INVARIANTS OF THE LINEAR GROUP MODULO $\pi = p_1^{\lambda_1} p_2^{\lambda_2} \cdots p_n^{\lambda_n}^*$

BY

CORNELIUS GOUWENS

1. Introduction

The object of this paper is to obtain a fundamental system of polynomial invariants with integral coefficients of the linear group in q variables with respect to an arbitrary modulus π .

For the case in which π is a prime p_i Dickson[†] proved that a fundamental system is given by

 $L_{i,q}, Q_{i,q,s} (s=1,\cdots,q-1)$

where

Mrs. Ballantine‡ proved that for $\pi = p_1 p_2 \cdots p_n$, q = 2, every invariant is of the form

$$\sum_{i=1}^{n} k_i \frac{\pi}{\nu_i} \varphi_i(L_{i,q}, Q_{i,q,s})$$

where k_i is an integer and φ_i is a polynomial with integral coefficients. Feldstein proved that for $\pi = p_i^{\lambda_i}$ a fundamental system is given by

$$L_{i,q}^{p_{i}^{\lambda_{i-1}}}, \quad Q_{i,q,s}^{p_{i}^{\lambda_{i-1}}}(s=1,\dots,q-1), \quad R_{i,q,a,b,j} = p_{i}^{j} L_{i,q}^{ap_{i}^{\lambda_{i-j-1}}} \prod_{s=1}^{q-1} Q_{i,q,s}^{b_{s} p_{i}^{\lambda_{i-j-1}}}$$

$$(j=1,\dots,\lambda_{i}-1),$$

where a and b_s range over $0, 1, \dots, p-1$, but may not all be zero.

^{*} Presented to the Society, April 19, 1924.

[†] Madison Colloquium Lectures, p. 39.

[‡] American Journal of Mathematics, vol. 45 (1923), pp. 286 ff.

[§] These Transactions, vol. 25 (1923), pp. 223 ff. The notation $R_{i,q,a,b,j}$ was introduced by the present writer.

In the present paper it is shown that the method of Mrs. Ballantine can be extended from 2 to q variables. After a simplification of that method which enables us to avoid the use of the actual coefficients of the transformation employed the conclusion reached is the theorem

Every invariant of the group Γ of classes of transformations with determinant congruent to unity, modulo $\pi = p_1^{\lambda_1} p_2^{\lambda_2} \cdots p_n^{\lambda_n}$, is a sum of invariants of Γ , modulo π , each of which is expressible as a product of $m_i = \pi/p_i^{\lambda_i}$ by an invariant of the group H_i of classes of transformations congruent to unity, modulo $p_i^{\lambda_i}$, and conversely, every such product is an invariant of Γ .

2. The groups Γ , G_i , H_i

We call two linear transformations congruent modulo π if their corresponding coefficients are congruent. All transformations congruent to a chosen one T, modulo π , are said to form a class $[T]_{\pi}$. The classes $[T]_{\pi}$ with determinant $|T| \equiv 1 \pmod{\pi}$ are the elements of a group Γ .

Let p_i be a prime factor of π and let $P = p_i^{\lambda_i}$ be the highest power of p_i which divides π . Write $\pi = m_i P$. Let G_i denote the subgroup formed of those classes of transformations of Γ which are congruent modulo m_i to the identity transformation I. Hence G_i is composed of the classes

$$(1) [T]_{\pi}, T \equiv I \text{ (mod } m_i), T \equiv 1 \text{ (mod } P),$$

the final congruence being a necessary and sufficient condition that $|T| \equiv 1 \pmod{\pi}$, when $|T| \equiv |I| = 1 \pmod{m_i}$.

Our investigation is based on the theorem that G_i is simply isomorphic with the group H_i of all classes $[S]_P \pmod{P}$ of transformations S whose determinants are congruent to unity modulo P. First, all transformations in a class (1) are congruent modulo π and hence modulo P, and therefore in a class $[S]_P$. Second, two transformations T and T_1 in different classes (1) are in different classes $[S]_P$. For if $T \equiv T_1 \pmod{P}$, then $T \equiv I \equiv T_1 \pmod{m_i}$ implies $T = T_1 \pmod{\pi = m_i P}$. Third, there is a class (1) which corresponds to any given class $[S]_P$. For we can find T (unique modulo π) such that $T \equiv S \pmod{P}$, $T \equiv I \pmod{m_i}$ since we can find an integer (unique modulo π) which is congruent to two assigned integers with respect to the relatively prime moduli P and m_i . Hence the classes (1) are in (1,1) correspondence with the classes $[S]_P$. Finally, if $T_1 \equiv T_1'$, $T_2 \equiv T_2' \pmod{\pi}$ where all four T's satisfy the congruences (1), then $T_3 = T_1 T_2 \equiv T_1' T_2' = T_3' \pmod{\pi}$ and T_3 and T_3' satisfy the congruences (1). Hence the product $[T_1]_{\pi}[T_2]_{\pi}$ of the two classes (1) is uniquely defined as a class $[T_3]_{\pi}$. Since the foregoing congruences hold also modulo P, we have $[T_1]_P[T_2]_P = [T_3]_P$. Since $p_i^{\lambda_i}$ was the highest power of p_i , any one of the n distinct prime factors p_i of π , we have

THEOREM I. In the group Γ of all classes of transformations with determinant congruent to unity, modulo π , the subgroup G_i of all classes of transformations congruent to the identity transformation modulo $m_i = \pi/p_i^{\lambda_i}$ is simply isomorphic with the group H_i of all classes of transformations molulo $p_i^{\lambda_i}$ with determinant congruent to unity modulo $p_i^{\lambda_i}$.

3. The groups G_1, G_2, \dots, G_n generate Γ

We shall now prove the following

LEMMA. The products $T_1 T_2 \cdots T_i$ are all distinct when T_1, T_2, \cdots, T_i range over the classes of transformations of G_1, G_2, \cdots, G_i respectively, and (for i < n) these products form the subgroup J_i of classes $[U_i]_{\pi}$ of transformations U_i of Γ which are congruent to the identity transformation modulo $l_i = \pi/(p_1^{\lambda_i} p_2^{\lambda_i} \cdots p_i^{\lambda_i})$. This is true by definition where i = 1, that is $l_i = m_1$. Suppose it true when the above i is replaced by i-1. Then first, the groups J_{i-1} and G_i have no class in common save that of transformations congruent to the identity transformation modulo π . For, suppose

$$[U_{i-1}]_{\pi} = [T_i]_{\pi}, \text{ viz., } U_{i-1} \equiv T_i \pmod{\pi}.$$

But

$$T_i \equiv I \qquad (\bmod m_i)$$

and

$$U_{i-1} \equiv I \qquad \qquad (\bmod \ l_{i-1})$$

and hence, since $p_i^{\lambda_i}$ is a divisior of both l_{i-1} and π , we have

$$T_i \equiv U_{i-1} \equiv I \pmod{p_i^{\lambda_i}}.$$

Since m_i is prime to $p_i^{\lambda_i}$ and their product is π we get

$$T_i \equiv I \pmod{\pi}$$
.

Further, the classes $[U_{i-1} T_i]_{\pi}$ are all distinct where U_{i-1} , T_i range over representatives of the classes of transformations of J_{i-1} , G_i respectively. For, if

$$[U_{i-1} T_i]_{\pi} = [U_{i-1}^* T_i^*]_{\pi},$$

then

$$U_{i-1} T_i \equiv U_{i-1}^* T_i^* \qquad (\bmod \pi)$$

and

$$U_{i-1}^{*-1}U_{i-1} \equiv T_i^* \quad T_i^{-1} \qquad (\bmod \pi).$$

By the preceding result we have

$$T_i^* \quad T_i^{-1} \equiv I \tag{mod } \pi)$$

and

$$U_{i-1}^{*-1}U_{i-1} \equiv I \qquad (\bmod \pi),$$

therefore

$$U_{i-1}^* = U_{i-1}, \qquad T_i \equiv T_i^* \qquad (\bmod \pi)$$

imply

$$[U_{i-1}^*]_{\pi} = [U_{i-1}]_{\pi}, \quad [T_i^*]_{\pi} = [T_i]_{\pi}.$$

The product of two transformations U_{i-1} , T_i belonging to J_{i-1} and G_i respectively is a transformation U_i of the class $[U_i]_{\pi}$, $U_i \equiv I \pmod{l_i}$, $|U| \equiv 1 \pmod{\pi}$. For

$$U_{i-1} \equiv I \qquad (\bmod l_{i-1}),$$

$$T_i \equiv I \pmod{m_i}$$

imply $U_{i-1} T_i \equiv I \pmod{l_i}$, since l_i is a divisor of both l_{i-1} and m_i .

Conversely, given a transformation U_i of the class $[U_i]_{\pi}$, $U_i \equiv I \pmod{l_i}$, $|U_i| \equiv 1 \pmod{\pi}$, we can find U_{i-1} and T_i (unique modulo π) such that $U_{i-1} T_i \equiv U_i \pmod{\pi}$. Now $U_i = I + K l_i$ where I is the identity matrix and K is a known matrix. Take

$$U_{i-1} = I + s K l_{i-1}, \qquad T_i = I + r K m_i,$$

where the integers s, r are solutions of

$$s l_{i-1} + r m_i = l_i.$$

This last equation is solvable since l_i is the greatest common divisor of l_{i-1} and m_i . Then

$$U_{i-1} T_i = I + sK l_{i-1} + rK m_i + rsK^2 l_{i-1} m_i$$

$$= I + K l_i + rsK^2 l_{i-1} m_i$$

$$\equiv U_i \qquad (\text{mod } \pi),$$

since $l_{i-1} m_i$ is divisible by π . Also $|U_{i-1}|$ and $|T_i|$ are of the form $1+ysl_{i-1}$ and $1+xrm_i$, respectively. Then, since $|U_i|\equiv 1\ (\text{mod }\pi)$, we have

$$(1+ysl_{i-1})(1+xrm_i) \equiv 1 \qquad (mod \pi).$$

that is

$$ysl_{i-1} + xrm_i \equiv 0 \qquad (\bmod \pi).$$

By (1)

$$rm_i = l_i - sl_{i-1},$$

hence

$$xl_i + (y-x)sl_{i-1} \equiv 0 \qquad (\text{mod } \pi).$$

But l_{i-1} is divisible by $p_i^{\lambda_i}$, therefore $x l_i$ is divisible by $p_i^{\lambda_i}$. Since l_i is prime to $p_i^{\lambda_i}$, it follows that x is divisible by $p_i^{\lambda_i}$ and is of the form $z p_i^{\lambda_i}$. The determinant $|T_i|$ is therefore of the form $l + z r p_i^{\lambda_i} m_i$, hence congruent to unity, modulo π . Therefore also $|U_{i-1}| \equiv 1 \pmod{\pi}$. This completes the induction.

When i=n the first half of the lemma still holds; thus all the products $T_1 \ T_2 \cdots T_n$ are distinct, where $T_1, \ T_2, \cdots, \ T_n$ range over representatives of all the classes of $G_1, \ G_2, \cdots, \ G_n$ respectively. The order of Γ is thus the product of the orders of the subgroups $G_1, \ G_2, \cdots, \ G_n$. Hence

THEOREM II. The total group Γ of classes of transformations with determinant congruent to unity, modulo π , is obtainable by composition of the n subgroups G_i each composed of those classes of Γ whose transformations are congruent to the identity transformation, modulo $m_i = \pi/p_i^{A_i}$.

4. Determination of the invariants of Γ

Let $I(x_1, \dots, x_q)$ be any homogeneous rational integral function with integral coefficients which is an invariant of Γ modulo π , that is

$$I(x'_1, \dots, x'_q) \equiv I(x_1, \dots, x_q) \qquad (\bmod \pi),$$

where

$$x'_j = \sum_{k=1}^q a_{jk} x_k$$
 $(j = 1, \dots, q)$ and $|a_{jk}| = 1$ $(\text{mod } \pi)$.

In particular, $I(x_1, \dots, x_q)$ is invariant under every class of transformations $[T]_{\pi}$, $T \equiv I(\bmod m_i)$, $|T| \equiv 1(\bmod \pi)$, that is under the coincident class of transformations $[S]_P$, $S \equiv I(\bmod m_i)$, $|S| \equiv 1(\bmod P)$. By the isomorphism proved in Theorem I, when T_i ranges over representatives of all the classes of G_i , S_i ranges over representatives of all the classes of H_i and thus $I(x_1, \dots, x_q)$ is invariant under all the transformations of $H_i(\bmod p_i^{\lambda_i})$ $(i = 1, \dots, n)$. Conversely, if $I(x_1, \dots, x_q)$ is a rational integral invariant under the group H_i of all transformations S of classes $[S]_P$, $S \equiv I(\bmod m_i)$, $|S| \equiv 1(\bmod P)$, we see again by the isomorphism in Theorem I that $I(x_1, \dots, x_q)$ is invariant under the corresponding G_i of

the classes $[T_i]_{\pi}$, $T_i \equiv I(\mod m_i)$, $|T_i| \equiv 1(\mod \pi)$. For it is invariant modulo $p_i^{\lambda_i}$ and unchanged modulo m_i , therefore invariant modulo π .

Since by Theorem II the subgroups $G_i(i=1,\dots,n)$ generate the total group Γ , modulo π , if any rational function with integral coefficients is invariant under every H_i , modulo $p_i^{\lambda_i}$ $(i=1,\dots,n)$ it is an invariant of Γ modulo π . Hence we have

THEOREM III. A necessary and sufficient condition for the invariance of a rational integral function $I(x_1, \dots, x_q)$ with integral coefficients under the group Γ of classes of transformations with determinant congruent to unity, modulo $\pi = p_1^{\lambda_1} p_2^{\lambda_2} \cdots p_n^{\lambda_n}$, is that $I(x_1, \dots, x_q)$ be invariant under every group H_i of classes of transformations with determinant congruent to unity, modulo $p_i^{\lambda_i}$ $(i = 1, \dots, n)$.

Thus

(1)
$$I(x_1, \dots, x_q) = \varphi\left(L_{i,q}^{p_i^{\lambda_{i-1}}}, Q_{i,q,s}^{p_i^{\lambda_{i-1}}}, R_{i,q,a,b,j}\right) + p_i^{\lambda_i} f_i(x_1, \dots, x_q)$$

$$(i = 1, \dots, n),$$

where g_i is a rational integral function with integral coefficients. Since the greatest common divisor of the $m_i(i = 1, \dots, n)$ is unity there exist integers k_i such that

$$\sum_{i=1}^{n} m_i \ k_i = 1$$

and each k_i is prime to the corresponding $p_i^{\lambda_i}$, as otherwise the left hand member would be divisible by $p_i^{\lambda_i}$.

Multiplying each of the equations (1) by the corresponding $k_i m_i$ and adding we have

$$(2) \quad I(x_1,\dots,x_q) = \sum_{i=1}^n k_i m_i \varphi_i \left(L_{i,q}^{p_i^{\lambda_{i-1}}}, \, Q_{i,q,s}^{p_i^{\lambda_{i-1}}}, \, R_{i,q,a,b,j} \right) + \pi \sum_{i=1}^n k_i f_i(x_1,\dots,x_q).$$

As $k_i \varphi_i$ is an invariant of $H_i \pmod{p_i^{\lambda_i}}$ and does not vanish modulo $p_i^{\lambda_i}$ unless φ_i vanishes modulo $p_i^{\lambda_i}$ we have finally the theorem stated in the introduction.

IOWA STATE COLLEGE, AMES, IOWA.