg). Fraction II was subjected to reversed phase C-18 MPLC using a MeOH:H₂O gradient giving compound **2** (23.4 mg). Remaining saponin mixtures III–VII obtained from the above processing were repeatedly subjected to MPLC purification on silica RP-18 using a MeOH–H₂O gradient, affording compounds **3** (15.6 mg), **4** (2.7 mg), **5** (4.6 mg), **6** (115.9 mg), **7** (42.9 mg), **8** (263 mg) and **9** (96.4 mg).

3.4. 3 β ,6 β ,16 β -Trihydroxyolean-12-en-23-al-3-O- β -glucopyranosyl-16-O- β -glucopyranoside (**1**)

White powder; $[\alpha]_D^{20} +23.46$ (MeOH; *c* 0.24); For ¹H and ¹³C NMR spectroscopic data, see Table 1; ESI-MS (negative ion mode): *m/z* 795 [M–H][–]; ESI-MS-MS (795) *m/z* 633 [M–H–162][–], 472 [M–H–162–162][–]; HR-ESI-MS (negative ion mode) *m/z* 795.45363 (calcd. For C₄₂H₇₀O₁₄).

3.5. Urs-12-ene-3 β ,6 β ,16 β -triol-3-O- β -galactopyranosyl-(1 → 2)- β -glucopyranoside (**2**)

White powder; $[\alpha]_D^{20} +21.78$ (MeOH; *c* 0.24); For ¹H and ¹³C NMR spectroscopic data, see Table 1; ESI-MS (negative ion mode): *m/z* 781 [M–H][–]; ESI-MS-MS (781) *m/z*

619 [M–H–162][–], 457 [M–H–162–162][–]; HR-ESI-MS (negative ion mode) *m/z* 781.47437 (calcd. For C₄₂H₇₀O₁₃).

3.6. 3 β ,6 β ,16 β -Trihydroxyolean-12-en-23-oic acid-3-O- β -glucopyranosyl-16-O- β -glucopyranoside (**3**)

White powder; $[\alpha]_D^{20} +12.67$ (MeOH; *c* 0.26); For ¹H and ¹³C NMR spectroscopic data, see Table 1; ESI-MS (negative ion mode): *m/z* 811 [M–H][–]; HR-ESI-MS (negative ion mode) *m/z* 811.44855 (calcd. For C₄₂H₆₈O₁₅).

3.7. Urs-12-ene-3 β ,6 β ,16 β ,21 β -tetraol-3-O- β -glucopyranoside (**4**)

White powder; $[\alpha]_D^{20} +10.90$ (MeOH; *c* 0.35); For ¹H and ¹³C NMR spectroscopic data, see Table 1; ESI-MS (negative ion mode) 635 [M–H][–]; *m/z*; HR-ESI-MS (negative ion mode) *m/z* 635.41646 (calcd. For C₃₆H₆₀O₉).

3.8. Olean-12-ene-3 β ,6 β ,16 β ,21 β -tetraol-3-O- β -glucopyranoside (**5**)

White powder; $[\alpha]_D^{20} +7.88$ (MeOH; *c* 0.24); For ¹H and ¹³C NMR spectroscopic data, see Table 1; ESI-MS (negative ion mode): *m/z* 635 [M–H][–]; HR-ESI-MS (negative ion mode) *m/z* 635.41646 (calcd. For C₃₆H₆₀O₉).

3.9. Olean-12-ene-3 β ,6 β ,16 β ,21 β ,23-pentaol-3-O- β -glucopyranosyl-16-O- β -glucopyranoside (**6**)

White powder; $[\alpha]_D^{20} +16.76$ (MeOH; *c* 0.28); For ¹H and ¹³C NMR spectroscopic data, see Table 2; ESI-MS (negative ion mode): *m/z* 813 [M–H][–]; HR-ESI-MS (negative ion mode) *m/z* 813.46420 (calcd. For C₄₂H₇₀O₁₅).

3.10. Olean-12-ene-3 β ,6 β ,16 β -triol-3-O- β -glucopyranosyl-16-O- α -arabinopyranosyl-(1 → 2)- β -glucopyranoside (**7**)

White powder; $[\alpha]_D^{20} +14.28$ (MeOH; *c* 0.27); For ¹H and ¹³C NMR spectroscopic data, see Table 2; ESI-MS (negative ion mode): *m/z* 913 [M–H][–]; HR-ESI-MS (negative ion mode) *m/z* 913.51663 (calcd. For C₄₇H₇₈O₁₇).

3.11. Olean-12-ene-3 β ,6 β ,16 β ,23-tetraol-3-O- β -glucopyranosyl-16-O- α -arabinopyranosyl-(1 → 2)- β -glucopyranoside (**8**)

White powder; $[\alpha]_D^{20} +17.74$ (MeOH; *c* 0.28); For ¹H and ¹³C NMR spectroscopic data, see Table 2; ESI-MS (negative ion mode): *m/z* 929 [M–H][–]; HR-ESI-MS (negative ion mode) *m/z* 929.51154 (calcd. For C₄₇H₇₈O₁₈).

3.12. 3 β ,6 β ,16 β ,21 β -Tetrahydroxyolean-12-en-23-al-3-O- β -glucopyranoside (**9**)

White powder; $[\alpha]_D^{20} +10.26$ (MeOH; *c* 0.23); For ¹H and ¹³C NMR spectroscopic data, see Table 1; ESI-MS (negative

tive ion mode): m/z 649 [M–H] $^-$; HR-ESI-MS (negative ion mode) m/z 649.39572 (calcd. For $C_{36}H_{58}O_{10}$).

3.13. Biological assays

3.13.1. Cell culture

MDA-MB-231 human breast cancer cells (from the American type culture collection (ATCC)) were cultured in a Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) at 37.9702 °C in 5% CO₂.

3.13.2. Cell proliferation

Semi-confluent cells seeded on six well plates in phenol-free DMEM and 5% FBS (charcoal-stripped) were treated with vehicle or compounds **1–9** every 48 h for 96 h. Stock solutions were in 100% DMSO and were diluted in DMEM to a final concentration of 0.1% (v/v) DMSO prior to treatment. Cells were fixed in MeOH, stained with propidium iodide (PI), and intact nuclei were counted from digital images acquired by an Olympus CKX41 microscope. Total number of cells was quantified from 30 microscopic fields/well from experiments carried out in triplicate.

Acknowledgements

The research presented in this paper was supported by the Robert A. Welch Foundation (Grant F-130) to Tom J. Mabry, the American Institute of Cancer Research IIG 03-31-06 to Suranganie Dharmawardhane and NCCR/NIH 2G12RR003035 to UCC. A special thanks to Dr. Bill Johnson in the College of Pharmacy at UT-Austin for his technical assistance.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.phytochem.2007.10.017.

References

Akihisa, T., Yasukawa, K., Hirotoshi, O., Yoshimasa, K., Yamanouchi, S., Takido, M., Kumaki, K., Tamura, T., 1996. Triterpene alcohols from the flowers of Compositae and their anti-inflammatory effects. *Phytochemistry* 43, 1255–1260.

Araujo, D.S., Chaves, M.H., 2005. Pentacyclic triterpenoids from leaves of *Terminalia brasiliensis*. *Quim. Nova* 28, 996–999.

Bader, G., Plohmann, B., Hiller, K., Franz, G., 1996. Cytotoxicity of triterpenoid saponins. Part 1: activities against tumor cells in vitro and hemolytic index. *Pharmazie* 51, 414–417.

Bohlmann, F., Jakupovic, J., 1979. Naturally occurring terpene derivatives. 232. New labdane derivative and sesquiterpene in *Silphium* species. *Phytochemistry* 18, 1987–1992.

Bohlmann, F., Jakupovic, J., 1980. Natural terpene derivatives. 238. New sesquiterpene hydrocarbons with anomalous carbon skeletons from *Silphium* species. *Phytochemistry* 19, 259–265.

Chen, J.C., Chang, N.W., Chung, J.G., Chen, K.C., 2003. Saikosaponin-A induces apoptotic mechanism in human breast MDA-MB-231 and MCF-7 cancer cells. *Am. J. Chin. Med.* 31, 363–377.

Clevinger, J.A., Panero, J.L., 2000. Phylogenetic analysis of *Silphium* and subtribe Engelmanniinae (Asteraceae: Heliantheae) based on ITS and ETS sequence data. *Am. J. Bot.* 87, 565–572.

Davydants, E.S., Putieva, Zh.M., Bandyukova, V.A., Abubakirov, N.K., 1984a. Triterpene glycosides of *Silphium perfoliatum*. *Chem. Nat. Compd.* 1, 120–121.

Davydants, E.S., Putieva, Zh.M., Bandyukova, V.A., Abubakirov, N.K., 1984b. Triterpene glycosides of *Silphium perfoliatum*. II. *Chem. Nat. Compd.* 20, 636.

Davydants, E.S., Putieva, Zh.M., Bandyukova, V.A., Abubakirov, N.K., 1984c. Triterpene glycosides of *Silphium perfoliatum*. III. Structure of Silphioside E. *Chem. Nat. Compd.* 20, 708–710.

Davydants, E.S., Putieva, Zh.M., Shashkov, A.S., Bandyukova, V.A., Abubakirov, N.K., 1985. Triterpene glycosides of *Silphium perfoliatum*. IV. Structure of Silphioside C. *Chem. Nat. Compd.* 21, 486–489.

Davydants, E.S., Putieva, Zh.M., Bandyukova, V.A., Abubakirov, N.K., 1986. Triterpene glycosides of *Silphium perfoliatum*. V. Structure of Silphioside A. *Chem. Nat. Compd.* 22, 58–60.

Davydants, E.S., Kartasheva, I.A., Neshin, I.V., 1997. The effect of triterpene glycosides of *Silphium perfoliatum* L. on phytopathogenic fungi. *Rastit. Resour.* 33, 93–98.

De Tommasi, N., Piacente, S., Gacs-Baitz, E., De Simone, F., Pizza, C., Aquino, R., 1998. Triterpenoid saponins from *Spergularia ramosa*. *J. Nat. Prod.* 61, 323–327.

El-Sayed, N.H., Wojcinska, M., Drost-Karbowska, K., Williams, J., Mabry, T.J., 2002. Kaempferol triosides from *Silphium perfoliatum*. *Phytochemistry* 60, 835–838.

Hamel, P.H., Chiltoskey, M.U., 1975. Cherokee Plants and their Uses: A Four Hundred Year History. Herald Publishing, Co., North Carolina.

Kocor, M., St. Pyrek, J., 1973. Triterpenes of *Datura innoxia*. Structure of daturadiol and daturaolone. *J. Org. Chem.* 38, 3685–3688.

Kowalski, R., 2004. Secondary metabolites in *Silphium integrifolium* in the first 2 years of cultivation. *New Zeal. J. Crop Hortic. Sci.* 32, 397–406.

Kowalski, R., 2007. Studies of selected plant raw materials as alternative sources of triterpenes of oleanolic and ursolic acid types. *J. Agric. Food Chem.* 55, 656–662.

Kowalski, R., Wolski, T., 2003. TLC and HPLC analysis of the phenolic acids in *Silphium perfoliatum* L. leaves, inflorescences and rhizomes. *J. Planar Chromatogr. Mod. TLC* 16, 230–236.

Kowalski, R., Wolski, T., 2005. The chemical composition of essential oils of *Silphium perfoliatum* L.. *Flavour Frag. J.* 20, 306–310.

Kowalski, R., Wiercinski, J., Mardarowicz, M., 2005. Essential oil in leaves and inflorescences of *Silphium integrifolium* Michx. *J. Essent. Oil Res.* 17, 220–222.

Lee, Y.J., Jin, Y.R., Lim, W.C., Ji, S.M., Choi, S., Jang, S., Lee, S.K., 2003. A ginsenoside-Rh1, a component of ginseng saponin, activates estrogen receptor in human breast carcinoma MCF-7 cells. *J. Steroid Biochem. Mol. Biol.* 84, 463–468.

Mahato, S.B., Kundu, A.P., 1994. ¹³C NMR spectra of pentacyclic triterpenoids – a compilation and some salient features. *Phytochemistry* 37, 1517–1575.

Mimaki, Y., Harada, H., Sakuma, C., Haraguchi, M., Yui, S., Kudo, T., Yamazaki, M., Sashida, Y., 2004. Contortisiliolides A–G: isolation of seven new triterpene bidesmosides from *Enterolabium contortisiliquum* and their cytotoxic activity. *Helv. Chim. Acta* 87, 851–865.

Mujoo, K., Haridas, V., Hoffmann, J.J., Wächter, G.A., Hutter, L.K., Lu, Y., Blake, M.E., Jayatilake, G.S., Bailey, D., Mills, G.B., Guterman, J.U., 2001. Triterpenoid saponins from *Acacia victoriae* (Bentham) decrease tumor cell proliferation and induce apoptosis. *Cancer Res.* 61, 5486–5490.

Neukirch, H., D'Ambrosio, M., Sosa, S., Altinier, G., Loggia, R.D., Guerrero, A., 2005. Improved anti-inflammatory activity of three new terpenoids derived, by systematic chemical modification from the abundant triterpenes of the flowery plant *Calendula officinalis*. *Chem. Biodivers.* 2, 657–671.

Pcolinski, M.J., Doskotch, R.W., Lee, A.Y., Clardy, J., 1994. Chlorosilphanol and silphaneoxol, labdane diterpenes from *Silphium perfoliatum*. *J. Nat. Prod.* 57, 776–783.

Quetin-Leclercq, J., Elias, R., Balansard, G., Bassleer, R., Angenot, L., 1992. Cytotoxic activity of some triterpenoid saponins. *Planta Med.* 58, 279–281.

Rickett, H.W., 1967. Wild Flowers of the United States: Southeastern States. The New York Botanical Garden/McGraw-Hill, New York, p. 580.

Syrov, V.N., Khushbaktova, Z.A., Davydants, E.S., 1992. Triterpenic glycosides from *Silphium perfoliatum* L. Hypolipidemic activity of silphioside. *Khim. Farm. Zhurnal* 26, 66–69.

Ukiya, M., Akihisa, T., Yasukawa, K., Kasahara, Y., Kimura, Y., Koike, K., Kikaido, T., Takido, M., 2001. Constituents of Compositae plants 2 triterpene diols, triols, and their 3-O-fatty acid esters from edible *Chrysanthemum* flower extract and their anti-inflammatory effects. *J. Agric. Food Chem.* 49, 3187–3197.

Ukiya, M., Akihisa, T., Tokuda, H., Suzuki, H., Mukainaka, T., Ichiiishi, E., Yasukawa, K., Kasahara, Y., Nishino, H., 2002. Constituents of Compositae plants 3. Anti-tumor promoting effects and cytotoxic activity against human cancer cell lines of triterpene diols and triols from edible *Chrysanthemum* flowers. *Cancer Lett.* 177, 7–12.

Wang, F., Hua, H., Pei, Y., Chen, D., Jing, Y., 2006a. Triterpenoids from the resin of *Styrax tonkinensis* and their antiproliferative and differentiation effects in human leukaemia HL-60 cells. *J. Nat. Prod.* 69, 807–810.

Wang, K., Mao, J., Tai, Y., Pan, Y., 2006b. Novel skeleton terpenes from *Celastrus hypoleucus* with anti-tumor activities. *Bioorg. Med. Chem. Lett.* 16, 2274–2277.