GROUPS OF RATIONAL TRANSFORMATIONS IN A GENERAL FIELD*

нΥ

LEWIS IRVING NEIKIRK

Introduction.

Groups of linear transformations of a single variable of both finite and infinite orders are well known, but the only known examples of non-linear rational transformation groups in one variable are those given by the following writers: Hermite, Betti, and others have investigated special quantics, known as substitution quantics, with coefficients taken with respect to a prime modulus (p), which define substitutions on a set of residues (mod p) and generate finite groups (mod p). Substitution quantics with coefficients in a Galois field have been investigated by Dickson in his dissertation, \dagger where the reader will find a complete bibliography of the subject.

The object of this paper is to find all non-linear groups of rational transformations of a single variable. It is proved in § 1 that these groups of transformations define substitution groups on the roots of an equation f(x) = 0. They are a two-fold generalization of substitution quantics and form finite groups (mod f(x)). Section 2 is devoted to finding these transformations and section 3 to the conditions for the existence of such transformations in a general field F. The other articles apply and extend these results.

§1. General developments.

Consider a group G of rational integral transformations

$$T_i \equiv [x:\phi_i(x)],$$

$$\phi_i(x) = \sum_{j=0}^{j=m_i} \alpha_{ij} x^{m_i-j} \qquad (\alpha_{i0} \neq 0),$$

where the coefficients α_{ij} are elements of a general field F and the quantity x belongs to a set X_i in a field F' containing F. It is assumed that at least one m_i exceeds unity, so that the group is not linear.

^{*} Presented to the Society (Chicago), April and December, 1909.

[†] L. E. DICKSON, The analytical representation of substitutions on a power of a prime number of letters, etc., Annals of Mathematics, ser. 1., vol. 11 (1896), pp. 65-120, 161-183.

Let $T_i(X_i) = X'_i$. Then *

(a)
$$X_i \equiv X'_i$$
, for every i.

(b)
$$X_i \equiv X_{i'} \equiv X$$
, for every i and i' .

- (a) Since T_i^2 is in G, X_i' is a subset of X_i , and since T_i^{-2} is in G, X_i is a subset of X_i' . Therefore $X_i \equiv X_i'$.
- (b) X_i must be a subset of $X_{i'}$ since $T_{i'}T_i$ is in G, and $X_{i'}$ must be a subset of X_i since $T_iT_{i'}$ is in G. Therefore $X_i \equiv X_{i'} \equiv X$.

Since T_i , of degree $m_i > 1$, has an inverse in G, let $T_i^{-1} = T_i$. Then

$$T_{i}T_{i'} \equiv [x:x] = [x:\phi_{i}\{\phi_{i'}(x)\}],$$

whence

$$\phi_i\{\phi_{i'}(x)\}=x,$$

so that x satisfies an equation of degree $m_i m_{i'} > 1$, the leading coefficient being $a_{in} a_{i'0} \neq 0$.

Therefore the elements of the set X are roots of an equation rational in F.

Let $X = (x_1, x_2, x_3, \dots, x_n)$ be a set whose elements are the roots of an equation,

$$f(x) = \sum_{r=0}^{r=n} a_r x^{n-r} = 0$$

with the coefficients in F and having no double root.

All the transformations reduce $\pmod{f(x)}$ to degree n-1 or less.† Let T change X according to the scheme

$$\begin{pmatrix} x_1 x_2 \cdots x_n \\ x_{i_1} x_{i_2} \cdots x_{i_n} \end{pmatrix}$$
.

If any root is repeated in the lower line, T_i will not have an inverse in the group G. Therefore the lower line is a permutation of the upper line and T_i defines a substitution on the roots of f(x) = 0. Hence we have proved

Theorem I. The only non-linear groups of rational integral transformations on one variable are finite groups taken modulo f(x) which define substitution groups on the roots of the equation f(x) = 0.1

§ 2. Determination of the transformation corresponding to a given substitution. §

Given a substitution on the roots of f(x) = 0,

$$S_i = \begin{pmatrix} x_1 x_2 \cdots x_n \\ x_{i_1} x_{i_2} \cdots x_{i_n} \end{pmatrix},$$

^{*}BURNSIDE (Theory of Groups, p. 12) makes use of property (a) without explicit mention in the proof that if A_{-1} is the inverse of A, then A is the inverse of A_{-1} .

[†] H. WEBER, Lehrbuch der Algebra, vol. I, p. 170.

[‡] The actual existence of these groups will be established in the next two articles.

[&]amp; L. E. DICKSON, Dissertation, l. c.

we seek the corresponding transformation T_i . We have the n linear equations

$$x_{i_t} = \phi_i(x_t) = \sum_{t=0}^{j=n-1} \alpha_{ij} x_t^{n-1-j} \qquad (t=1, 2, \dots, n)$$

between the n coefficients α_{ii} . From these

where Δ is the discriminant of f(x), so that

$$\pm \sqrt{\Delta} = egin{array}{ccccc} x_1^{n-1} & x_1^{n-2} & \cdots & 1 \ x_2^{n-1} & x_2^{n-2} & \cdots & 1 \ & \ddots & \ddots & \ddots & \ddots \ x_n^{n-1} & x_n^{n-2} & \cdots & 1 \ \end{array} egin{array}{ccccc} \pm 0 \, . \end{array}$$

We can also determine T_i by the Lagrangian interpolation formula

$$\phi_i(x) = \sum_{t=1}^{t=n} \frac{x_{i_t} f(x)}{(x-x_i) f'(x_i)}, \qquad f(x) = (x-x_1) (x-x_2) \cdot \cdot \cdot (x-x_n).$$

The coefficients of ϕ_i determined by either of these two methods are not necessarily contained in the general field F.

§ 3. Condition for transformations with coefficients in F.

THEOREM II. The necessary and sufficient condition for the existence of the transformation T with coefficients in the field F on the roots of the equation f(x) = 0 with coefficients in F is that the substitution S be permutable with every substitution of the Galois group of f(x) = 0 for F.

Let

$$S = \begin{pmatrix} x_t \\ x_{tS} \end{pmatrix} \qquad (t = 1, 2, \dots, n).$$

Determine $\phi(x)$ by means of one of the two methods given in section 2. We have the equations

(3)
$$x_{iS} = \phi(x_i)$$
 $(t=1, 2, 3, \dots, n).$

(1) Proof that condition is necessary. The coefficients of ϕ are in F by hypothesis. Hence we may apply to (3) the substitutions R of the Galoisian group.* Hence

$$x_{tSR} = \phi(x_{tR}).$$

But, by (3),

$$x_{tRS} = \phi(x_{tR}).$$

Hence $x_{tRS} = x_{tSR}$ for every t, and thus RS = SR.

(2) Proof that the condition is sufficient. By hypothesis, RS = SR for every R in the Galoisian group.

Let $x_{iR} = x_p$. Then $x_{iSR} = x_{iRS} = x_{pS}$. Hence if R replaces x_i by x_p it replaces x_{iS} by x_{pS} . In § 2, x_{1S} , ..., x_{nS} were denoted by x_{i_1} , ..., x_{i_n} . Hence if R replaces x_i by x_p , it replaces x_{i_1} by x_{i_2} . Hence the coefficients of ϕ given by equation (2) are unaltered by R and thus belong to F.

§ 4. The representation of substitutions.

The substitution

$$S_i \equiv \begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ x_{i_1} & x_{i_2} & \cdots & x_{i_n} \end{pmatrix}$$

can be represented by the transformation

$$T_i \equiv [x_i : x_{\phi(i)}],$$

where

$$\phi_i(t) = \sum_{j=0}^{j=n} \frac{i_j f(t)}{(t-j)f'(j)}, \quad f(t) = (t-1)(t-2)\cdots(t-n).$$

We may also determine the coefficients of

$$\phi_i(t) = \sum_{i=0}^{j=n-1} \alpha_{ij} t^{n-1-j}$$

from the n linear equations

$$\phi_i(t) = i,$$
 $(t=1, 2, 3, \dots, n).$

The results are

$$\alpha_{ij} = \frac{\begin{vmatrix} 1^{n-1} & 1^{n-2} & \cdots & i_1 & 1^{n-2-j} & \cdots & 1 & 1 \\ 2^{n-1} & 2^{n-2} & \cdots & i_2 & 2^{n-2-j} & \cdots & 2 & 1 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ n^{n-1} & n^{n-2} & \cdots & i_n & n^{n-2-j} & \cdots & n & 1 \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & &$$

^{*}The theorems used here are known as properties A and B of the Galois group. See DICKSON, Introduction to the theory of algebraic equations, p. 53.

where

$$\pm \sqrt{\Delta} = \begin{vmatrix} 1^{n-1} & 1^{n-2} & \cdots & 1 & 1 \\ 2^{n-1} & 2^{n-2} & \cdots & 2 & 1 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ n^{n-1} & n^{n-2} & \cdots & n & 1 \end{vmatrix} = \prod_{r=1}^{r=n-1} (n-r)!.$$

§ 5. Special examples.

1. Let n=3 and

$$S_1 = (x_1 x_2 x_3), \qquad S_2 = (x_1 x_2).$$

Then

$$f(t) = t^3 - 6t^2 + 11t - 6, \qquad \phi_1(t) = -\frac{3}{2}t^2 + \frac{11}{2}t - 2,$$

$$\phi_2(t) = \frac{3}{2}t^2 - \frac{1}{2}t + 6.$$

These define the symmetric group on three letters.

2. Let n=4 and

$$S_1 = (x_1 x_2 x_3 x_4), \qquad S_2 = (x_1 x_2)(x_3 x_4), \qquad S_3 = (x_1 x_2 x_3).$$

Then

$$f(t) = t^4 - 10t^3 + 35t^2 - 50t + 24, \qquad \phi_1(t) = -\frac{2}{3}t^3 + 4t^2 - \frac{19}{3}t + 5,$$

$$\phi_2(t) = -\frac{4}{3}t^3 + 10t^2 - \frac{6}{3}t + 15, \qquad \phi_3(t) = \frac{4}{3}t^3 - \frac{19}{2}t^2 + \frac{12}{6}t - 10.$$

These define the symmetric group on four letters.

§ 6. Rational fractional transformations.

The results of the previous articles can be extended to rational fractional transformations.

Consider a group G of transformations

$$T_i \equiv [x:\psi_i(x)],$$

where

$$\psi_{i}(x) = \frac{\phi_{i}(x)}{\theta_{i}(x)}, \qquad \phi_{i}(x) = \sum_{j=0}^{j=m_{i}} a_{ij} x^{m_{i}-j}, \qquad \theta_{i}(x) = \sum_{j=0}^{j=n_{i}} \beta_{ij} x^{n_{i}-j}.$$

 $a_{i0} \neq 0$, $\beta_{i0} \neq 0$, while $\phi_i(x)$ and $\theta_i(x)$ have no common factor and at least one of the degrees m_i , n_i exceeds unity.

The coefficients α_{ij} and β_{ij} are elements of a general field F and the quantity x belongs to a set X in a field F'. As before, these transformations are associative and have the closure property. If T_i and $T_{i'}$ are inverses

$$T_i T_{i'} \equiv [x : x] = [x : \psi_i \{ \psi_{i'}(x) \}]$$

and we have

$$\psi_{i}\left\{\psi_{i'}(x)\right\} = x \qquad (m_{i}n_{i} > 1).$$

This is either (a) an equation of condition, f(x) = 0, or (b) an identity.

- (a) In this case the transformations reduce $[\mod f(x)]$ to the integral form considered in the first part of the paper.*
 - (b) In this case,

$$y = \frac{\phi_{i}(x)}{\theta_{i}(x)}$$
 gives $x = \frac{\phi_{i'}(y)}{\theta_{i'}(y)}$,

therefore to each y there is only one x and therefore $\phi_i(x)$ and $\theta_i(x)$ are linear. Case (b) is therefore excluded.

§ 7. Representation of products of substitutions.

Consider any k substitutions R_j of order r_j $(j = 1, 2, \dots, k)$ on the n roots of f(x) = 0.

Take the products of powers of these substitutions of the form †

$$S_{i} = R_{1}^{y_{1}^{(i)}} R_{2}^{y_{2}^{(i)}} \cdots R_{k}^{y_{k}^{(i)}} \equiv \begin{bmatrix} x_{1} & x_{2} & \cdots & x_{n} \\ x_{i_{1}} & x_{i_{2}} & \cdots & x_{i_{n}} \end{bmatrix}.$$

The number of these products is

$$r = \prod_{j=1}^{j=k} r_j$$

and i will have the range $1, 2, \dots, r$.

When the basic substitutions $R_j(j=1,2,\cdots,k)$ are given, S_i will be determined by the exponents $y_1^{(i)}, y_2^{(i)}, \cdots, y_k^{(i)}$.

It is possible to represent all these substitutions by the transformations

(4)
$$T_{i} \equiv \left[x : \phi(x; y_{1}^{(i)}, y_{2}^{(i)}, \dots, y_{k}^{(i)}) \right]$$

where ϕ is determined by the generalized Lagrangian interpolation formula

$$\phi(x; y_1, y_2, \dots, y_k) = \sum_{l=1}^{l=n} \sum_{j=1}^{j=r} \frac{x_{j_l} f(x)}{(x - x_l) f'(x_l)} \prod_{p=1}^{p=k} \frac{\theta_p(y_p)}{(y_p - y_p^{(j)}) \theta_p'(y_p^{(j)})}$$

and

$$f(x) = \prod_{t=1}^{t=n} (x - x_t), \qquad \theta_p(y_p) = \prod_{s=1}^{s=r} (y_p - y_p^{(s)}).$$

When any particular set of y's as $(y_1^{(i)}, y_2^{(i)}, \dots, y_k^{(i)})$ are substituted in the above it reduces to the regular Lagrangian formula and gives the $\phi_i(x)$ used in first part of this paper and therefore T_i . The function ϕ is a rational integral

^{*} H. WEBER, Lehrbuch der Algebra, vol. 1, p. 170.

[†] No two sets $(y_1^{(i)}, y_2^{(i)}, \dots, y_k^{(i)})$ are alike but no assumption is made concerning the corresponding S_4 .

function of x whose coefficients are rational integral functions of the k parameters y_1, y_2, \dots, y_k . The numerical coefficients will be contained in the field F when S, fulfills the conditions in Theorem II for every value of i.

Any set of substitutions S_i $(i=1, 2, \dots, r)$ where each substitution is characterized by a particular set of values $y_1^{(i)}, y_2^{(i)}, \dots, y_k^{(i)}$ of the k parameters y_1, y_2, \dots, y_k can be represented by transformations T_i determined as above. It is therefore possible to represent * an entire group of transformations by a single formula (4).

University of Illinois, Urbana, Illinois.

^{*}Some of the transformations may be repeated.