EXISTENCE PROOF FOR A FIELD OF EXTREMALS TANGENT

TO A GIVEN CURVE*

BY

OSKAR BOLZA

In a recent paper,† Professor BLISS has given sufficient conditions for a minimum of the integral

(1)
$$J = \int_{t_0}^{t_1} F(x, y, x', y') dt$$

with respect to one-sided variations. His proof is based upon the construction of a field of extremals tangent to a given curve. He establishes the existence of such a field first for the special case where all curves considered are representable in the form y = f(x), and then reduces the general case of parameter representation to the former by a point-transformation of the plane.

The object of the following note is to give a direct proof for the existence of these fields which play an important part also in other investigations of the calculus of variations. ‡

§ 1. The set of extremals tangent to a given curve.

The terminology and assumptions concerning the function F being the same as in § 24 of my Lectures on the Calculus of Variations, we consider a curve of class C''

$$\tilde{\mathfrak{C}}: \qquad \pmb{x} = \tilde{\pmb{x}}\left(a\right), \qquad \pmb{y} = \tilde{\pmb{y}}\left(a\right), \qquad \pmb{A}_1 \leqq a \leqq \pmb{A}_2,$$

without multiple points, which lies in the interior of the region of the x, y-plane in which the function F is supposed to be of class C''' for every $(x', y') \neq (0, 0)$, and satisfies the inequality

^{*} Presented to the Society March 30, 1907. Received for publication February 27, 1907.

[†]Transactions of the American Mathematical Society, vol. 5 (1904), p. 477.

[†] Compare LINDEBERG, Mathematische Annalen, vol. 59 (1904), p. 321.

(2)
$$F_1\lceil \tilde{x}(a), \ \tilde{y}(a), \ \tilde{x}'(a), \ \tilde{y}'(a) \rceil > 0 \text{ in } (A_1 A_2),$$

where $\tilde{x}' = d\tilde{x}/da$, $\tilde{y}' = d\tilde{y}/da$.

For simplicity, we suppose that the parameter a is the arc of the curve $\widetilde{\mathbb{C}}$ measured from some fixed initial point.

Under these conditions it follows from the general existence theorems* for differential equations applied to the differential equation of the extremals \dagger for the integral (1), that through every point P(a) of the curve $\tilde{\mathbb{C}}$ one and but one extremal \mathfrak{C}_a can be drawn which is tangent to $\tilde{\mathbb{C}}$ at P in such a manner that the positive tangents of the two curves coincide. For the parameter t on the extremal \mathfrak{C}_a we may choose the arc of the extremal measured from the point P so that for every value of a the point P corresponds on \mathfrak{C}_a to the value t=0.

If we vary a, we thus obtain a set of extremals

(3)
$$x = \phi(t, a), \quad y = \psi(t, a),$$

for which the functions ϕ , ψ have the following properties:

1) The functions

$$\phi, \phi_{\iota}, \phi_{\iota\iota}; \psi, \psi_{\iota}, \psi_{\iota\iota}$$

are as functions of t and a of class C' in the domain

$$(4) 0 \leq t \leq l, A_1 \leq a \leq A_2,$$

where l is a sufficiently small positive quantity independent of a. ‡

2) The functions ϕ , ψ satisfy the following initial conditions:

(5)
$$\phi(0, a) = \tilde{x}(a), \qquad \psi(0, a) = \tilde{y}(a),$$

$$\phi_{\iota}(0, a) = \tilde{x}'(a), \qquad \psi_{\iota}(0, a) = \tilde{y}'(a).$$

From (5) we obtain by differentiation

(6)
$$\begin{aligned} \phi_a(0, a) &= \tilde{x}'(a), & \psi_a(0, a) &= \tilde{y}'(a), \\ \phi_{ta}(0, a) &= \tilde{x}''(a), & \psi_{ta}(0, a) &= \tilde{y}''(a). \end{aligned}$$

From these equations we derive for the Jacobian

$$\Delta(t,a) = \frac{\partial(\phi,\psi)}{\partial(t,a)}$$

^{*}Compare BLISS, Annals of Mathematics, ser. 2, vol. 6 (1905), pp. 49-67.

[†] Compare KNESER, Lehrbuch der Variationsrechnung, && 27, 29 and BOLZA, Lectures on the Calculus of Variations, & 25, b).

[‡] Compare the corollary given by BLISS in the article on differential equations just referred to, p. 53, at the end of section 1.

the result:

(7)
$$\Delta(0, a) = 0, \quad \Delta_{l}(0, a) = \frac{1}{r} - \frac{1}{\tilde{r}},$$

if we denote by 1/r and $1/\tilde{r}$ the curvature at the point P of the curve \mathfrak{C}_a and of the curve \mathfrak{C} respectively.

We make the further assumption that

$$\frac{1}{r} - \frac{1}{\tilde{r}} \neq 0$$

along $\tilde{\mathfrak{C}}$, and in order to fix the ideas we suppose * that

$$\frac{1}{r} - \frac{1}{\tilde{r}} > 0.$$

From this additional assumption it follows that two positive quantities $l_0 \leq l$ and m can be determined so that

$$\Delta(t, a) \ge tm$$

in the domain

$$(10) 0 \leq t \leq l_0, A_1 \leq a \leq A_2.$$

For if we define the function $\chi(t, a)$ for the domain (4) by the equations

$$\chi(t, a) = egin{cases} rac{\Delta(t, a)}{t}, & ext{when } t \neq 0, \ \Delta_t(0, a), & ext{when } t = 0, \end{cases}$$

it is easily seen that $\chi(t, a)$ is continuous in the domain (4), and since moreover $\chi(0, a) > 0$ in $(A_1 A_2)$, it follows that a positive quantity $l_0 \leq l$ can be assigned such that $\chi(t, a) > 0$ in the domain (10). If we denote by m the minimum of $\chi(t, a)$ in the domain (10), we obtain (9).

§ 2. Proof that the set of extremals (3) furnishes a field.

We now choose two quantities a_1 , a_2 so that

$$A_1 < a_1 < a_2 < A_2$$

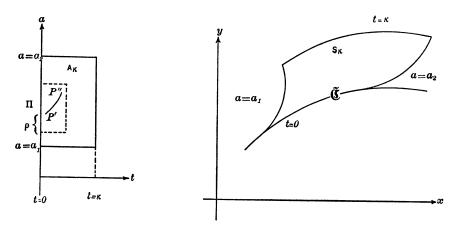
and propose to prove that under the assumptions enumerated in § 1, a positive quantity $k \leq l_0$ can be assigned such that the equations (3) define a one-to-one correspondence between the rectangle

^{*} In order that the curve $\widetilde{\mathbb{C}}$ may furnish a minimum for the integral (1) with respect to one-sided variations on the left of $\widetilde{\mathbb{C}}$, it is necessary that $1/r-1/\widetilde{r}\geqq 0$; compare BOLZA, Lectures, p. 194.

$$\mathbf{A}_{\kappa}: \qquad 0 \leq t \leq \kappa, \qquad a_{1} \leq a \leq a_{2}$$

in the t, a-plane and its image S_{κ} in the x, y-plane.

We suppose that it were not so; that is we suppose that, however small κ may be taken, there always exists in \mathbf{A}_{κ} at least one pair of distinct points whose images in the x, y-plane coincide. Reasoning then exactly as in the proof for the exist-



ence of a field which I have given in § 34 of my *Lectures* for the case where $\Delta(t, a) \neq 0$, we reach the result that under this hypothesis there would exist a point $\Pi(t=0, a=a)$ in the rectangle \mathbf{A}_{κ} such that every vicinity of Π contains at least one pair of distinct points of \mathbf{A}_{κ} whose images in the x, y-plane coincide.

We are going to prove that this leads to a contradiction with the inequality (9).

For this purpose we notice that our assumptions concerning the curve \mathfrak{C} imply * that $\tilde{x}'(\alpha)$, $\tilde{y}'(\alpha)$ are not both zero; let $\tilde{x}'(\alpha) \neq 0$, or as we may write on account of (6),

$$\phi_a(0,\alpha) \neq 0.$$

We may then apply Dini's theorem on implicit functions to the function $\phi(t, a)$ and the point t = 0, a = a. From this theorem it follows \dagger that below any

$$\sigma < d_1 - d_0, \ \rho < d_0, \ \frac{\sigma}{2}, \ \frac{B\sigma}{2A}.$$

Compare Peano-Genocchi, Differentialrechnung und Grundzüge der Integralrechnung, pp. 138-141.

^{*}Compare the definition of "curve of class C"" on p. 116 of my Lectures.

[†] Choose d>0 so that $\phi(t,a)$ is of class C' and $\phi_a(t,a) \neq 0$ for $|t| \leq d$, $|a-a| \leq d$. Let A be the maximum of $|\phi_t(t,a)|$, B the minimum of $|\phi_a(t,a)|$ in this domain. Choose $0 < d_0 < d$ and

preassigned positive quantity δ two positive quantities ρ and σ can be determined having the following properties: If P'(t', a') and P''(t', a'') be any two distinct points of the vicinity (ρ) of the point $\Pi(0, \alpha)$ for which

(11)
$$\phi(t', a') = \phi(t'', a''),$$

then in the first place $t'' \neq t'$ (say t' < t'') and in the second place the two points P', P'' can be joined by a curve representable in the form

$$a = a(t), \qquad t' \leq t \leq t'',$$

such that

(12)
$$\phi[t, a(t)] = \phi(t', a') \text{ for } t' \leq t \leq t''.$$

The function a(t) is of C', and satisfies the inequality

$$|\mathfrak{a}(t) - a')| < \sigma \text{ for } t' \leq t \leq t''$$

and the initial conditions

(13)
$$a(t') = a', \qquad a(t'') = a''.$$

Differentiating (12) we obtain

(14)
$$\phi_t[t, a(t)] + \phi_a[t, a(t)] a'(t) = 0.$$

On the other hand, it follows from the characteristic property of the point Π that there exists at least one pair of distinct points P', P'' in the domain

$$0 \le t < \rho$$
, $|a - \alpha| < \rho$

for which not only (11) holds but at the same time

(15)
$$\psi(t', a') = \psi(t'', a'').$$

For such a pair of points the function $\psi[t, \alpha(t)]$ is of class C' in (t't'') and takes, according to (13) and (15), the same value for t = t' and t = t''. Hence its derivative must vanish at least for one value $t = \tau$ between t' and t'':

$$\psi_t(\tau, \alpha(\tau)] + \psi_a[\tau, \alpha(\tau)] \alpha'(\tau) = 0.$$

Combining this equation with the equation derived from (14) by putting $t = \tau$, we obtain the result:

$$\Delta [\tau, a(\tau)] = 0.$$

But if we take ρ and σ sufficiently small, the point $t = \tau$, $a = a(\tau)$ lies in the domain (10); moreover, τ is positive since $0 \le t' < \tau < t''$. Hence we have indeed reached a contradiction with the inequality (9), and therefore the statement enunciated at the beginning of this section is proved.

404

The image $\mathfrak L$ of the boundary of the rectangle $\mathbf A_{\kappa}$ is a continuous closed curve without multiple points. According to a theorem due to Schönflies,* the point-set $\mathbf S_{\kappa}$ is therefore identical with the interior of $\mathfrak L$ together with the curve $\mathfrak L$ itself.

THE UNIVERSITY OF CHICAGO, February 27, 1907.

^{*}Göttinger Nachrichten, 1899, p. 282; compare also Osgood, ibid., 1900, p. 94; and Bernstein, ibid., 1900, p. 98.