ON THE CLASS NUMBER OF A CYCLIC FIELD*

CLAIBORNE G. LATIMER

1. Introduction. Let Ω be the field defined by a primitive mth root of unity, m an integer >2, and let F be a subfield of Ω . In a recent article, \dagger Gut showed that if F is real, the class number may be written $h = \delta/R$, where R is the regulator of F and δ is a product involving certain group characters. If F is imaginary, he showed that $h = h_1$ h_2 , where h_1 is a closed expression and $h_2 = \delta/R$, δ and R being as before. If $F = \Omega$ and m is an odd prime, Gut's h_1 and h_2 are the same, except perhaps for sign, as Kummer's well known first and second factors of the class number.

We shall assume hereafter that the Galois group $\mathfrak A$ of F is cyclic. In this case, as noted by Gut, the δ in his expression for h, or h_2 , may be written as a determinant. Employing this determinantal form, we shall show that δ/R , and hence h or h_2 , is equal to $N(\tau)/N(\mathfrak A)$, where $N(\mathfrak A)$ is the norm of a non-singular ideal $\mathfrak A$, in a set $\mathfrak B$ of elements in a certain commutative algebra, and $N(\tau)$ is the norm of a principal ideal $\{\tau\}$ in $\mathfrak B$, τ being an element in $\mathfrak A$.‡

In certain cases our results may be expressed in terms of an ideal in a cyclotomic field. (See Theorem 2.) For the case where F is a cubic field, the discriminant of which is the square of a prime, Theorem 2 is equivalent to Eisenstein's result that the number of classes of certain "associated (cubic) forms" is $h = \mu^2 - \mu\nu + \nu^2$, where μ , ν are rational integers.

2. The ratio of two determinants. Let F be of degree E and let s be a generating substitution of \mathfrak{A} . If θ is a number of F, not rational, it will be understood that $\theta^{(i)} \equiv s^i(\theta)$ $(i=1, 2, \cdots, E)$, $\theta^{(E)} = \theta^{(0)} = \theta$. Let $e \equiv E$ or $e \equiv E/2$ according as F is real or imaginary. Then $\theta^{(i+e)}$ is the conjugate imaginary of $\theta^{(i)}$ $(i=0, 1, 2, \cdots, e-1)$.

Let $\eta_1, \eta_2, \dots, \eta_n$ be a fundamental set of units of F. By Dirichlet's well known theorem, n = e - 1. Since every η_i belongs to F,

^{*} Presented to the Society, December 28, 1931; received by the editors August 27, 1932.

[†] Die Zetafunktion, die Klassenzahl und die Kronecker'sche Grenzformel eines beliebigen Kreiskörpers, Commentarii Mathematici Helvetici, vol. 1 (1929), p. 160.

[‡] It will be understood that we use the same definitions of terms referring to ideals in ③ as are given by MacDuffee in his article An introduction to the theory of ideals, etc., these Transactions, vol. 31 (1929), p. 71. In case ⑤ is a set of integral algebraic numbers, these definitions are equivalent to the usual definitions.

[§] Journal für Mathematik, vol. 29 (1845), p. 49.

(1)
$$\eta_{i}' = u_{i}\eta_{1}^{\alpha i1}\eta_{2}^{\alpha i2}\cdots\eta_{n}^{\alpha in} \qquad (i = 1, 2, \cdots, n),$$

where u_i is a root of unity and the α 's are rational integers. Let the *n*th order matrix $A \equiv (\alpha_{ij})$ and let I be the identity matrix.

LEMMA 1. A is a root of

(2)
$$f(x) \equiv x^{n} + x^{n-1} + \cdots + x + I = 0,$$

and it is not a root of an equation of lower degree with rational coefficients.

By (1), if $0 \le k < E$,

$$\eta_{i}^{(k)} = u_{i}^{(k)} \eta_{1}^{\alpha_{i1}^{(k)}} \eta_{2}^{\alpha_{i2}^{(k)}} \cdots \eta_{n}^{\alpha_{in}^{(k)}} \qquad (i = 1, 2, \cdots, n),$$

where $u_i^{(k)}$ is a root of unity and the matrix $(\alpha_{ij}^{(k)}) = A^k$. Since $\eta_i \eta_i' \cdots \eta_i^{(E-1)} = \pm 1$, it follows that A is a root of

$$f_1(x) \equiv x^{E-1} + x^{E-2} + \cdots + x + I = 0.$$

If F is real, it follows that A is a root of (2). Suppose F is imaginary. Then

$$f_1(A) = f(A)(A^{\epsilon} + I) = 0.$$

To prove that A is a root of (2), it suffices to show that $A^{e}+I$ is non-singular.

Let $A^{\mathfrak{o}} + I \equiv (\beta_{ij})$. We have

$$\eta_i \eta_i^{(e)} = v_i \eta_i^{\beta i i} \eta_i^{\beta i n} \cdots \eta_n^{\beta i i} \qquad (i = 1, 2, \cdots, n),$$

where v_i is a root of unity. Suppose (β_{ij}) is singular. Then the system of equations

$$\sum_{j=1}^{n} \beta_{ji} x_j = 0 \qquad (i = 1, 2, \cdots, n)$$

has a solution in rational integers, not all zero, and

$$\phi \equiv \prod_{i=1}^n (\eta_i \eta_i^{(e)})^{x_i}$$

and every $\phi^{(i)}$ is a root of unity. Let $\lg \theta$ be the real logarithm of $|\theta|$. Then $\lg \theta^{(e)} = \lg \theta$ and, since $|\phi^{(i)}| = 1$,

$$\sum_{j=1}^{n} x_{j} \lg \eta_{j}^{(i)} = 0 \qquad (i = 0, 1, 2, \dots, n-1).$$

From this it follows that the regulator, $R = \pm |\lg \eta_i \lg \eta_i' \cdots \lg \eta_i^{(n-1)}|$ $(i=1, 2, \dots, n)$, of F is zero.* But this is known to be false. Hence $A^{\mathfrak{o}} + I$ is non-singular and A is a root of (2).

^{*} We take the same definition of R as that used by Gut, loc. cit., p. 200.

It may be shown by the same method employed by Pollaczek on a similar problem*, that A is not a root of an equation of degree < n with rational coefficients. The lemma follows.

Let x_1, x_2, \dots, x_n be independent variables and let

(3)
$$x_i^{(k)} \equiv \alpha_{1i}^{(k)} x_1 + \alpha_{2i}^{(k)} x_2 + \cdots + \alpha_{ni}^{(k)} x_n \quad (i = 1, 2, \cdots, n).$$

For a fixed k, the matrix of the forms $x_i^{(k)}$ is the transpose of A^k . By Lemma 1, $A^e = I$. Thus we have a cyclic group of linear homogeneous substitutions $S, S^2, \dots, S^e = 1$, on the x's. For every pair of integers i, k,

$$(4) S^k(x_1^{(i)}, x_2^{(i)}, \cdots, x_n^{(i)}) = (x_1^{(i+k)}, x_2^{(i+k)}, \cdots, x_n^{(i+k)}),$$

it being understood that if $j \equiv j_1 \pmod{e}$, $0 \le j_1 < e$, then $x_i^{(j)} = x_i^{(j)}$, $x_i^{(0)} = x_i$ $(i = 1, 2, \dots, n)$.

If θ is a unit of F, by (1) and (3)

$$\theta = u_1 \eta_1^{x_1} \eta_2^{x_2} \cdots \eta_n^{x_n},$$

$$\theta' = u_2 \eta_1^{x_1'} \eta_2^{x_2'} \cdots \eta_n^{x_n'},$$

$$\vdots$$

$$\theta^{(n)} = u_n \eta_1^{x_1'} \eta_2^{x_2^{(n)}} \cdots \eta_n^{x_n^{(n)}},$$

where the u's are roots of unity and the x's are rational integers. It will be observed that if we apply a substitution s^i to θ , the resulting unit is the same, except perhaps for a factor which is a root of unity, as that obtained by applying the substitution S^i to the x's when θ is written as in the first equation above.

If $0 \le t < e$ and if $i + k \equiv t \pmod{e}$, by (4) and (5),

$$\theta^{(t)} = u \eta_1^{(i)} \eta_2^{(i)} \cdots \eta_n^{(i)},$$

where u is a root of unity and $z_j = x_j^{(k)}$ $(j = 1, 2, \dots, n)$. Let the determinant of the x's in the first n equations of (5) be $\Psi(x_1, x_2, \dots, x_n)$ and let

(6)
$$\delta(\theta) \equiv \begin{vmatrix} \lg \theta & \lg \theta' & \cdots \lg \theta^{(n-1)} \\ \lg \theta' & \lg \theta'' & \cdots \lg \theta^{(n)} \\ \vdots & \vdots & \ddots & \vdots \\ \lg \theta^{(n-1)} & \lg \theta^{(n)} & \cdots \lg \theta^{(n-3)} \end{vmatrix}.$$

^{*} Mathematische Zeitschrift, vol. 21 (1924), pp. 8, 9; Bulletin of the National Research Council, No. 62, Algebraic Numbers, II, pp. 94-96.

Employing (6) and the same rule for the multiplication of determinants as for matrices, we find $\Psi(x_1, x_2, \dots, x_n) \cdot R = \pm \delta(\theta)$. Hence*

(7)
$$\Psi(x_1, x_2, \cdots, x_n) = \pm \frac{\delta(\theta)}{R}.$$

3. The set \mathfrak{G} . The algebraic roots of (2) are distinct and hence the same is true of the factors of f(x) which are irreducible in the rational field.

Let C be any matrix such that (2) is the equation of minimum degree with rational coefficients, the leading coefficient being unity, which has C as a root. Let \mathfrak{G} be the set of all polynomials in C with rational integral coefficients. It has been shown that there is a one-to-one correspondence between the classes of ideals in \mathfrak{G} and certain classes of matrices.† Since (2) is the minimum equation of A, by the proof of this result, there is a non-singular ideal \mathfrak{R} , in \mathfrak{G} , with a basis $\omega_1, \omega_2, \cdots, \omega_n$ such that

$$C\omega_i = \alpha_{i1}\omega_1 + \alpha_{i2}\omega_2 + \cdots + \alpha_{in}\omega_n \quad (i = 1, 2, \cdots, n).$$

Let τ be an element in \Re . By the last equations and (3),

where the x's are rational integers. The determinant of the coefficients of the ω 's is $\Psi(x_1, x_2, \dots, x_n)$.

$$I, C, C^2, \dots, C^{n-1}$$
 form a basis of \mathfrak{G} . Hence

$$\omega_i = g_{i1}I + g_{i2}C + \cdots + g_{in}C^{n-1}$$
 $(i = 1, 2, \cdots, n),$

where the g's are rational integers such that the absolute value of the determinant $|g_{ij}|$ is the norm of \Re . If we employ the last equations to eliminate the ω 's in the above expressions for $C^{i-1}\tau(i=1, 2, \dots, n)$, in the resulting equations the determinant of the coefficients of the powers of C is $\Psi(x_1, x_2, \dots, x_n) \cdot N(\Re)$. But the $C^{i-1}\tau$ form a basis of the principal ideal $\{\tau\}$. Hence $\Psi(x_1, x_2, \dots, x_n) \cdot N(\Re) = \pm N(\tau)$. Since \Re is non-singular, $N(\Re) \neq 0$.

Therefore by (7) we have

^{*} By employing Lemma 1, it may be shown that Ψ is an invariant of the above-mentioned substitution group. See Fricke, *Lehrbuch der Algebra*, vol. 2, p. 14.

[†] Latimer and MacDuffee, A correspondence between classes of ideals and classes of matrices, Annals of Mathematics, vol. 34 (1933).

LEMMA 2. If $\theta = u\eta_1^{x_1}\eta_2^{x_2}\cdots\eta_n^{x_n}$ is a unit of F, where u is a root of unity, then

$$\pm \frac{\delta(\theta)}{R} = \pm \Psi(x_1, x_2, \cdots, x_n) = \frac{N(\tau)}{N(\Omega)},$$

where \Re is a non-singular ideal in \mathfrak{G} , with a basis $\omega_1, \omega_2, \cdots, \omega_n$ such that

$$C\omega_i = \alpha_{i1}\omega_1 + \alpha_{i2}\omega_2 + \cdots + \alpha_{in}\omega_n \qquad (i = 1, 2, \cdots, n)$$

and $N(\tau)$ is the norm of the principal ideal $\{\tau\}$, $\tau = x_1\omega_1 + x_2\omega_2 + \cdots + x_n\omega_n$.

4. Proof of principal theorem. Let \Re be the group which has as its elements the $\phi(m)$ integers in a reduced set of residues, modulo m. The numbers of F are those numbers of Ω which are unaltered under every substitution (ρ, ρ^a) , where ρ is a primitive mth root of unity and a is an integer in a subgroup \mathbb{I} of \Re . Let the co-sets (Nebengruppen) of \Re with respect to \mathbb{I} be $\mathbb{I}_0 = \mathbb{I}$, \mathbb{I}_1 , \mathbb{I}_2 , \cdots , \mathbb{I}_{E-1} . Then $\mathbb{I}_i = \gamma_i \mathbb{I}$ where the γ_i are properly chosen integers. The factor group \Re/\mathbb{I} is simply isomorphic with \Re ,* which by hypothesis is cyclic. Hence we may assume that $s = (\rho, \rho^{\gamma})$, where γ is an integer such that $\gamma^E \equiv a \pmod{m}$, a an element in \mathbb{I} . If m is odd, we may assume that γ is odd, while if m is even, γ is necessarily odd since the same is true of a.

If F is real, by Gut's results, $h = \Delta/R$ where

(8)
$$\Delta = \prod_{x} \sum_{k=1}^{m/2} -\chi(k) \log \sin \frac{\pi k}{m}.$$

In the product, χ ranges over all the elements, except the identity element, of a group of characters which is simply isomorphic with $\mathfrak A$. Since $\mathfrak A$ is cyclic, we have

(9)
$$\Delta = \prod_{i=1}^{n} \sum_{k=1}^{m/2} -\chi^{i}(k) \log \sin \frac{\pi k}{m},$$

where χ is a fixed character. It may be shown that if a and b are prime to m, $\chi(a) = \chi(b)$ if and only if a and b are congruent, modulo m, to elements in the same co-set \mathfrak{U}_i . After proper choice of notation, we may assume that if a belongs to \mathfrak{U}_i , $\chi(a) = \zeta^i$, where ζ is a primitive eth root of unity. Employing $\chi(m-k) = \chi(k)$, $\chi(k) = 0$ if (m,k) > 1, and $\sum_{k=1}^{m-1} \chi^i(k) = 0$ (0 < t < e), it may be shown that

(10)
$$2 \sum_{k=1}^{m/2} \chi^{t}(k) \log \sin \frac{\pi k}{m} = \sum_{k=1}^{m-1} \chi^{t}(k) \lg (1 - \rho^{k}) = \sum_{i=0}^{n} \zeta^{ti} \lg \lambda_{i},$$

^{*} Weber, Lehrbuch der Algebra, 2d edition, vol. 2, p. 75.

[†] Gut, loc. cit., pp. 200, 223.

where $\lambda_0 = \Pi(1 - \rho^a)$, a ranging over all the elements of \mathfrak{U} , and $\lambda_i = \lambda_0^{(i)}$ $(i = 1, 2, \dots, n)$. Employing a well known property of cyclic determinants, it may be shown from (9) and (10) that

$$\Delta = 2^{-n} \prod_{i=1}^{n} \sum_{i=0}^{n} \zeta^{ii} \lg \lambda_{i} = \pm \delta(\theta),$$

where $\theta = (\lambda_1/\lambda_0)^{1/2}$.* Hence $h = \pm \delta(\theta)/R$. We shall show that θ is a unit of F. Since F is real, \mathbb{U} contains -1. Therefore θ is a product of units in the form

$$\left[\frac{(1-\rho^{\gamma a})(1-\rho^{-\gamma a})}{(1-\rho^a)(1-\rho^{-a})}\right]^{1/2} = \pm \rho^{(1-\gamma)a/2} \left(\frac{1-\rho^{\gamma a}}{1-\rho^a}\right).$$

Since γ is odd, the unit on the left belongs to Ω , and hence the same is true of θ . Since θ is unaltered under every substitution (ρ, ρ^a) , a in \mathfrak{U} , it belongs to F.

If F is imaginary, Gut's expression for h may be written $h = h_1 \cdot h_2$, where h_1 is a closed expression and $h_2 = \Delta/R$, where Δ is exactly the same as the right side of (8), except that in this case χ ranges over those characters, except the principal character, such that $\chi(-1) = 1$.† The whole group of characters is simply isomorphic with $\mathfrak A$ and hence every character is a power of one of them. For a generating character χ , we have $\chi(-1) = -1$. Hence $h_2 = \Delta/R$, where

$$\Delta = \prod_{t=1}^{n} \sum_{k=1}^{m/2} - \chi^{2t}(k) \log \sin \frac{\pi k}{m}.$$

Since $s^{\epsilon}(\theta)$ is the conjugate imaginary of θ , the co-set \mathfrak{U}_{ϵ} contains -1 and we may take as the elements of $\mathfrak{U}_{i+\epsilon}$ the negatives of the elements in the corresponding \mathfrak{U}_i . If a and b are prime to m and a is in \mathfrak{U}_i , then $\chi^2(a) = \chi^2(b)$ if and only if b is congruent to an element in \mathfrak{U}_i or in $\mathfrak{U}_{i+\epsilon}$. The notation for the co-sets may be so chosen that if a belongs to \mathfrak{U}_i then $\chi^2(a) = \zeta^i$, where ζ is a primitive eth root of unity. If we define the λ_i as before, let $\theta \equiv (\lambda_1 \cdot \lambda_{e+1} / \lambda_0 \cdot \lambda_e)$ and employ the fact that $\lambda_{i+\epsilon}$ is the conjugate imaginary of λ_i , we find as before that $\Delta = \pm \delta(\theta)$, $h_2 = \pm \delta(\theta)/R$ and θ is a real unit of F. By Lemma 2, we have then the following, except the last sentence.

THEOREM 1. Let F be a field, of degree E, which is cyclic with respect to the rational field. Let e = E or e = E/2 according as F is real or imaginary, and let

^{*} For a special case of this, see Fueter, *Die Klassenzahl zyklischer Körper*, etc., Journal für Mathematik, vol. 147 (1917), p. 183.

[†] Gut, loc. cit., pp. 201, 223.

n=e-1. Let \mathfrak{G} be the set of all polynomials with rational integral coefficients in the nth order matrix $A=(\alpha_{ij})$, where the α 's are given in (1). If F is real let H be the class number of F, and if F is imaginary let H be the absolute value of Gut's second factor of the class number. Then

$$H = N(\tau)/N(\Re),$$

where $N(\Re)$ is the norm of a non-singular ideal \Re in $\mathfrak G$ and $N(\tau)$ is the norm of a principal ideal $\{\tau\}$ in $\mathfrak G$, τ being an element in \Re . If F is the field defined by a primitive mth root of unity, m an odd prime, $\pm H$ is Kummer's second factor of the class number.

To prove the last sentence of the theorem, it suffices to note that our θ , $\delta(\theta)$, R, when properly specialized, are identical, except perhaps for sign, with Kummer's $e(\alpha)$, D, Δ respectively.*

It will be observed that by the proof of the above theorem, $\pm H$ is represented by the form $\Psi(x_1, x_2, \dots, x_n)$, which, as previously noted, is an invariant of the cyclic substitution group defined by the transpose of A.

5. A special case of Theorem 1. Suppose e of Theorem 1 is an odd prime, F real or imaginary. Let ζ be a primitive eth root of unity. ζ is a root of (2), and 1, ζ , ζ^2 , \cdots , ζ^{n-1} form a basis of the integral numbers in the field K defined by ζ . Hence by Lemma 1, \mathfrak{G} is equivalent to the set of all integral algebraic numbers in K. Then, by well known theorems in algebraic numbers, there is an ideal \mathfrak{L} such that $\{\tau\} = \mathfrak{RL}$ and $N(\tau) = N(\mathfrak{R}) \cdot N(\mathfrak{L})$. We have then

THEOREM 2. If e in Theorem 1 is an odd prime,

$$H = N(\mathfrak{L}),$$

where & is an ideal in the field defined by a primitive eth root of unity.

If F is the field defined by a primitive mth root of unity, m an odd prime, and if e = (m-1)/2 is also an odd prime, it may be shown that Kummer's first factor of the class number is the norm of a principal ideal in K, K as above. Hence the class number of F is the norm of an ideal in K.

University of Kentucky, Lexington, Ky.

^{*} Journal für Mathematik, vol. 40 (1850), pp. 110, 99; Bulletin of the National Research Council, loc. cit., p. 34.