NOTE ON DIRICHLET AND FACTORIAL SERIES*

BY

TOMLINSON FORT

Landau† has proved various theorems bearing on the regions of convergence of Dirichlet and factorial series. In the present note I set up a class of series including factorial series and ordinary Dirichlet series, and forming a continuous transition from one to the other. Theorems are proved which include some of Landau's theorems as very special cases.

1. Consider the series

$$(1) \qquad \sum_{n=1}^{\infty} a_n A_n^{(k)}(z),$$

where

$$A_{n}^{(k)}(z) = \frac{k}{z+k-1} \cdot \frac{\Gamma(nk)}{\Gamma(z+nk)} \cdot \frac{\Gamma(z+k)}{\Gamma(k)}$$

whenever z, k and n have such values that this formula defines a definite number. Whenever, for a particular point (z_0, k_0, n_0) , $A_n^{(k)}(z)$ is not defined by the formula but approaches a limit as (z, k, n) approaches (z_0, k_0, n_0) , $A_n^{(k)}(z)$ is given at this point the limiting value.

2. When k = 1, (1) reduces to the usual factorial series

(2)
$$\sum_{n=1}^{\infty} a_n \frac{(n-1)!}{z(z+1)\cdots(z+n-1)}.$$

3. When $k \longrightarrow \infty$, so that $|am \ k| \le \pi - \epsilon_1$, $\epsilon_1 > 0$, (1) reduces to the ordinary Dirichlet series

$$\sum_{n=1}^{\infty} \frac{a_n}{n^z}.$$

To prove this statement consider $A_n^{(k)}(z)$ for values of k not equal to zero and so large in absolute value that $z + nk - 1 \neq 0$ (n = 1, 2, 3, ...) and

^{*} Presented to the Society, December 31, 1919.

[†]Sitzungsberichte der mathematisch-physikalischen Klasse der Königlichen Bayerischen Akademie der Wissenschaften zu München, vol. 36 (1906), pp. 151–218; see especially pp. 167–184.

 $|\operatorname{am}(z+nk-1)| \leq \pi - \epsilon_2, \ \epsilon_2 > 0.$ Then

(4)
$$A_{n}^{(k)}(z)n^{z} = \frac{k}{z+k-1} \cdot \frac{\Gamma(nk)(nk)^{z}}{\Gamma(z+nk)} \cdot \frac{\Gamma(z+k)}{\Gamma(k)k^{z}}.$$

Consider the asymptotic form,*

$$\Gamma(z) = e^{(z-\frac{1}{2})\log z - z + \log \sqrt{2\pi} + \omega(z)},$$

where $\omega(z) = C_1/z + f_1(z)/z^2$, C_1 being a constant and $|f_1(z)| < C_2$, a constant, which asymptotic form is valid when $|\text{am } z| < \pi - \epsilon_3$, $\epsilon_3 > 0$. From it one can readily establish the following formula which is fundamental in this paper,

(5)
$$\frac{q^z\Gamma(q)}{\Gamma(q+z)} = 1 + \frac{z-z^2}{2q} + \frac{\psi(z,q)}{q^2},$$

where $|\psi| < M$, a constant, which form is valid over a region where $q \neq 0$, $q + z \neq 0$ and where $|\operatorname{am} q|$ and $|\operatorname{am}(q + z)|$ are both less than π mitus some positive constant. From (4) and (5) follows the desired result that when $k \longrightarrow \infty$

$$A_{n}^{(k)}(z)n^{z} \longrightarrow 1.$$

In the remainder of the paper when the symbol $A_n^{(k)}(z)$ is used k is in no way restricted to finite values. We shall understand $A_n^{(\infty)}(z) = 1/n^s$.

4.† If the Dirichlet series (3) converges when $z = z_0$, then it converges uniformly over a region defined by the inequality

$$|\operatorname{am}(z-z_0)| \leq \pi/2-\epsilon_3, \ \epsilon_3 > 0.$$

There exists a straight line $x = x_0$, where z = x + yi, such that when $x > x_0$ (3) converges and when $x < x_0$ it diverges. This line is called the "line of convergence."

'5. If (1) converges when $z = z_0$ and $k = k_0$, then it converges uniformly in z and k over any subregion, R, of the region defined by the following inequalities

$$|z| < M, |\operatorname{am}(z-z_0)| \le \pi/2 - \epsilon_4,$$

 $|\operatorname{am} k| \le \pi - \epsilon_5, |k| > \epsilon_6,$

M, ϵ_4 , ϵ_5 and ϵ_6 being positive constants, which subregion is so chosen that each of the numbers $|z+k+j| > \epsilon_7 > 0$ $(j=0,1,2,\ldots)$.

^{*} See for example T. H. Gronwall, Annals of Mathematics, vol. 20 (1918-19), pp. 85, 86, 88.

[†] See for example G. H. Hardy and M. Riesz, The General Theory of Dirichlet Series, p. 3.

To prove this theorem we consider $A_n^{(k)}(z)n^z$ as given by (4). Then by the use of (5) when n is so large, say greater than n_0 , that $|\operatorname{am}(nk+z)| < \pi - \epsilon_8$,

$$\frac{(nk)^z \Gamma(nk)}{\Gamma(nk+z)} = 1 + \frac{z-z^2}{2nk} + \frac{\psi(z, n, k)}{n^2},$$

where $|\psi| < M_2$, a constant. Moreover, again by (5), $\Gamma(z+k)/(\Gamma(k)k^z) \longrightarrow 1$ as $k \longrightarrow \infty$. And since all its finite singularities are excluded from the region in question and Γ does not vanish, it remains finite and in absolute value greater than a fixed $\epsilon_8 > 0$. Consequently for $n > n_0$,

(7)
$$A_n^{(k)}(z)n^z = f_2(z, k) + \frac{f_3(z, k)}{n} + \frac{f_4(z, k, n)}{n^2},$$

where f_2 , f_3 and f_4 are analytic in z. Moreover we explicitly remark that $|f_2|$, $|f_3|$, $|f_4| < M$, a constant. It can readily be shown that $1/A_n^{(k)}(z)$ is of the same form and consequently $A_n^{(k)}(z)/A_n^{(k_0)}(z)$ also, even if $k_0 \neq \infty$. For smaller values of n, if desired, a convenient definition can be given to f_2 , f_3 and f_4 so that (7) will hold for all values of n.

Keep z and k restricted as above and thus assure the validity of (7). Then

(8)
$$\sum_{n=1}^{\infty} a_n A_n^{(k)}(z) = \sum_{n=1}^{\infty} a_n A_n^{(k_0)}(z) \left[f_2(z,k) + \frac{f_3(z,k)}{n} + \frac{f_4(z,k,n)}{n^2} \right].$$

Consequently,* in particular, $\sum_{n=1}^{\infty} a_n A_n^{(\infty)}(z)$ converges at any point where (1) converges for any other value of k and conversely. Refer to Section 4, and it is immediate that the domain of z includes the half plane to the right of z_0 . Moreover, again by (8) and Section 4, (1) converges uniformly in z and k.

- 6. A common line of convergence of $\sum_{n=1}^{\infty} a_n A_n^{(k)}(z)$ for all values of k considered follows immediately from Section 5.
- 7. Similarly to the results of Section 5, that is by (8), it is shown that if $\sum_{n=1}^{\infty} a_n A_n^{(k_0)}(z)$ converges absolutely then so does $\sum_{n=1}^{\infty} a_n A_n^{(k_0)}(z)$, z and k restricted to R.
 - 8. The finite singularities of $F_k(z) = \sum_{n=1}^{\infty} a_n A_n^{(k)}(z)$ on the line of con-

^{*} Well known results from the theory of infinite series.

vergence, other than a possible ones caused by a singularity of $\Gamma(z + k)$, are the same and of the same character as those of $D(z) = \sum_{n=1}^{\infty} \frac{a_n}{n^z}$.

By (4) and (5)

$$F_{k}(z) = \frac{k}{2+k-1} \frac{\Gamma(z+k)}{\Gamma(k)k^{2}} \left[D(z) + \frac{z-z^{2}}{k} D(z+1) + \sum_{n=1}^{\infty} \psi(z, k, n) \cdot 1/n^{2} \right].$$

Here $\frac{\Gamma(z+k)}{\Gamma(k)k^s}$ and $\sum_{n=1}^{\infty} \psi(z, k, n) \cdot 1/n^2$, under the restrictions imposed on k, are analytic in z over any finite region exclusive of the singularities of $\Gamma(z+k)$, while D(z+1) is analytic over a region extending one unit to the left of the line of convergence of the series defining D(z). The theorem follows.

University of Alabama. University, Ala.