A FUNDAMENTAL SYSTEM OF INVARIANTS OF A MODULAR GROUP OF TRANSFORMATIONS*

RY

JOHN SIDNEY TURNER

1. Introduction. Let G be any given group of g homogeneous linear transformations on the indeterminates x_1, \dots, x_n , with integral coefficients taken modulo m. Hurwitz† raised the question of the existence of a finite fundamental system of invariants of G in the case where m is a prime p, and obtained an affirmative answer when g is prime to p. Dickson‡ subsequently obtained an affirmative answer for any g.

The general case presents great difficulty, owing to the fact that resolution into irreducible factors with respect to a composite modulus is not, in general, unique. The present investigation is confined to the case in which there are two indeterminates x, y, and m is the square of a prime p. The given group will be denoted by H, the notation G being retained when m=p. It is proved that the p^2+1 invariants

$$L^p$$
, Q^p , $pL^{\alpha}Q^{\beta}$ (α , $\beta=0,1,\cdots,p-1;\alpha$, β not both zero),

where

$$L = yx^p - xy^p$$
, $Q = (x^{p^2-1} - y^{p^2-1})/(x^{p-1} - y^{p-1})$,

form a fundamental system of (independent) invariants of the group H.

2. Consider the group H of all linear homogeneous transformations modulo p^* :

(1)
$$x' \equiv ax + by$$
, $y' \equiv cx + dy$, $ad - bc \equiv 1 \pmod{p^2}$,

where a, b, c, d are integers. To each transformation of H corresponds a unique transformation of the group G:

(2)
$$x' \equiv a_1 x + b_1 y$$
, $y' \equiv c_1 x + d_1 y$, $a_1 d_1 - b_1 c_1 \equiv 1 \pmod{p}$, where a_1, b_1, c_1, d_1 are integers. In fact, we have only to choose

$$a_1 \equiv a$$
, \cdots , $d_1 \equiv d$ \pmod{p} .

Conversely, to each transformation (2) corresponds one or more transformations (1). For, we can choose $a \equiv a_1, \dots, d \equiv d_1 \pmod{p}$ so that

^{*} Presented to the Society, April 15, 1922.

[†]Archiv der Mathematik und Physik (3), vol. 5 (1903), p. 25.

[‡] The Madison Colloquium, Lect. III.

 $ad - bc \equiv 1 \pmod{p^2}$. For example, if $a_1 \not\equiv 0 \pmod{p}$ we may take $a \equiv a_1, b \equiv b_1, c \equiv c_1 \pmod{p}$, and determine d by $ad - bc \equiv 1 \pmod{p^2}$; evidently $d \equiv d_1 \pmod{p}$.

Hence if we reduce all the transformations of H modulo p, we obtain all the transformations of G.

3. **Definition.** A rational and integral invariant of H is a polynomial I(x, y) in x and y with integral coefficients, which remains unchanged modulo p^2 under every transformation (1). That is,

(3)
$$I(x', y') \equiv I(ax + by, cx + dy) \equiv I(x, y) \pmod{p^2}$$

for all integers a, \dots, d such that $ad - bc \equiv 1 \pmod{p^2}$.

Evidently any rational and integral invariant is a sum of homogeneous invariants; hence we restrict the investigation to the latter.

4. THEOREM I. Let I(x, y) be a rational and integral invariant of H, and let $I_1(x, y)$ be the polynomial obtained from I(x, y) by replacing each coefficient by its positive or zero residue modulo p. Then $I_1(x, y)$ will be a rational and integral invariant of G.

We have (3) for all transformations of H. Now

$$I(x,y) \equiv I_1(x,y) \tag{mod } p)$$

and

$$I(ax + by, cx + dy) \equiv I_1(ax + by, cx + dy)$$

 $\equiv I_1(a_1x + b_1y, c_1x + d_1y) \pmod{p},$

hence

(4)
$$I_1(x', y') \equiv I_1(a_1x + b_1y, c_1x + d_1y) \equiv I_1(x, y) \pmod{p}$$
, and by § 2 this is true for all transformations of G .

5. Now (Madison Colloquium, pp. 34-38),

$$I_1(x,y) \equiv kT_1^{\alpha_1} T_2^{\alpha_2} \cdots T_i^{\alpha_i} \cdots T_r^{\alpha_r*} \pmod{p},$$

where k is an integer,

$$T_1 = L$$
, $T_2 = Q$, $T_i = R_i(L^{\frac{1}{2}p(p-1)}, \dagger Q^{\frac{1}{2}(p+1)})$ $(i = 3, 4, \dots, r)$,

 R_i being a polynomial in its two arguments, with integral coefficients; moreover the T_i $(i = 1, 2, \dots, r)$ contain no multiple factors, and are relatively prime modulo p. Hence

$$(5) I(x,y) \equiv kT_1^{\alpha_1} T_2^{\alpha_2} \cdots T_t^{\alpha_t} \cdots T_t^{\alpha_r} + pF(x,y) (\text{mod } p^2),$$

where F(x, y) denotes a polynomial in x, y with integral coefficients.

^{*} In the discussion which follows, if any α_i is zero the corresponding T_i is to be suppressed. † If p = 2, we omit the divisor 2 in the exponents.

6. Discussion of equation (5). Apply to I(x, y) the transformation

(6)
$$x' \equiv x + py, \quad y' \equiv y \quad \pmod{p^2},$$

expand by Taylor's Theorem, and denote the partial derivative of T_i with respect to x by T'_i . Then

(7)
$$I(x + py, y) \equiv I(x, y) + pyk T_{1}^{\alpha_{i}-1} \cdots T_{i}^{\alpha_{i}-1} \times \cdots T_{r}^{\alpha_{i}-1} \times \cdots T_{r}^{\alpha_{r}-1} \sum_{i=1}^{r} \alpha_{i} T_{1} \cdots T_{i-1} T'_{i} T_{i+1} \cdots T_{r} \pmod{p^{2}}.$$

Since (6) is a transformation of H,

$$I(x + py, y) \equiv I(x, y) \qquad (\text{mod } p^2).$$

Hence either $k \equiv 0 \pmod{p}$, in which case the right member of (5) reduces to its second term, or

(8)
$$\sum_{i=1}^{r} \alpha_i T_1 \cdots T_{i-1} T'_i T_{i+1} \cdots T_r \equiv 0 \pmod{p}.$$

Let $(g_i, 1)$ be a point at which $T_i(x, y)$ vanishes. Then, for $j \neq i$, $T_j(x, y)$ cannot vanish at $(g_i, 1)$; for, in that event, $T_j(x, y)$ would be a factor of $T_i(x, y)$ modulo p,* contrary to § 5. Therefore from (8) we have

(9)
$$\alpha_i T'_i(g_i, 1) \equiv 0 \pmod{p}.$$

Hence either $\alpha_i \equiv 0$, or $T'_i(g_i, 1) \equiv 0 \pmod{p}$. In the latter case, by a known theorem on Galois imaginaries, $T_i(x, 1)$ and $T'_i(x, 1)$ have a common factor with integral coefficients modulo p. But (§ 5) $T_i(x, 1)$ contains no multiple factor modulo p. Therefore $T'_i(x, 1) \equiv 0 \pmod{p}$, whence

(10)
$$T'_{i}(x, y) \equiv 0 \qquad (\text{mod } p).$$

Hence we have

THEOREM II. In equation (5), for each $i = 1, \dots, r$, either α_i is a multiple of p, or $T'_i(x, y) \equiv 0 \pmod{p}$.

COROLLARY 1. $\alpha_1 \equiv 0 \pmod{p}$.

For $T_1 = yx^p - xy^p$; hence $T'_1 = pyx^{p-1} - y^p \equiv 0 \pmod{p}$.

Corollary 2. $\alpha_2 \equiv 0 \pmod{p}$.

For

$$T_2 = x^{p(p-1)} + x^{(p-1)^2} y^{p-1} + \cdots + x^{p-1} y^{(p-1)^2} + y^{p(p-1)}$$

hence $T_2 \not\equiv 0 \pmod{p}$.

Corollary 3. If $\alpha_i = p\beta_i$ for i > 2,

(11)
$$T_i^{\alpha_i} \equiv S_i(L^p, Q^p) \pmod{p},$$

where S; is a polynomial in its arguments, with integral coefficients.

^{*} The Madison Colloquium, p. 38.

[†] Dickson, Lecture Notes on Double Modulus and Galois Imaginaries, § 5.

For if we expand

$$T_i^{\alpha_i} = [R_i(L^{\frac{1}{2}p(p-1)}, Q^{\frac{1}{2}(p+1)})]^{p\beta_i},$$

we observe that in each term the exponent of L is a multiple of p and that either the exponent of Q or the coefficient of the term is a multiple of p.

7. Discussion of $T'_i(x, y) \equiv 0 \pmod{p}$. Write

(12)
$$T_{i}(x, y) = \sum_{r=0}^{n} A_{r} l^{n-r} q^{r},$$

where $l = L^{\frac{1}{2}p(p-1)}$, * $q = Q^{\frac{1}{2}(p+1)}$, and the coefficients A_r are integers; then

$$T'_{i}(x,y) = \sum_{r=0}^{n-1} A_{r}(n-r) l^{n-r-1} l' q^{r} + \sum_{r=1}^{n} A_{r} r l^{n-r} q^{r-1} q' \equiv 0 \pmod{p},$$

where l', q' denote the partial derivatives of l, q with respect to x. Evidently $l' \equiv 0$, $q' \not\equiv 0 \pmod{p}$; therefore

(13)
$$\sum_{r=1}^{n} r A_r \, l^{n-r} \, q^{r-1} \equiv 0 \qquad (\bmod p).$$

Each term of (13) is the product of the preceding by cq/l, c a constant; the degree in x of q/l is $\frac{1}{2}(p^2-p)$, \dagger hence the degrees in x of the successive terms increase by $\frac{1}{2}(p^2-p)$. Equating coefficients of x, we find in succession

$$nA_n \equiv 0, \quad \cdots, \quad rA_r \equiv 0, \quad \cdots, \quad A_1 \equiv 0 \pmod{p}$$

Hence in each term of $\sum_{r=1}^{n} A_r l^{n-r} q^r$, either the coefficient A_r or the exponent of q is a multiple of p, and we have

THEOREM III. If $T'_{i}(x, y) \equiv 0 \pmod{p}$, then

(14)
$$T_i(x,y) \equiv S_i(L^p,Q^p) \qquad (\text{mod } p),$$

where S_i denotes a rational and integral function of its arguments, with integral coefficients.

COROLLARY. $[T_i(x,y)]^{\alpha_i}$ is a polynomial in L^p , Q^p , with integral coefficients, modulo p.

8. Theorem IV. L^p is invariant under the group H.

Write L(x', y') = e, L(x, y) = f, where x', y' are derived from x, y by any transformation (2) of the group G; then $e - f \equiv 0 \pmod{p}$. Hence $e - f \equiv 0 \pmod{p}$ for every transformation (1) of H. For if, as in § 2, we choose $a_1 \equiv a$, \cdots , $d_1 \equiv d \pmod{p}$, we have

$$L(ax + by, cx + dy) \equiv L(a_1 x + b_1 y, c_1 x + d_1 y) \equiv L(x, y) \pmod{p}$$
.

^{*} If p = 2, we omit the divisor 2 in the exponents.

[†] If p = 2, the degree is 2.

[‡] The Madison Colloquium, p. 35.

Also

$$e^{p} - f^{p} = (e - f + f)^{p} - f^{p}$$

$$= (e - f)[(e - f)^{p-1} + \dots + \frac{1}{2}p(p - 1)(e - f)f^{p-2} + pf^{p-1}],$$

and each factor on the right is identically congruent to zero modulo p; hence $e^p - f^p \equiv 0 \pmod{p^2}$; that is

$$[L(ax + by, cx + dy)]^p \equiv [L(x, y)]^p \pmod{p^2}$$

for every transformation of H.

COROLLARY 1. In the same way, it can be proved that Q^p is invariant under the group H.

Corollary 2. $pL^{\alpha}Q^{\beta}$ is invariant under the group H.

9. Theorem V. Any rational and integral invariant of the group H is a rational and integral function, with integral coefficients, of the p^2+1 invariants L^p , Q^p , $pL^\alpha Q^\beta$ (α , $\beta=0$, 1, \cdots , p-1; α , β not both zero). Conversely, any such function is an invariant of H.

In (5), the term $kT_1^{\alpha_1}T_2^{\alpha_2}\cdots T_r^{\alpha_r}$ is an invariant of H. For if any $\alpha_i\equiv 0$ (mod p), then by Theorems II and IV with their corollaries, $T_i^{\alpha_i}$ is an invariant; $T_1=L$, $T_2=Q$, $\alpha_1\equiv\alpha_2\equiv 0$ (mod p). While if $\alpha_j\not\equiv 0$ (mod p), $T_j'\equiv 0$, and by Theorems III and IV with their corollaries $T_j^{\alpha_r}$ is an invariant.

Hence the second term pF(x, y) of (5) is an invariant of H, and it follows from § 2 that F(x, y) is an invariant of G. Therefore pF(x, y) is the product of P by a polynomial in P and P. It follows that if P is any rational and integral invariant of P,

(15)
$$I(x,y) \equiv S(L^p, Q^p, pL^\alpha Q^\beta) \qquad (\text{mod } p^2),$$

where $pL^{\alpha}Q^{\beta}$ denotes the set pL, pQ, pL^{2} , pLQ, \cdots , $pL^{p-1}Q^{p-1}$, and S denotes a rational and integral function of its arguments, with integral coefficients.

Conversely, any rational and integral function of L^p , Q^p , $pL^{\alpha}Q^{\beta}$, with integral coefficients, is a sum of invariants, and is therefore itself an invariant. Hence these $p^2 + 1$ invariants form a fundamental system.

10. Theorem VI. The invariants of the fundamental system are independent. In view of the coefficients p, neither L^p nor Q^p can be expressed as a polynomial in the remaining invariants, with integral coefficients. Assume that $pL^{\alpha_1}Q^{\beta_1}$, $\alpha_1 \leq p-1$, $\beta_1 \leq p-1$, can be so expressed. Then

(16)
$$pL^{\alpha_1}Q^{\beta_1} \equiv P(L^p, Q^p, pL^{\alpha}Q^{\beta}) \qquad (\text{mod } p^2)$$

identically in x, y. We may suppose that P contains no group of terms which vanishes identically modulo p^2 . Let $mL^{\alpha_2}Q^{\beta_2}$ be any term of P; then $pL^{\alpha_1}Q^{\beta_1}$ and $mL^{\alpha_2}Q^{\beta_2}$ must be of the same total degree in x, y, and also of the same

degree in x alone. Therefore

$$\alpha_1(p+1) + \beta_1 p(p-1) = \alpha_2(p+1) + \beta_2 p(p-1),$$

$$\alpha_1 p + \beta_1 p(p-1) = \alpha_2 p + \beta_2 p(p-1),$$

whence $\alpha_1 = \alpha_2$, $\beta_1 = \beta_2$. Hence P consists of the single term $pL^{\alpha_1}Q^{\beta_1}$. Evidently $pL^{\alpha_1}Q^{\beta_1}$ is not a product of fundamental invariants, hence the theorem is proved.

11. If we consider the total group

(17)
$$x' \equiv ax + by, \quad y' \equiv cx + dy \quad \pmod{p^2},$$
$$ad - bc \equiv 0 \quad \pmod{p},$$

we find, exactly as in Theorem IV, that Q^p is an absolute invariant, and that L^p , $pL^{\alpha}Q^{\beta}$ are relative invariants of indices p, α , respectively.

IOWA STATE COLLEGE, AMES, IOWA.