

ELSEVIER

Contents lists available at ScienceDirect

Phytochemistry

journal homepage: www.elsevier.com/locate/phytochem

Seco-tabersonine alkaloids from *Tabernaemontana corymbosa*

Kuan-Hon Lim, Noel F. Thomas, Zanariah Abdullah, Toh-Seok Kam *

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

ARTICLE INFO

Article history:

Received 1 December 2008

Accepted 6 January 2009

Available online 11 February 2009

Keywords:

Alkaloids

Tabernaemontana

NMR

Plants

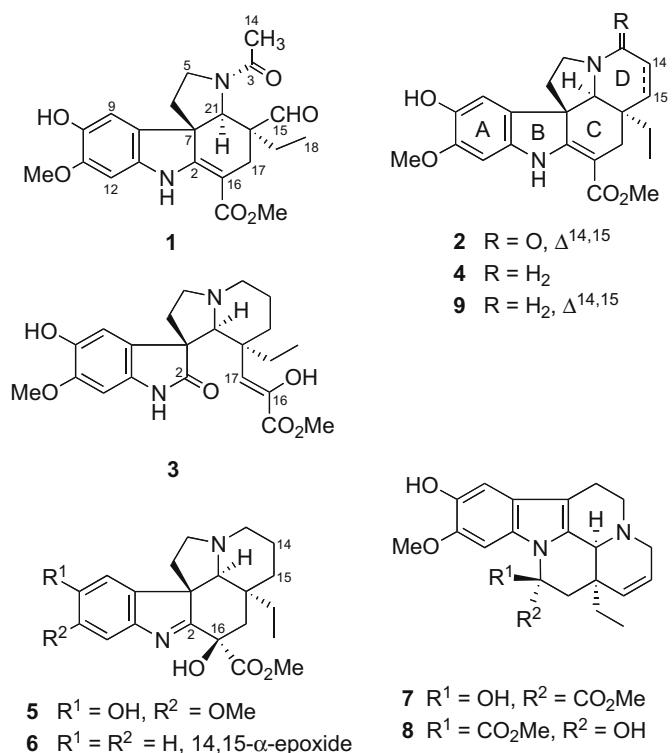
ABSTRACT

Two seco-tabersonine alkaloids, jerantiphyllines A and B, in addition to a tabersonine hydroxyindolenine, jerantinine H, and a recently reported vincamine alkaloid **7**, were isolated from the leaf extract of the Malayan *Tabernaemontana corymbosa* and the structures were established using NMR and MS analysis. Biomimetic conversion of jerantinines A and E to their respective vincamine and 16-epivincamine derivatives were also carried out.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Plants of the genus *Tabernaemontana* comprising about 110 species and widely distributed in the pantropical regions are rich in alkaloids (Leeuwenberg, 1991; Van Beek et al., 1984; Danieli and Palmisano, 1986; Kam, 1999). In our systematic study of the Malaysian representatives of this genus, we have reported many examples of new alkaloids which are distinguished by their structural novelty, as well as useful bioactivity (Kam et al., 2004a,b, 2003a,b, 2001, 2000, 1999, 1998, 1993; Kam and Sim, 2003a,b, 2002a). The Malayan *T. corymbosa* Roxb. ex Wall for instance provided several new alkaloids which are characterized by novel molecular skeletons such as the hexacyclic alkaloid, tronoharine (Kam et al., 1999), the pentacyclic indole tronocarpine (Kam et al., 2000), and the quinolinic alkaloid, voastrictine (Kam et al., 2001). The same plant also yielded a number of new indole and bisindole alkaloids (Kam et al., 2003b; Kam and Sim, 2003a,b, 2002a,b,c; Zhang et al., 2007; Zèches et al., 1994), including several vobasinylin-boga bisindoles which reverse multidrug-resistance in vincristine resistant KB cells (Kam et al., 1998). In continuation of our studies of biologically active alkaloids from Malaysian *Tabernaemontana* (Kam et al., 2004a,b, 2003a,b, 2001, 2000, 1999, 1998, 1993, 1992; Kam and Sim, 2003a,b, 2002a,b,c, 2001, 1999), we recently reported the isolation of several new cytotoxic *Aspidosperma*-type alkaloids, jerantinines A–G, from the leaf extract of the same species, but involving plant material collected from a different location (Lim et al., 2008). We now wish to report the further isolation of additional new alkaloids from the leaf extract of the same plant.

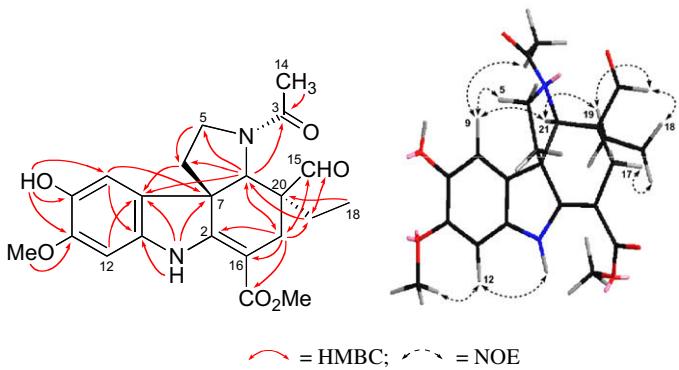

2. Results and discussion

Jerantiphylline A (**1**) was obtained from the leaf extract of *T. corymbosa* as a colorless oil, with $[\alpha]_D -214$ (*c* 0.08, CHCl_3). The EIMS of **1** showed a molecular ion at m/z 414, which analyzed for $\text{C}_{22}\text{H}_{26}\text{N}_2\text{O}_6$, requiring 11° of unsaturation, while the fragment ion observed at m/z 382 is due to loss of MeOH. The UV spectrum showed absorption maxima at 247, 318 and 342 nm ($\log \epsilon$ 3.89, 4.11 and 4.01, respectively), consistent with a β -anilinoacrylate chromophore and reminiscent of tabersonine alkaloids. In addition to the absorption band due to the presence of the β -anilinoacrylate chromophore (1606 cm^{-1}), the IR spectrum showed bands at 3529, 3377, 1710, 1660 and 1624 cm^{-1} due to OH, NH, aldehyde, conjugated ester and amide functions, respectively. The ^{13}C NMR spectrum (Table 1) showed a total of 22 separate carbon resonances (four methyls, four methylenes, four methines and ten quaternary carbons), in agreement with the molecular formula established from HREIMS measurements. The presence of the β -anilinoacrylate chromophore was also indicated by the ^{13}C NMR spectrum which showed the characteristic carbon resonances for C-2 at δ 168.5, C-16 at δ 89.3 and CO_2Me at δ 168.5 and 51.2. In addition to the conjugated methyl ester carbonyl resonance, two other carbonyl resonances observed at δ 205.3 and 170.6 were assigned to aldehyde and amide functions, respectively. The ^1H NMR spectrum of **1** (Table 1) showed the presence of an isolated aldehyde group, two methoxy groups (one aromatic methoxy and one belonging to an ester CO_2Me group), two isolated aromatic hydrogens, an isolated methyl, methylene and methine, an ethyl side chain, a phenolic OH and an indolic NH. The aromatic methoxy substituent and phenolic OH were deduced to be at C-10 and C-11, respectively, from examination of the aromatic carbon resonances and from the HMBC data (three bond correlations from OH to C-9, C-11

* Corresponding author. Tel.: +60 3 79674266; fax: +60 3 79674193.
E-mail address: tskam@um.edu.my (T.-S. Kam).

and from 11-OMe to C-11). The COSY and HMQC data revealed the presence of an NCH_2CH_2 fragment which corresponds to $\text{NC}(5)\text{C}(6)$.

The ^1H and ^{13}C NMR data of **1** are somewhat similar to those of tabersonine alkaloids, particularly jerantinines A–E (Lim et al., 2008). However, the $\text{N}(4)\text{C}(3)\text{C}(14)\text{C}(15)$ fragment usually present in the tabersonine/Aspidosperma alkaloids was conspicuously absent in **1**, being replaced instead by an *N*-acetyl and an isolated aldehyde group. Since the structural elements associated with rings A, B, C and E of **1** remained intact when compared with those of jerantinines A–E (Lim et al., 2008), the *N*-acetyl and aldehyde groups in **1** must be associated with an altered ring-D. Furthermore, since the degree of unsaturation for **1** is 11, a tetracyclic carbon skeleton with the loss of ring-D was indicated. Further clues to the structure of **1** were provided by the observed heteronuclear correlations from the HMBC spectrum (Fig. 1). The observed correlation from H-21 to the acetyl carbonyl indicated attachment of the acetyl group to N-4, while correlations from the aldehyde hydrogen to C-17 and C-19, as well as from H-17 and H-19 to the aldehyde carbon, indicated that the aldehyde group is branched from the quaternary C-20. The structure deduced is entirely consistent with the rest of the HMBC data (Fig. 1) as well as with the NOESY/DNOE data (Fig. 1). The latter also revealed the relative stereochemistry at all the stereogenic centers in **1**. Thus, irradiation of H-21 caused enhancement of H-9 and H-19, indicating that the orientation of the aldehyde group at C-20 is β . Irradiation of H-9 on the other hand resulted in enhancement of H-5, the acetyl CH_3 and H-21. These observations allowed the orientation of the N-4 lone pair to be assigned as β . Irradiation of H-12 resulted in enhancement of NH and 11-OMe, providing additional confirmation for the substitution pattern of the aromatic ring. Jerantiphylline A (**1**) represents the first example of a ring-D-seco-tabersonine alkaloid. A possible origin of this ring-opened alkaloid is from a 3-oxo-tabersonine derivative such as jerantinine C (**2**), via a retro-Aldol reaction.


Jerantiphylline B (**3**) was isolated as a colorless oil, with $[\alpha]_D -182$ (*c* 0.07, CHCl_3). The UV spectrum was characteristic of an oxindole chromophore with absorption maxima at 213, 267 and 303 nm, while the IR spectrum showed bands at 3538, 3281 and 1706 cm^{-1} due to OH, NH and carbonyl functions, respectively. The ^1H NMR spectrum of **3** (Table 1) revealed some similarities with those of the jerantinines. Firstly, the aromatic substitution pattern in **3** is similar to that in the jerantinine alkaloids (Lim et al., 2008). In addition, **3** resembles jerantinine E (**4**) in having in common, an unfunctionalized piperidine ring-D. The presence of the oxindole moiety, which was also indicated in the ^{13}C NMR spectrum (δ 184.1, Table 1), suggested that the main change in **3** when compared to **4**, is the loss of ring C, giving rise to a 2,16-seco-tabersonine alkaloid. The ^1H , ^{13}C and 2D NMR data indicated the presence of a trisubstituted double bond at C-16 and C-17, with the latter being an olefinic methine from the observed three-bond correlations from H-17 to C-15, C-19, C-21 and CO_2Me in the HMBC spectrum. The molecular formula of **3** (*m/z* 416, $\text{C}_{22}\text{H}_{28}\text{N}_2\text{O}_6$) differs from that of jerantinine E (**4**) by 32 mass units, suggesting that **3** possesses two additional oxygen atoms compared to jerantinine E (**4**). Since the oxindole moiety accounted for one of the additional oxygen atoms, the other is due to an OH group which is in turn linked to the ester bearing, olefinic C-16. This is consistent with the observed carbon resonance of C-16 at δ_{C} 143.4, as well as the HMBC data, which showed a three-bond correlation from the downfield enol OH signal at δ_{H} 15.1 to the carbonyl carbon of the methyl ester group. The unusual deshielding experienced by the enol OH is likely due to intramolecular hydrogen bonding between the enol hydrogen and the proximate ester carbonyl oxygen. The occurrence of such intramolecular hydrogen bonding probably accounts for the stability of the enol moiety in **3**. Jerantiphylline B (**3**) is therefore the 2,16-seco-derivative of jerantinine E (**4**) and is characterized by the presence of an unusually stable enol moiety. Only one example (vincamine) with a similar carbon skeleton is known as a natural product (Dopke et al., 1969), while several 2,16-seco-derivatives similar to **3** and incorporating a similar enol function, have been obtained in some instances on further oxidation of various vincadifformine 16-hydroxindolenine derivatives (Danieli et al., 1981; Calabi et al., 1982; Hugel et al., 1981).

Jerantinine H (**5**) was isolated as a colorless oil, with $[\alpha]_D -156$ (*c* 0.07, CHCl_3). The UV spectrum showed the presence of an indolenine chromophore (210, 235 and 305 nm), which was further supported by the presence of the characteristic imine carbon resonance at δ 185.7 in the ^{13}C NMR spectrum (Table 1). The ^1H NMR spectrum of **5** (Table 1) was however generally similar to that of jerantinine E (**4**) (Lim et al., 2008), except for H-12, which was shifted downfield. This observation is consistent with the change from an indole to an indolenine chromophore in **5**. HREIMS measurements gave the formula $\text{C}_{22}\text{H}_{28}\text{N}_2\text{O}_5$ (*m/z* 400.1986, calcd for 400.2000), differing from jerantinine E (**4**) by 16 mass units, suggesting the presence of an additional oxygen atom. Since the β -anilinoacrylate chromophore present in **4** was replaced by an imine chromophore in **5**, the additional oxygen atom is readily deduced to be associated with an OH group. The notable change in the chemical shift of the methyl ester bearing C-16 from δ_{C} 92.1 in **4** to δ_{C} 77.7 in **5** indicated that C-16 is the site of oxygenation. Jerantinine H (**5**) is therefore the 16-hydroxyindolenine derivative of jerantinine E (**4**). The configuration at C-16 was assumed to be the same as that found in the semisynthetic derivative, 1-dehydro-16-hydroxyvincadifformine (**6**) (Calabi et al., 1982) based on the similarity of the ^1H and ^{13}C NMR data for the non-indolic portion of both the alkaloids (**5** and **6**).

The lone vincamine alkaloid isolated, **7**, was readily identified as 14,15-didehydro-10-hydroxy-11-methoxyvincamine by comparison of its spectroscopic data with those of the same alkaloid

Table 1¹H (400 MHz) and ¹³C (100 MHz) NMR spectroscopic data in CDCl₃ for compounds **1**, **3** and **5**^a

Position	1		3		5	
	δ_{H}	δ_{C}	δ_{H}	δ_{C}	δ_{H}	δ_{C}
2	—	168.5	—	184.1	—	185.7
3	—	170.6	2.31 <i>td</i> (13, 3) 3.35 <i>m</i>	53.8	2.20 <i>td</i> (11, 3) 3.23 <i>m</i>	52.0
5	3.72 <i>m</i> 3.72 <i>m</i>	45.9	2.65 <i>ddd</i> (11.3, 9.5, 7.6) 3.31 <i>m</i>	53.4	2.54 <i>dt</i> (10.5, 8) 3.23 <i>m</i>	53.5
6	1.92 <i>m</i> 2.54 <i>m</i>	36.8	2.16 <i>m</i> 2.16 <i>m</i>	36.4	1.87 <i>dd</i> (13.5, 8) 2.78 <i>ddd</i> (13.5, 11, 8)	33.7
7	—	55.2	—	55.6	—	62.2
8	—	127.0	—	122.0	—	137.5
9	6.60 <i>s</i>	108.8	7.15 <i>s</i>	114.5	6.88 <i>s</i>	107.3
10	—	140.7	—	141.3	—	146.0
11	—	146.9	—	146.8	—	146.2
12	6.49 <i>s</i>	94.6	6.42 <i>s</i>	94.1	7.20 <i>s</i>	105.2
13	—	136.2	—	133.0	—	144.7
14	2.13 <i>s</i>	22.8	1.60 <i>m</i> 1.85 <i>qt</i> (13, 4)	21.4	1.70 <i>br d</i> (13.5) 1.93 <i>m</i>	21.3
15	9.72 <i>s</i>	205.3	1.24 <i>td</i> (13, 4) 1.62 <i>m</i>	36.9	1.09 <i>td</i> (13.5, 4.4) 1.51 <i>br d</i> (13.5)	33.1
16	—	89.3	—	143.4	—	77.7
17	2.55 <i>d</i> (16.1) (β) 2.73 <i>d</i> (16.1) (α)	22.8	5.25 <i>s</i> —	111.7	2.23 <i>d</i> (15) 2.71 <i>d</i> (15)	45.0
18	0.78 <i>t</i> (7.6)	9.0	0.69 <i>t</i> (7)	7.2	0.55 <i>m</i>	7.1
19	1.34 <i>dq</i> (14, 7.5) 1.93 <i>dq</i> (14, 7.5)	27.6	0.95 <i>dq</i> (15, 7) 1.01 <i>dq</i> (15, 7)	29.5	0.57 <i>m</i>	31.8
20	—	55.2	—	43.3	—	36.3
21	4.04 <i>s</i>	69.0	2.75 <i>s</i>	77.8	2.52 <i>s</i>	78.1
11-OMe	3.89 <i>s</i>	56.5	3.82 <i>s</i>	56.1	3.90 <i>s</i>	56.1
10-OH	5.50 <i>br s</i>	—	5.42 <i>br s</i>	—	5.74 <i>br s</i>	—
16-OH	—	—	15.1 <i>br s</i>	—	8.13 <i>br s</i>	—
NH	8.91 <i>br s</i>	—	8.64 <i>br s</i>	—	—	—
CO ₂ Me	3.77 <i>s</i>	51.2	3.78 <i>s</i>	52.3	3.94 <i>s</i>	53.0
CO ₂ Me	—	168.5	—	166.7	—	171.2

^a Assignments based on COSY, HMQC, HMBC and NOESY/DNOE.**Fig. 1.** Selected HMBCs and NOEs of **1**.

recently isolated together with its C(16)-epimer **8**, from *Ervatamia divaricata* occurring in China (Zhang et al., 2007).

Scrutiny of the structures of jerantinines A (**9**) and E (**4**), jerantinine H (**5**), and the vincamine alkaloid **7**, indicated that they correspond to the precursors, oxidized intermediate and final products, respectively, of the *Aspidosperma*→eburnea transformation, originally proposed by Wenkert to account for the origin of the eburnane/vincamine alkaloids (Wenkert and Wickberg, 1965). Accordingly, such a transformation was attempted as shown in Scheme 1 (Hugel et al., 1972). Protection of the labile phenolic OH of both **4** and **9** as the acetates **10** and **11**, respectively, were first carried out to prevent conversion of these alkaloids into their respective iminoquinones. Peracid oxidation of the acetates (**10** and **11**) followed by an unexpected OH deprotection with 10%

Na₂SO₃ solution, gave the 16-hydroxyindolene N-oxides, **12** and **13**, respectively. Treatment of the N-oxide **12** with triphenylphosphine in the absence of acid yielded the 16-hydroxyindolene, jerantinine H (**5**), while attempted further oxidation of **12** with *m*-CPBA did not lead to any ring-opened products (Hugel et al., 1981). Treatment of the N-oxide **13** with triphenylphosphine in the presence of aqueous HOAc, on the other hand, yielded **14**, 15,15-didehydro-10-hydroxy-11-methoxyvincamine (**7**) and its C(16)-epimer **8**. Similar treatment of the N-oxide **12** gave the two epimeric vincamines, **14** and **15**.

Although 16-hydroxyindolenes similar to **5** and 2,16-seco-derivatives similar to **3** have been obtained in studies related to the *Aspidosperma*→eburnea transformation, these compounds have not been previously isolated from any natural source, except for a 16-hydroxyindolene **6** isolated from the seeds of *Amsomia elliptica* (Aimi et al., 1978). The authors then noted that the possibility that **6** was an artifact of the isolation procedure cannot be ruled out. In the present study, it was observed that the solutions of jerantinine E (**4**) in dichloromethane when stored over long periods, resulted in decomposition yielding a complex mixture of compounds, from which the 2,16-seco-compound, jerantiphylline B (**3**), and the 16-hydroxyindolene, jerantinine H (**5**), were isolated in trace amounts. In the light of this observation, as well as from the results of the oxidative transformations carried out on **4** and **9** above, the possibility that **3** and **5** may also be artifacts derived from jerantinine E (**4**) cannot be completely discounted.

In contrast to jerantinines A–E which were previously found to display pronounced cytotoxicity towards both drug-sensitive as well as vincristine-resistant KB cells (Lim et al., 2008), the alkaloids **3**, **5** and **7** were found to be ineffective. In the case of **3** and **5**, it would appear that a drastic departure from the vincadifformine

structure (loss of ring C or the anilinoacrylate chromophore) abolished the biological activity altogether.

A comparison of the present results (plant material collected from Tekam Forest, Pahang, Malaysia) with those of the previous one based on samples collected from a different location (plant material collected from Chenderiang, Perak, Malaysia), revealed a variation in the alkaloidal composition. The leaf material from the present study (this report and Lim et al., 2008) yielded only alkaloids of the *Aspidosperma*-type with the exception of one vincamine alkaloid, while leaf samples from the previous study gave predominantly ibogan alkaloids and iboga-vobasinyl bisindoles (Kam et al., 2003b, 1992; Kam and Loh, 1993; Kam and Sim, 2003a,b, 2002a,b, 2001, 1999).

3. Experimental

3.1. General

Optical rotations were determined on a JASCO P-1020 digital polarimeter. IR spectra were recorded on a Perkin–Elmer RX1 FT-IR spectrophotometer. UV spectra were obtained on a Shimadzu UV-3101PC spectrophotometer. ¹H and ¹³C NMR spectra were recorded in CDCl₃ using TMS as internal standard on a JEOL JNM-LA 400 spectrometer at 400 and 100 MHz, respectively. EIMS and HREIMS and HR-FT-APCIMS were obtained at Organic Mass Spectrometry, Central Science Laboratory, University of Tasmania, Tasmania, Australia.

3.2. Plant material

Plant material was collected in Pahang, Malaysia, and identification was confirmed by Dr. K. M. Wong, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia. Herbarium voucher specimens (K 667) are deposited at the Herbarium, University of Malaya.

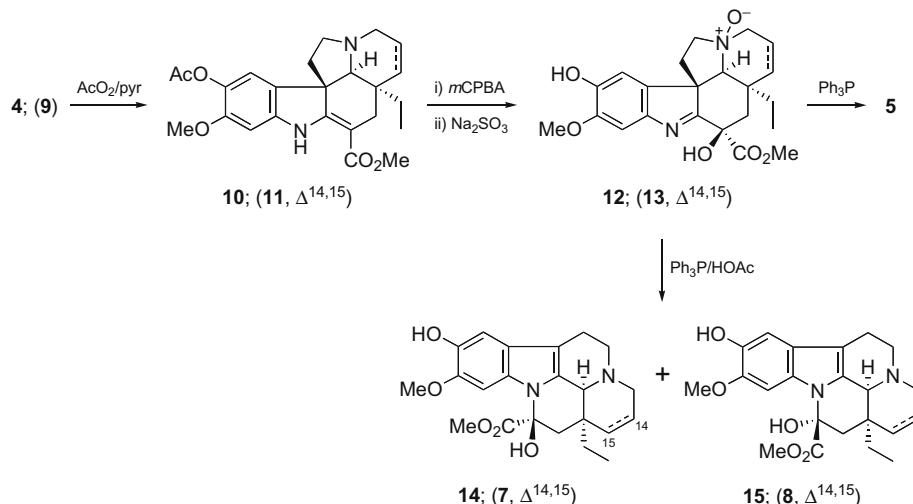
3.3. Extraction and isolation

Extraction of the ground leaf material was carried out in the usual manner by partitioning the concentrated EtOH extract with dilute acid as has been described in detail elsewhere (Kam and Tan, 1990) to provide a basic fraction (Lim et al., 2008). The alka-

loids were isolated by initial column chromatography of the basic fraction on silica gel using CH₂Cl₂ with increasing proportions of MeOH, followed by rechromatography of the appropriate partially resolved fractions using centrifugal TLC. Solvent systems used for centrifugal TLC were Et₂O/hexane (2:1), Et₂O/MeOH (50:1), EtOAc/hexane (1:6), EtOAc/hexane (1:3), EtOAc/hexane (1:2), EtOAc/hexane (1:1), CH₂Cl₂/hexane (2:1), CH₂Cl₂/hexane (5:1), CH₂Cl₂/hexane (6:1), CH₂Cl₂, CH₂Cl₂/MeOH (100:1) and CHCl₃/MeOH (50:1). The yields (g Kg⁻¹) of the alkaloids were as follows: jerantiphylline A (**1**) (0.0008), jerantiphylline B (**3**) (0.002), jerantinine H (**5**) (0.001) and 14,15-didehydro-10-hydroxy-11-methoxyvincamine (**7**) (0.010).

3.4. Characterization data

3.4.1. Jerantiphylline A (**1**)


Colorless oil; $[\alpha]_D -214$ (c 0.08, CHCl₃); UV (EtOH), λ_{\max} (log ϵ): 247 (3.89), 318 (4.11), 342 (4.01) nm; IR (dry film) ν_{\max} : 3529, 3377, 1710, 1660, 1624, 1606 cm⁻¹; ¹H and ¹³C NMR data, see Table 1; EIMS (probe) 70 eV, *m/z* (rel. int.): 414 [M]⁺ (70), 382 [M–MeOH]⁺ (21), 354 (18), 325 (8), 300 (17), 260 (55), 241 (100), 228 (25), 213 (10), 200 (30), 185 (9), 111 (10), 97 (14), 85 (19), 71 (24), 57 (28), 43 (19); HREIMS *m/z*: 414.1791 (calcd for C₂₂H₂₆N₂O₅, 414.1791).

3.4.2. Jerantiphylline B (**3**)

Colorless oil; $[\alpha]_D -182$ (c 0.07, CHCl₃); UV (EtOH), λ_{\max} (log ϵ): 213 (4.33), 267 (3.86), 303 (3.49) nm; IR (dry film) ν_{\max} : 3538, 3281, 1706 cm⁻¹; ¹H and ¹³C NMR data, see Table 1; EIMS (probe) 70 eV, *m/z* (rel. int.): 416 [M]⁺ (53), 401 [M–Me]⁺ (29), 357 [M–CO₂Me]⁺ (11), 329 (15), 299 (8), 247 (9), 225 (14), 196 (24), 176 (9), 162 (6), 124 (100), 109 (8); HREIMS *m/z*: 416.1939 (calcd for C₂₂H₂₈N₂O₆, 416.1947).

3.4.3. Jerantinine H (**5**)

Colorless oil; $[\alpha]_D -156$ (c 0.07, CHCl₃); UV (EtOH), λ_{\max} (log ϵ): 210 (4.33), 235 (4.32), 305 (3.87) nm; IR (dry film) ν_{\max} : 3534, 3391, 1745, 1596 cm⁻¹; ¹H and ¹³C NMR data, see Table 1; EIMS (probe) 70 eV, *m/z* (rel. int.): 400 [M]⁺ (11), 382 [M–H₂O]⁺ (32), 353 [M–H₂O–CH₂CH₃]⁺ (100), 339 (25), 312 (86), 297 (26), 283 (11), 254 (10); HREIMS *m/z*: 400.1986 (calcd for C₂₂H₂₈N₂O₅, 400.2000).

Scheme 1. Biomimetic conversion of **4** and **9** to their respective vincamine and 16-epivincamine derivatives.

3.5. General procedure for the preparation of **10** and **11**

Alkaloid **4** or **9** (20 mg, 0.05 mmol) was dissolved in a mixture of Ac₂O (1 mL) and pyridine (1 mL) and stirred for 20 min. Water (10 mL) was then added and the mixture was basified to pH 9.0 using 10% Na₂CO₃ solution, followed by extraction with CH₂Cl₂. Concentration of the dried CH₂Cl₂ extract and centrifugal TLC (Et₂O/hexane 1:1) afforded the corresponding acetates.

3.5.1. Jerantinine E acetate (**10**)

Yield 86%; Colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.58 (3H, t, *J* = 7.3 Hz, Me-18), 0.63 (1H, *m*, H-19a), 0.98 (1H, *dq*, *J* = 14.7 and 7.3 Hz, H-19b), 1.24 (1H, *m*, H-15a), 1.53 (1H, *m*, H-14a), 1.75 (1H, *dd*, *J* = 11.5 and 4.1 Hz, H-6a), 1.80 (2H, *m*, H-14b and H-15b), 2.04 (1H, *td*, *J* = 11.5 and 6.6 Hz, H-6b), 2.26 (1H, *dd*, *J* = 15.1 and 1.7 Hz, H-17a), 2.29 (3H, *s*, COMe), 2.41 (2H, *m*, H-3a and H-21), 2.54 (1H, *m*, H-5a), 2.68 (1H, *d*, *J* = 15.1 Hz, H-17b), 2.91 (1H, *t*, *J* = 7.0 Hz, H-5b), 3.10 (1H, *br d*, *J* = 10.8 Hz, H-3b), 3.76 (3H, *s*, CO₂Me), 3.80 (3H, *s*, 11-OMe), 6.48 (1H, *s*, H-12), 6.90 (1H, *s*, H-9), 8.89 (1H, *br s*, NH); EIMS (probe) 70 eV, *m/z* (rel. int.): 426 [M]⁺ (20), 124 (100); HREIMS *m/z*: 426.2149 (calcd for C₂₄H₃₀N₂O₅, 426.2155).

3.5.2. Jerantinine A acetate (**11**)

Yield 87%; Colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.64 (3H, *t*, *J* = 7.3 Hz, Me-18), 0.87 (1H, *dq*, *J* = 15 and 7.3 Hz, H-19a), 1.00 (1H, *dq*, *J* = 15 and 7.3 Hz, H-19b), 1.84 (1H, *dd*, *J* = 11.5 and 4.9 Hz, H-6a), 2.06 (1H, *td*, *J* = 11.5 and 7 Hz, H-6b), 2.30 (3H, *s*, COMe), 2.39 (1H, *d*, *J* = 15.1 Hz, H-17a), 2.54 (1H, *dd*, *J* = 15.1 and 1.5 Hz, H-17b), 2.63 (1H, *br s*, H-21), 2.67 (1H, *m*, H-5a), 3.03 (1H, *t*, *J* = 7 Hz, H-5b), 3.17 (1H, *d*, *J* = 15.9 Hz, H-3a), 3.43 (1H, *dd*, *J* = 15.9 and 4.6 Hz, H-3b), 3.77 (3H, *s*, CO₂Me), 3.81 (3H, *s*, 11-OMe), 5.70 (1H, *d*, *J* = 10 Hz, H-15), 5.78 (1H, *ddd*, *J* = 10, 4.6 and 1.5 Hz, H-14), 6.51 (1H, *s*, H-12), 6.93 (1H, *s*, H-9), 8.97 (1H, *br s*, NH); EIMS (probe) 70 eV, *m/z* (rel. int.): 424 [M]⁺ (49), 393 [M-OMe]⁺ (5), 317 (19), 275 (55), 260 (7), 242 (21), 216 (14), 200 (13), 135 (100), 122 (34), 107 (57), 93 (25), 81 (7); HREIMS *m/z*: 424.1994 (calcd for C₂₄H₂₈N₂O₅, 424.1998).

3.6. General procedure for the oxidation of **10** and **11** to their respective 16-hydroxyindolenine N-oxides

m-Chloroperbenzoic acid (24 mg, 0.137 mmol) was added over a 5 min period to a stirred solution of **10** or **11** (27 mg, 0.064 mmol) in dry toluene (2 mL) under a nitrogen atmosphere. After 10 min of continuous stirring at room temperature, 10% Na₂SO₃ solution (10 mL) was added to the reaction mixture and was left stirring for another 5 min. The solution was then extracted with Et₂O followed by CHCl₃. The CHCl₃ extract was dried, concentrated under reduced pressure and subjected to centrifugal TLC (CHCl₃/MeOH, 9:1) to give the corresponding 16-hydroxyindolenine N-oxides.

3.6.1. 16-Hydroxyindolenine N-oxide **12**

Yield 75%; Colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.70 (3H, *t*, *J* = 7.1 Hz, Me-18), 0.90 (1H, *dq*, *J* = 14.4 and 7.1 Hz, H-19a), 1.10 (1H, *dq*, *J* = 14.4 and 7.1 Hz, H-19b), 1.45 (1H, *td*, *J* = 13.5 and 3.2 Hz, H-15a), 1.56 (1H, *d*, *J* = 13.5 Hz, H-15b), 1.82 (1H, *m*, H-14a), 1.92 (1H, *m*, H-14b), 2.30 (1H, *d*, *J* = 16 Hz, H-17a), 2.45 (1H, *d*, *J* = 16 Hz, H-17b), 2.66 (1H, *dd*, *J* = 12.2 and 6.1 Hz, H-6a), 3.10 (1H, *td*, *J* = 12.2 and 7.1 Hz, H-6b), 3.73 (2H, *m*, H-3a and H-5a), 3.86 (1H, *br s*, H-21), 3.88 (3H, *s*, 11-OMe), 3.91 (3H, *s*, CO₂Me), 4.10 (1H, *m*, H-5b), 4.19 (1H, *d*, *J* = 12.9 Hz, H-3b), 7.07 (1H, *s*, H-12), 7.58 (1H, *s*, H-9); ¹³C NMR (CDCl₃, 100 MHz): δ 6.7 (C-18), 18.1 (C-14), 31.4 (C-15), 32.5 (C-19), 35.0 (C-6), 37.7 (C-20), 40.2 (C-17), 53.3 (CO₂Me), 55.8 (11-OMe), 59.0 (C-7), 64.9 (C-3), 65.0

(C-5), 73.4 (C-16), 88.7 (C-21), 104.8 (C-12), 111.1 (C-9), 137.0 (C-8), 143.4 (C-13), 148.0 (C-10), 148.4 (C-11), 174.0 (CO₂Me), 177.6 (C-2); FT-APCI-MS: *m/z* 417 [M + H]⁺; HR-FT-APCI-MS *m/z*: 417.2020 (calcd for C₂₂H₂₈N₂O₆ + H, 417.2026).

3.6.2. 16-Hydroxyindolenine N-oxide **13**

Yield 79%; Colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.72 (3H, *t*, *J* = 7.1 Hz, Me-18), 1.25 (1H, *dq*, *J* = 14.4 and 7.1 Hz, H-19a), 1.40 (1H, *dq*, *J* = 14.4 and 7.1 Hz, H-19b), 2.26 (1H, *d*, *J* = 15.8 Hz, H-17a), 2.52 (1H, *dd*, *J* = 15.8 Hz, H-17b), 2.92 (1H, *dd*, *J* = 12.4 and 6.6 Hz, H-6a), 3.04 (1H, *td*, *J* = 12.4 and 7.8 Hz, H-6b), 3.91 (3H, *s*, CO₂Me), 3.94 (3H, *s*, 11-OMe), 3.96 (1H, *br s*, H-21), 4.00 (2H, *m*, H-5a and H-5b), 4.43 (1H, *dt*, *J* = 17.8 and 2 Hz, H-3a), 4.61 (1H, *dd*, *J* = 17.8 and 4.4 Hz, H-3b), 5.59 (1H, *d*, *J* = 10.5 and 2 Hz, H-15), 5.69 (1H, *ddd*, *J* = 10.5, 4.4 and 2 Hz, H-14), 7.13 (1H, *s*, H-12), 7.87 (1H, *s*, H-9); ¹³C NMR (CDCl₃, 100 MHz): δ 8.5 (C-18), 32.8 (C-19), 33.0 (C-6), 40.9 (C-20), 45.8 (C-17), 53.3 (CO₂Me), 55.9 (11-OMe), 59.7 (C-7), 62.8 (C-3), 66.7 (C-5), 73.0 (C-16), 84.0 (C-21), 104.8 (C-12), 112.9 (C-9), 117.7 (C-14), 132.2 (C-15), 137.2 (C-8), 144.3 (C-13), 147.7 (C-10), 148.0 (C-11), 173.3 (CO₂Me), 177.2 (C-2); FT-APCI-MS: *m/z* 415 [M + H]⁺; HR-FT-APCI-MS *m/z*: 415.1864 (calcd for C₂₂H₂₆N₂O₆ + H, 415.1869).

3.7. Reduction of **12** to jerantinine H (**5**)

A stirred solution of N-oxide **12** (12 mg, 0.029 mmol) in CH₂Cl₂ (3 mL) was treated with excess Ph₃P (82 mg, 0.31 mg) at room temperature in the dark. Stirring was continued for 46 h under nitrogen atmosphere. The reaction mixture was then subjected to centrifugal TLC (Et₂O) to give **5** (8.5 mg, 74%).

3.8. General procedure for the conversion of **12** and **13** to their respective vincamine and 16-epivincamine alkaloids

A solution of N-oxide **12** or **13** (20 mg, 0.048 mmol) and Ph₃P (60 mg, 0.23 mmol) in aqueous AcOH (1 mL) was stirred at room temperature for 1 h. The solution was washed with 10% Na₂CO₃, extracted with CHCl₃, concentrated under reduced pressure and subjected to centrifugal TLC (Et₂O, NH₃ saturated) to afford the corresponding vincamines and 16-epivincamines.

3.8.1. 14,15-Didehydro-10-hydroxy-11-methoxyvincamine (**7**) and its 16-epimer **8**

Compound **7**: Yield 19%; Colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.99 (3H, *t*, *J* = 7.6 Hz, Me-18), 1.61 (1H, *dq*, *J* = 14 and 7.6 Hz, H-19a), 1.94 (1H, *dq*, *J* = 14 and 7.6 Hz, H-19b), 2.31 (1H, *d*, *J* = 14.1 Hz, H-17a), 2.37 (1H, *d*, *J* = 14.1 Hz, H-17b), 2.50 (1H, *ddd*, *J* = 16.4, 6 and 1.7 Hz, H-6a), 3.00 (1H, *br d*, *J* = 17 Hz, H-3a), 3.01 (1H, *m*, H-6b), 3.09 (1H, *ddd*, *J* = 17, 4 and 2.0 Hz, H-3b), 3.32 (1H, *ddd*, *J* = 14.0, 10.6 and 6 Hz, H-5a), 3.37 (1H, *td*, *J* = 14.0 and 7.1 Hz, H-5b), 3.84 (3H, *s*, 11-OMe), 3.86 (3H, *s*, CO₂Me), 4.05 (1H, *br s*, H-21), 5.59 (1H, *ddd*, *J* = 10, 4 and 2.3 Hz, H-14), 5.74 (1H, *d*, *J* = 10 Hz, H-15), 6.57 (1H, *s*, H-12), 6.95 (1H, *s*, H-9); ¹³C NMR (CDCl₃, 100 MHz): δ 8.4 (C-18), 16.6 (C-6), 34.7 (C-19), 36.7 (C-20), 43.5 (C-17), 43.7 (C-3), 49.5 (C-5), 53.9 (CO₂Me), 56.3 (11-OMe), 57.4 (C-21), 82.1 (C-16), 93.8 (C-12), 102.8 (C-9), 105.8 (C-7), 122.6 (C-8), 125.7 (C-14), 127.9 (C-13), 128.0 (C-15), 130.1 (C-2), 141.4 (C-10), 143.9 (C-11), 173.1 (CO₂Me); EIMS *m/z* 398 [M]⁺ (34), 380 [M-H₂O]⁺ (40), 365 (16), 351 (100), 312 (58), 295 (18), 264 (10), 249 (7), 216 (23), 190 (7), 145 (5), 121 (7), 99 (24), 83 (10), 57 (7), 40 (20); HREIMS *m/z*: 398.1835 (calcd for C₂₂H₂₆N₂O₅, 398.1842).

Compound **8**: Yield 37%; Colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.95 (3H, *t*, *J* = 7.5 Hz, Me-18), 1.51 (1H, *dq*, *J* = 15 and 7.5 Hz, H-19a), 1.84 (1H, *dq*, *J* = 15 and 7.5 Hz, H-19b), 2.12 (1H, *d*, *J* = 14.1 Hz, H-17a), 2.48 (1H, *ddd*, *J* = 16.3, 6.4 and 1.7 Hz,

H-6a), 2.61 (1H, *d*, *J* = 14.1 Hz, H-17b), 3.05 (3H, *m*, H-3a, H-3b and H-6b), 3.25 (1H, *m*, H-5a), 3.38 (1H, *dd*, *J* = 13.9 and 6.8 Hz, H-5b), 3.49 (3H, *s*, CO₂Me), 3.85 (3H, *s*, 11-OMe), 3.94 (1H, *br s*, H-21), 5.27 (1H, *br d*, *J* = 10.2, H-15), 5.50 (1H, *dt*, *J* = 10.2 and 3.2 Hz, H-14), 6.94 (1H, *s*, H-9), 7.02 (1H, *s*, H-12); ¹³C NMR (CDCl₃, 100 MHz): δ 8.3 (C-18), 16.6 (C-6), 35.2 (C-19), 38.4 (C-20), 45.9 (C-17), 43.6 (C-3), 49.8 (C-5), 52.5 (CO₂Me), 56.4 (11-OMe), 57.1 (C-21), 84.1 (C-16), 96.0 (C-12), 102.3 (C-9), 106.2 (C-7), 122.4 (C-8), 125.8 (C-14), 130.8 (C-13), 126.6 (C-15), 131.4 (C-2), 141.1 (C-10), 143.6 (C-11), 172.0 (CO₂Me); EIMS (probe) 70 eV, *m/z* (rel. int.): *m/z* 398 [M]⁺ (100), 380 [M–H₂O]⁺ (12), 369 [M–CH₂CH₃]⁺ (32), 351 [M–CH₂CH₃–H₂O]⁺ (34), 330 (49), 295 (65), 281 (25), 267 (14), 216 (22), 190 (16), 121 (16); HREIMS *m/z*: 398.1833 (calcd for C₂₂H₂₆N₂O₅, 398.1842).

3.8.2. 10-Hydroxy-11-methoxyvincamine (14) and its 16-epimer 15

Compound **14**: Yield 42%; Colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.89 (3H, *t*, *J* = 7.8 Hz, Me-18), 1.43 (4H, *m*, H-14a, H-15a, H-15b and H-19a), 1.69 (2H, *m*, H-14b and H-19b), 2.10 (1H, *d*, *J* = 14.1, H-17a), 2.21 (1H, *d*, *J* = 14.1, H-17b), 2.23 (1H, *m*, H-3a), 2.48 (1H, *m*, H-6a), 2.59 (1H, *m*, H-3b), 2.90 (1H, *m*, H-6b), 3.27 (2H, *m*, H-5a and H-5b), 3.82 (3H, *s*, 11-OMe), 3.86 (3H, *s*, CO₂Me), 3.88 (1H, *s*, H-21), 4.65 (1H, *br s*, 16-OH), 6.60 (1H, *s*, H-12), 6.97 (1H, *s*, H-9); ¹³C NMR (CDCl₃, 100 MHz): δ 7.7 (C-18), 17.0 (C-6), 20.8 (C-14), 25.1 (C-15), 28.9 (C-19), 35.2 (C-20), 44.4 (C-3), 44.6 (C-17), 51.0 (C-5), 54.4 (CO₂Me), 56.5 (11-OMe), 59.3 (C-21), 82.0 (C-16), 93.8 (C-12), 103.1 (C-9), 105.5 (C-7), 122.6 (C-8), 127.9 (C-13), 130.0 (C-2), 141.5 (C-10), 144.1 (C-11), 174.8 (CO₂Me); EIMS *m/z* 400 [M]⁺ (100), 382 [M–H₂O]⁺ (9), 353 [M–H₂O–CH₂CH₃]⁺ (33), 339 (33), 313 (50), 298 (62), 283 (25), 270 (27), 255 (14), 243 (24), 230 (7), 216 (8); HREIMS *m/z*: 400.1991 (calcd for C₂₂H₂₈N₂O₅, 400.1998).

Compound **15**: Yield 8%; Colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.87 (3H, *t*, *J* = 7.8 Hz, Me-18), 1.24 (2H, *m*, H-14a and H-15a), 1.36 (3H, *m*, H-15b, H-14b and H-19a), 1.71 (1H, *m*, H-19b), 2.04 (1H, *d*, *J* = 15.1, H-17a), 2.12 (1H, *m*, H-3a), 2.45 (1H, *dd*, *J* = 16 and 5 Hz, H-6a), 2.58 (1H, *m*, H-3b), 2.63 (1H, *d*, *J* = 15.1 Hz, H-17b), 2.91 (1H, *m*, H-6b), 3.16 (1H, *td*, *J* = 13 and 5.9 Hz, H-5a), 3.27 (1H, *dd*, *J* = 13, 6.4 Hz, H-5b), 3.73 (3H, *s*, CO₂Me), 3.84 (3H, *s*, 11-OMe), 3.82 (1H, *s*, H-21), 6.87 (1H, *s*, H-9), 6.96 (1H, *s*, H-12); ¹³C NMR (CDCl₃, 100 MHz): δ 7.6 (C-18), 16.7 (C-6), 20.7 (C-14), 24.2 (C-15), 29.0 (C-19), 36.6 (C-20), 44.7 (C-3), 47.2 (C-17), 51.2 (C-5), 53.5 (CO₂Me), 56.5 (11-OMe), 59.1 (C-21), 83.1 (C-16), 95.6 (C-12), 102.6 (C-9), 105.9 (C-7), 122.1 (C-8), 128.5 (C-13), 129.6 (C-2), 141.3 (C-10), 143.9 (C-11), 172.6 (CO₂Me); EIMS *m/z* 400 [M]⁺ (75), 382 [M–H₂O]⁺ (11), 353 [M–H₂O–CH₂CH₃]⁺ (41), 339 (32), 312 (34), 298 (100), 283 (27), 270 (16), 255 (8); HREIMS *m/z*: 400.1991 (calcd for C₂₂H₂₈N₂O₅, 400.1998).

Acknowledgment

We would like to thank the University of Malaya and MOSTI, Malaysia (Science Fund), for financial support.

References

Aimi, N., Asada, Y., Sakai, S.I., Haginiwa, J., 1978. Studies on plants containing indole alkaloids VII. Isolation of several *Aspidosperma*- and vincamine-type alkaloids from the seeds of *Amsonia elliptica* Roem. et Schult. Chem. Pharm. Bull. 26, 1182–1187.

Calabi, L., Danieli, B., Lesma, G., Palmisano, G., 1982. Dye-sensitized photo-oxygenation of the *Aspidosperma* alkaloids vincadiformine and tabersonine. A new, convenient approach to vincamine. J. Chem. Soc. Perkin Trans. 1, 1371–1379.

Danieli, B., Palmisano, G., 1986. Alkaloids from *Tabernaemontana*. In: Brossi, A. (Ed.), The Alkaloids, vol. 27. Academic Press, Orlando, pp. 1–130 (Chapter 1).

Danieli, B., Lesma, G., Palmisano, G., 1981. Ozonation in alkaloid chemistry: a mild and selective conversion of vincadiformine into vincamine. J. Chem. Soc. Chem. Commun., 908–909.

Dopke, W., Meisel, H., Fetilhaber, H.W., 1969. Die struktur des vincatins, eines oxindol-alkaloids aus vincaminor L. Tetrahedron Lett. 10, 1701–1704.

Hugel, G., Laronze, J.Y., Laronze, J., Levy, J., 1981. Oxidation of the 2,16 double bond of vincadiformine. Heterocycles 16, 581–590.

Hugel, G., Levy, G., Le Men, J., 1972. Méthylène-indolines, indolénines et indoléniums VI. Action de réactifs oxydants. Hemisynthèse de la vincamine. C.R. Acad. Sci. Ser. C 274, 1350–1352.

Kam, T.S., Sim, K.M., Pang, H.Y., Koyano, T., Hayashi, M., Komiyama, K., 2004a. Cytotoxic effects and reversal of multidrug resistance by ibogan and related indole alkaloids. Bioorg. Med. Chem. Lett. 14, 4487–4489.

Kam, T.S., Pang, H.S., Choo, Y.M., Komiyama, K., 2004b. Biologically active ibogan and vallesamine derivatives from *Tabernaemontana divaricata*. Chem. Biodivers. 1, 646–656.

Kam, T.S., Pang, H.S., Lim, T.M., 2003a. Biologically active indole and bisindole alkaloids from *Tabernaemontana divaricata*. Org. Biomol. Chem. 1, 1292–1297.

Kam, T.S., Sim, K.M., Pang, H.S., 2003b. New bisindole alkaloids from *Tabernaemontana corymbosa*. J. Nat. Prod. 66, 11–16.

Kam, T.S., Sim, K.M., Lim, T.M., 2001. Voastrictine, a novel pentacyclic quinolinic alkaloid from *Tabernaemontana*. Tetrahedron Lett. 42, 4721–4723.

Kam, T.S., Sim, K.M., Lim, T.M., 2000. Tronocarpine, a novel pentacyclic indole incorporating a seven-membered lactam moiety. Tetrahedron Lett. 41, 2733–2736.

Kam, T.S., 1999. Alkaloids from Malaysian flora. In: Pelletier, S.W. (Ed.), Alkaloids Chemical and Biological Perspectives, vol. 14. Pergamon, Amsterdam, pp. 285–435 (Chapter 2).

Kam, T.S., Sim, K.M., Lim, T.M., 1999. Tronoharine, a novel hexacyclic indole alkaloid from a Malayan *Tabernaemontana*. Tetrahedron Lett. 40, 5409–5412.

Kam, T.S., Sim, K.M., Koyano, T., Toyoshima, M., Hayashi, M., Komiyama, K., 1998. Conodiparines A–D, new bisindoles from *Tabernaemontana*. Reversal of vincristine-resistance with cultured cells. Bioorg. Med. Chem. Lett. 8, 1693–1696.

Kam, T.S., Loh, K.Y., Chen, W., 1993. Conophylline and conophyllidine: new dimeric alkaloids from *Tabernaemontana divaricata*. J. Nat. Prod. 56, 1865–1871.

Kam, T.S., Loh, K.Y., Lim, L.H., Loong, W.L., Chuah, C.H., Chen, W., 1992. New alkaloids from the leaves of *Tabernaemontana divaricata*. Tetrahedron Lett. 33, 969–972.

Kam, T.S., Sim, K.M., 2003a. Conodurine, conoduramine, and ervahanine derivatives from *Tabernaemontana corymbosa*. Phytochemistry 63, 625–629.

Kam, T.S., Sim, K.M., 2003b. Conodirinines A and B, novel vobasine-iboga bisindoles incorporating an additional tetrahydro-1,3-oxazine unit on the vobasinyll moiety. Helv. Chim. Acta 86, 122–126.

Kam, T.S., Sim, K.M., 2002a. Vobasonidine and vobatrcine, novel bisindole alkaloids from a Malayan *Tabernaemontana*. Helv. Chim. Acta 85, 1027–1032.

Kam, T.S., Sim, K.M., 2002b. Five new iboga alkaloids from *Tabernaemontana corymbosa*. J. Nat. Prod. 65, 669–672.

Kam, T.S., Sim, K.M., 2002c. New tabernamine derivatives from *Tabernaemontana*. Heterocycles 57, 2137–2143.

Kam, T.S., Sim, K.M., 2001. Dippinines A–D, new iboga-derived indole alkaloids from *Tabernaemontana*. Heterocycles 55, 2405–2412.

Kam, T.S., Sim, K.M., 1999. Dippinine A, a new alkaloids of the chippine-type from a Malayan *Tabernaemontana*. Nat. Prod. Lett. 13, 143–146.

Kam, T.S., Loh, K.Y., 1993. 5-Oxo-19,20-dehydroervatamine from leaves of *Tabernaemontana corymbosa*. Phytochemistry 32, 1357–1358.

Kam, T.S., Tan, P.S., 1990. Plumeran alkaloids from *Kopsia profunda*. Phytochemistry 29, 2321–2322.

Leeuwenberg, A.J.M., 1991. *Tabernaemontana*: The Old World Species, Royal Botanic Gardens, Kew.

Lim, K.H., Hiraku, O., Komiyama, K., Kam, T.S., 2008. Jerantinines A–G, cytotoxic *Aspidosperma* alkaloids from *Tabernaemontana corymbosa*. J. Nat. Prod. 71, 1591–1594.

Van Beek, T.A., Verpoorte, R., Baerheim Svendsen, A., Leeuwenberg, A.J.M., Bisset, N.G., 1984. *Tabernaemontana* L. (Apocynaceae): a review of its taxonomy, phytochemistry, ethnobotany and pharmacology. J. Ethnopharmacol. 10, 1–156.

Wenkert, E., Wickberg, B., 1965. General methods of synthesis of indole alkaloids. IV. A synthesis of dl-eburnanamine. J. Am. Chem. Soc. 87, 1580–1589.

Zéches, M., Mesbah, K., Loukaci, A., Richard, B., Schaller, H., Sévenet, T., Le Men-Olivier, L., 1994. Alkaloids from leaves and stem bark of *Ervatamia corymbosa*. Planta Med. 61, 96–97.

Zhang, H., Wang, X.N., Lin, L.P., Ding, J., Yue, J.M., 2007. Indole alkaloids from three species of the *Ervatamia* Genus: *E. officinalis*, *E. divaricata*, and *E. divaricata Gouyauhwa*. J. Nat. Prod. 70, 54–59.