NEW PROOF OF A THEOREM OF OSGOOD'S IN THE

CALCULUS OF VARIATIONS*

RY

OSKAR BOLZA

In the last number of the Transactions,† Professor Osgood has proved an important characteristic property of a strong minimum of an integral of the form

(1)
$$I = \int_{\tau_0}^{\tau_1} F(x, y, x', y') d\tau.$$

His proof, however, is rather complicated, and the following note is intended to give a simpler proof of the theorem.

§ 1.

Introduction of curvilinear coördinates.

Suppose the integral (1) is taken along a continuous curve C with continuously turning tangents:

$$C: \qquad x = \phi(\tau), \quad y = \psi(\tau) \qquad (\tau_0 \equiv \tau \equiv \tau_1)$$

joining two fixed points $A(\tau_0)$ and $B(\tau_1)$; further ${\phi'}^2 + {\psi'}^2 \neq 0$ in (τ_0, τ_1) .

Concerning the function F(x, y, x', y') we make the same assumptions as Osgood on p. 277, l. c., except the assumption F > 0, which is not necessary for the present proof.

Now introduce instead of the rectangular coördinates x, y any curvilinear coordinates

(2)
$$u = U(x, y), \quad v = V(x, y),$$

where U, V are single-valued functions with continuous first and second derivatives in a region T of the x,y-plane containing the curve C; in the same region their Jacobian is supposed $\neq 0$. Interpret u, v as the rectangular co-

^{*} Presented to the Society at the Ithaca meeting, August 19, 1901. Received for publication September 2, 1901.

[†]Transactions of the American Mathematical Society, vol. 2, p. 273.

ordinates of a point in a u,v-plane and denote by T', C', A', B' the images of T, C, A, B respectively. Suppose further that the correspondence between T and T' is a one-to-one correspondence and that accordingly the inverse functions

(3)
$$x = X(u, v), \quad y = Y(u, v),$$

are single-valued functions with continuous first and second derivatives in T' and

$$D = \frac{\partial(X, Y)}{\partial(u, v)} \neq 0$$

in T'.

Then the integral I is changed into

(4)
$$I' = \int_{\tau_0}^{\tau_1} G(u, v, u', v') d\tau,$$

the function G of the four arguments u, v, u', v' being defined by

(5)
$$G(u, v, u', v') \equiv F(X, Y, X_u u' + X_v v', Y_u u' + Y_v v'),$$

where $X_{u} = \partial X/\partial u$, etc.

The integral I' is taken, in the u,v-plane, along the image C' of C.

From I = I' it follows that if the curve C minimize the integral I, its image C' will minimize I', and vice versa; and if C be an extremal for I, C' must be an extremal for I', and vice versa. Further WEIERSTRASS's function F_1 is an invariant for the above transformation, viz., if we denote the corresponding function derived from G by G_1 , we obtain easily

$$G_1 = D^2 F_1.$$

Finally Weierstrass's E-function is an absolute invariant, i. e., if we denote the new E-function by E' we have:

(7)
$$\begin{cases} E'(u, v; u', v'; \bar{u}', \bar{v}') = E(x, y; x', y'; \bar{x}', \bar{y}') \\ \text{where} \\ x' = X_u u' + X_v v', \quad \bar{x}' = X_u \bar{u}' + X_v \bar{v}', \\ y' = Y_u u' + Y_v v', \quad \bar{y}' = Y_u \bar{u}' + Y_c \bar{v}', \end{cases}$$

as follows immediately from (5).

§ 2.

Proof of Osgood's theorem.

Now let

(8)
$$x = \phi(t, a), \quad y = \psi(t, a)$$

Trans. Am. Math. Soc. 28.

be a set of extremals for the integral I, satisfying the following conditions:

1. The functions ϕ , ψ are single-valued functions of t, a with continuous first and second derivatives in the region:

$$T_0 - \epsilon \equiv t \equiv T_1 + \epsilon, \quad |a - a_0| \equiv \kappa$$
 $(\epsilon > 0).$

- 2. The extremal $C_0: x = \phi(t, a_0), y = \psi(t, a_0)$ has no multiple point for $T \epsilon \equiv t \equiv T_1 + \epsilon$, and passes through the two given points $A(t_0)$ and $B(t_1)$ where $T_0 < t_0 < t_1 < T_1$.
 - 3. If we denote by $\Delta(t, a)$ the Jacobian

$$\Delta(t, a) = \frac{\partial(\phi, \psi)}{\partial(t, a)},$$

then

(9)
$$\Delta(t, a_0) \neq 0 \quad \text{in} \quad (T_0 - \epsilon, T_1 + \epsilon).$$

4. The inequality

(10)
$$F_1(\phi(t, a_0), \psi(t, a_0), \cos \lambda, \sin \lambda) > 0$$

holds for every t of the interval $T_0 - \epsilon \equiv t \equiv T_1 + \epsilon$ and for every λ .

Under these circumstances if we denote by R_{κ} the region:

$$R_{\kappa}: T_0 \equiv t \equiv T_1, |a-a_0| \equiv \kappa,$$

and denote by S_{κ} the image of R_{κ} in the x,y-plane, then κ can be taken so small that

- 1. $\Delta(t, a) \neq 0$ in R_{κ} .
- 2. $F_1(x, y, \cos \lambda, \sin \lambda) > 0$ for every x, y in S_{κ} and for every λ .
- 3. The correspondence between R_{κ} and S_{κ} is a one-to-one correspondence.*

The inverse functions

$$t=t(x,\,y)\,, \qquad a=a\,(x,\,y)$$

will then be single-valued with continuous first and second derivatives in S_{κ} and their Jacobian will be $\neq 0$ in S_{κ} .

Then S_{α} is a "field" surrounding the arc AB of the extremal C_{α} , and if

$$\widetilde{C}: \quad x = \overline{\phi}(\tau), \quad y = \overline{\psi}(\tau), \quad (\tau_0 \equiv \tau \equiv \tau_1),$$

be any other curve with continuously turning tangents drawn from A to B in S_{κ} , for which $\ddot{\phi}^{'2} + \ddot{\psi}^{'2} \neq 0$, then Weierstrass's theorem holds, according to which

(11)
$$\Delta I = I_{\bar{c}}(AB) - I_{c}(AB) = \int_{\tau_{0}}^{\tau_{1}} E(x, y; x', y'; \bar{x'}, \bar{y'}) d\tau,$$

^{*} See KNESER, Lehrbuch der Variationsrechnung, § 14, and OSGOOD, l. c., p. 278. Both proofs have to be supplemented by the following preliminary lemma: If for every κ , however small, there existed points (x, y) in S_{κ} to which correspond in R_{κ} at least two distinct points (t', a') and (t'', a''), then there must exist, in R_{κ} , a point (t_2, a_0) such that in every vicinity of it pairs of distinct points can be found whose images in the x, y-plane coincide.

where x', y' refer to the extremal of the set (8) passing through x, y, and $\overline{x'}$, $\overline{y'}$ to the curve C. Hence Weierstrass infers that $\Delta I > 0$ by making use of the following theorem \dagger connecting the functions E and F_1 :

(12) $E(x, y; \cos \theta, \sin \theta; \cos \bar{\theta}, \sin \bar{\theta}) = (1 - \cos \omega) F_1(x, y, \cos \theta^*, \sin \theta^*),$ where $\omega = \bar{\theta} - \theta$; θ^* is an angle between θ and $\bar{\theta}$; and the angles are so measured that $|\omega| \equiv \pi$.

Now let $0 < h < \kappa$ and use S_h in the analogous signification as S_{κ} ; then Osgood's theorem may be stated as follows: There exists a positive quantity depending upon h, ϵ_h , such that for every curve C joining A and B drawn in the interior of S_{κ} but not wholly contained in S_h ,

$$\Delta I > \epsilon_{\scriptscriptstyle k}$$
.

To prove this theorem it is now only necessary to introduce instead of x, y the curvilinear coördinates

(13)
$$u = t(x, y), \quad v = a(x, y)$$

which satisfy for the regions S_{κ} and R_{κ} the conditions of § 1, and to make use of the remarks made there.

Accordingly the extremals for the integral I' are the lines v = const., and, therefore, in the u,v-plane Weierstrass's theorem takes the form:

$$\begin{split} \Delta I &= \Delta I' = \int_{s_0}^{s_1} E'(u, v; \cos 0, \sin 0; \cos \omega, \sin \omega) \, ds \\ &= \int_{s_0}^{s_1} (1 - \cos \omega) G_1(u, v, \cos \vartheta^*, \sin \vartheta^*) \, ds. \end{split}$$

These integrals are taken along the image C' in the u,v-plane (i. e., t,a-plane) of the curve C; ω denotes the angle between the positive tangent to C' in the point u, v and the positive u-axis; and s is the arc of the curve C'.

But from (9), (10), and (6) it follows that we can assign a positive quantity m such that

$$G_1(u, v, \cos \lambda, \sin \lambda) \equiv m > 0$$

for every u, v in R_{κ} and for every λ . Therefore

$$\Delta I \equiv m \int_{s_0}^{s_1} (1 - \cos \omega) ds$$

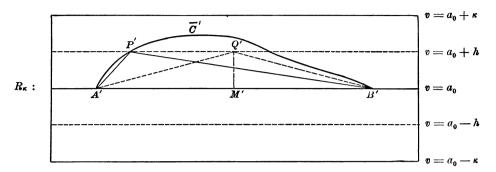
that is

$$\Delta I \equiv m \left(l - (t_1 - t_0)\right),$$

if l denotes the length of the curve \bar{C}' .

[†] Lectures on the Calculus of Variations, 1882.

Now suppose that \overline{C} is not wholly contained in the interior of S_h and therefore passes through a point P of one of the two extremals $a = a_0 \pm h$, then \overline{C}' passes through a point P' whose ordinate is $v = a_0 \pm h$. Hence l is greater



than or equal to the length of the broken line A'P'B'. But if we choose Q' on the same line v = const. as P' so that A'Q' = B'Q', then

$$A'P'B' \equiv A'Q'B'$$

and therefore

$$\Delta I \equiv 2m \left[\sqrt{h^2 + \left(rac{t_1 - t_0}{2}
ight)^2} - rac{(t_1 - t_0)}{2}
ight],$$

which proves Osgood's theorem. *

OSGOOD'S theorem can easily be extended to the case where one endpoint, say B, is fixed, the other, A, movable on a given curve. For this purpose, it is only necessary to choose for the new coördinates KNESER'S curvilinear coördinates u, v (KNESER, § 16); a slight modification of the above reasoning leads then to the inequality

$$\Delta I \equiv m \left[\sqrt{h^2 + (u_1 - u_0)^2} - (u_1 - u_0) \right].$$

$$\int_a^l f'(x)^2 dx \geqq \frac{L^3}{54(b-a)^2},$$

provided that $L < 3\sqrt{2}(b-a)$."

This lemma may be proved as follows: Since the value of the integral does not change if f(x) is replaced by $M \pm f(x)$, M being a constant, we may confine ourselves to functions f(x) for which f(a) = 0, f(l) = L. This remark reduces the question to the problem of minimizing the above integral with these given initial values. The solution is y = L(x-a)/(l-a); it satisfies Weierstrass' sufficient conditions for a minimum, and furnishes for the integral the minimum value: $(L^2)/(l-a) \equiv (L^2)/(b-a)$, which under the above inequality for L is greater than $\frac{1}{24}(L^3)/(b-a)^2$.

^{*} Osgood bases his proof upon the following lemma: "Let f(x) be a single valued continuous function of x in the interval $a \le x \le b$, and let f(x) have a continuous derivative f'(x) at all points of this interval. Let $a < l \le b$ and |f(l) - f(a)| = L > 0. Then

It is, however, to be remembered that the introduction of Kneser's coördinates presupposes that

$$F(\phi(t, a), \psi(t, a), \phi'(t, a), \psi'(t, a)) > 0$$

in the region R_{κ} .

University of Chicago, August 31, 1901.