ON NORMAL KUMMER FIELDS OVER A NON-MODULAR FIELD*

A. ADRIAN ALBERT

1. Let F be any non-modular field, p an odd prime, $\zeta \neq 1$ a pth root of unity. Suppose that μ in $F(\zeta)$ is not the pth power of any quantity of $F(\zeta)$ so that the equation $y^p = \mu$ is irreducible in $F(\zeta)$. Then the field $F(y, \zeta)$ is called a Kummer† field over F.

In the present paper we shall give a formal construction of all *normal* Kummer fields over F. This is equivalent to a construction of all fields F(x) of degree p over F such that $F(x, \zeta)$ is cyclic of degree p over $F(\zeta)$. In particular we provide a construction of all cyclic fields of degree p over F.

We shall also apply the cyclic case to prove that a normal division algebra D of degree p over F is cyclic if and only if D contains a quantity y not in F such that $y^p = \gamma$ in F.

2. The equation

$$g(\xi) \equiv \xi^{p-1} + \xi^{p-2} + \cdots + \xi + 1 = 0$$

is irreducible in the field R of all rational numbers and has all the primitive pth roots of unity as roots. If F is any non-modular field, then $g(\xi)$ has an irreducible factor $h(\xi) = 0$ in F and with ζ as a root. The roots of $h(\xi) = 0$ are all powers of ζ and hence are in a sub-field L of $R(\zeta)$. But then the coefficients of $h(\xi) = 0$ are in L so that the group of $h(\xi)$ with respect to F is its group with respect to E. This latter group is the group of all the automorphisms of the cyclic field $R(\zeta)$ leaving the quantities of E invariant and is a sub-group of the group of E is its group of the group of E invariant and is a sub-group of the group of E invariant and is a sub-group of a cyclic group generated by

$$T:$$
 $\zeta \longleftrightarrow \zeta'$,

where t is an integer belonging to the degree n of $h(\xi) = 0$, $t^n \equiv 1 \pmod{p}$. We may write

(1)
$$\zeta_k = \zeta^{t^{k-1}}, \quad \zeta_{n+1} = \zeta_1 = \zeta^{t^n} \qquad (k = 1, \dots, n),$$

so that we have

^{*} This paper is a revision and amplification of the paper On cyclic equations of prime degree, which I presented to the Society on December 27, 1933; it was received by the editors March 17, 1934.

[†] If F is the field of all rational numbers, then $F(y, \zeta)$ is the ordinary Kummer field of modern arithmetic. Our work is a generalization to any non-modular field of that special case.

(2)
$$\zeta_k = \zeta^{t_k}, \ t_k \equiv t^{k-1} \pmod{p}, \ 1 \leq t_k < p.$$

Then T is equivalent to the cyclic substitution $(\zeta_1, \zeta_2, \dots, \zeta_n)$ on the roots of $h(\xi) = 0$.

If λ and μ are any two quantities of $K = F(\zeta)$ we say that λ is p-equal to μ and write

$$\lambda = \mu.$$

H. Hasse* has then given a purely algebraic proof of

LEMMA 1. If

$$y^p = \mu \neq 1,$$

then Z = K(y) is cyclic of prime degree p over K and with generating automorphism

S:
$$y \longleftrightarrow \zeta y$$
.

Conversely every cyclic field Z of degree p over K is equal to a field K(y),

$$y^p = \mu \neq 1.$$

Moreover if also Z = K(z), $z^p = \mu'$ in K, then

$$\mu' = \mu^a,$$

so that $z = \lambda y^a$ where λ is in K.

3. We now assume that Z is any normal field of degree pn over F containing $K = F(\zeta)$ of degree n over F. Then K is the set of all quantities of Z unaltered by a cyclic sub-group H of Z of order p and Z is cyclic of degree p over K. By Lemma 1, $Z = F(y, \zeta)$, $y^p = \mu$ in K and $H = (I, S, \dots, S^{p-1})$ where S is given above. We can then decompose the group G of Z relative to H and write $G = H + H\sigma_1 + \cdots + H\sigma_{n-1}$. Then $I, \sigma_1, \cdots, \sigma_{n-1}$ carry ζ to the other roots of the irreducible equation $h(\xi) = 0$. In particular one $\sigma_i = \tau$ carries ζ to ζ^i .

We let $T = \tau^p$ so that T also carries ζ to ζ^t since $t^p \equiv t \pmod{p}$. Then τ^n leaves ζ unaltered and is in H. Hence $\tau^n = S^r$, $T^n = S^{pr} = I$.

The group G now has the decomposition $G = H + HT + \cdots + HT^{n-1}$. For otherwise $T^r = S^iT^j$ where n > r > j so that $T^{r-j} = S^i$ leaves ζ unaltered, which is impossible. We have proved that

^{*} Bericht über Klassenkörper, Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 36 (1927), pp. 232-311, p. 262.

$$G = (S^{i}T^{j})$$
 $(i = 0, 1, \dots, p-1; j = 0, 1, \dots, n-1).$

The group G has a cyclic sub-group (T^i) of order n and hence Z has a sub-field F(x) of degree p over F. Moreover

$$y^{(T)} = \lambda y^{r} \qquad (\lambda \text{ in } K).$$

For $y^{(T)}$ in Z evidently generates K(y) and we may apply Lemma 1. But

$$(4) y^{(TS)} = \lambda \zeta^r \gamma^r = y^{(S^0T)} = \zeta^{00} \lambda \gamma^r,$$

where $et \equiv r \pmod{p}$ so that $e \equiv rt^{n-1} \pmod{p}$. Hence $TS = S \cdot T$. Conversely if $TS = S \cdot T$ then $r \equiv et \pmod{p}$ is determined and we have proved*

THEOREM 1. Let F(x) have degree p over F and $F(x, \zeta) \equiv Z$ be normal over F. Then Z has the group

(5)
$$S^{i}T^{j}$$
 $(i = 0, 1, \dots, p-1; j = 0, 1, \dots, n-1),$

such that $S^p = T^n = I$, the identity automorphism, and

(6)
$$TS = S^{\bullet}T \qquad (0 < e < p).$$

Moreover $Z = F(y, \zeta)$ where $y^p = \mu$ in $F(\zeta)$,

(7)
$$\zeta^{(T)} = \zeta^{t}, \ y^{(T)} = \lambda y^{r}, \ \zeta^{(S)} = \zeta, \ \dot{y}^{(S)} = \zeta y, \ \mu^{(T)} = \mu^{r},$$

and $r \equiv et \pmod{p}$.

Conversely every normal field $Z > F(\zeta)$ of degree p^n over $K = F(\zeta)$ is generated as a field $Z = F(y, \zeta)$, $y^p = \mu = \mu(\zeta)$ in $F(\zeta)$ such that

(8)
$$\mu \neq 1, \quad \mu(\zeta^t) = \mu^r \qquad (1 \leq r < p).$$

The group of Z is then given by (5), (6), (7) where e is determined by $r \equiv et \pmod{p}$ and Z contains a sub-field F(x) of degree p over F, the field of all quantities of Z unaltered by the automorphism T.

It is evident that F(x) is uniquely determined in the sense of equivalence and is generated by any quantity

(9)
$$x = \sum_{i=0}^{p-1} \alpha_i(\zeta) y^i = \sum_{i=0}^{p-1} \alpha_i(\zeta^i) \lambda^i y^{ri}$$

for which at least one $\alpha_i \neq 0$ for i > 0. Moreover the equation

(10)
$$\phi(\eta) \equiv (\eta - x)(\eta - x^{(S)}) \cdot \cdot \cdot (\eta - x^{(S^{p-1})})$$

has coefficients in F, is irreducible in F, and has x as a root. Hence Theorem 1

^{*} A similar result was obtained by Hilbert for the case F=R.

gives a formal construction of all fields F(x) of degree p over F with the property that $F(x, \zeta)$ is normal over F in terms of the construction of all quantities μ satisfying (8).

If in particular $F(y, \zeta)$ has an abelian group, then $F(y, \zeta) = F(x) \times F(\zeta)$, where F(x) is cyclic over F. Conversely if F(x) is cyclic over F, then $F(x) \times F(\zeta) = F(y, \zeta)$ has an abelian group, e = 1, r = t and we have

THEOREM 2. Let μ range over all quantities of $F(\zeta)$ such that

(11)
$$\mu \neq 1, \quad \mu(\zeta^t) = \mu^t.$$

Then $Z = F(x) \times F(\zeta)$ where F(x) is cyclic of degree p over F. Conversely every cyclic field F(x) of degree p over F is the uniquely defined sub-field of such an $F(\mu^{1/p}, \zeta)$.

4. We proceed now to the construction of the quantities μ . The condition

$$\mu \neq 1$$

is evidently an irreducibility condition depending intrinsically on F itself and so must remain in our final conditions. We first prove

LEMMA 2. The integer r satisfies the congruence

(12)
$$r^n \equiv 1 \qquad (\text{mod } p).$$

For

if
$$\mu^{(T)} = \mu^r$$
 then $\mu = \mu^{rn}$

and hence

$$\mu^{r^{n-1}} = 1.$$

But then if $y^p = \mu$ the quantity $y^{r^{n-1}} = \lambda y^s$ where $r^n - 1 \equiv s \pmod{p}$, $0 \le s < p$ and λ is in $F(\zeta)$. But y^{sp} is then in $F(\zeta)$ so that s = 0.

We have observed that 0 < r < p so that there exists an integer ρ such that

$$\rho r \equiv 1 \qquad (\text{mod } p).$$

We define

(14)
$$\rho_k \equiv \rho^{k-1} \pmod{p}, \qquad 1 \leq \rho_k < p,$$

for all integer values of k, where $\rho_{n+1} = \rho_1 = 1$, and $\rho^{-\alpha}$, $\alpha > 0$, is to be defined as a corresponding positive power of ρ . Then

(15)
$$r\rho_k \equiv \rho_{k-1} \pmod{p}.$$

We may then prove

LEMMA 3. Let λ be any quantity of $F(\zeta)$ and define

(16)
$$\mu = \prod_{k=1}^{n} \lambda(\zeta_k)^{\rho_k}.$$

Then

(17)
$$\mu^{(T)} = \mu(\zeta^{i}) = \mu^{r}.$$

For the automorphism T carrying ζ to ζ^t carries each ζ_k to ζ_{k+1} . Hence

(18)
$$\mu^{(T)} = \prod_{k=1}^{n} \lambda(\zeta_{k+1})^{\rho_k} \equiv \prod_{k=1}^{n} \lambda(\zeta_k)^{\rho_{k-1}},$$

while, by (15),

$$\mu^r = \prod_{k=1}^n \lambda(\zeta_k)^{r\rho_k} = \mu(\zeta^t)$$

as desired.

Let now

$$\mu(\zeta^t) = \mu^r \text{ and } \mu \neq 1.$$

Then define

(19)
$$M = \prod_{k=1}^{n} \Lambda(\zeta_k)^{\rho_k}$$

where $\Lambda = \mu$. Then $\Lambda(\zeta_k) = \mu^{r^{k-1}}$ so that

(20)
$$\Lambda(\zeta_k)^{\rho_k} = \mu^{(\tau \rho)^{k-1}} = \mu_{(\rho)}$$

and hence

$$M = \mu^n.$$

But n is not divisible by p so that $z = y^n$ generates K(y),

$$z^p = M$$
.

Hence $F(y, \zeta) = F(w, \zeta)$ where $w^p = M$ is a quantity of the form (16). Conversely if μ has the form (16) and

$$\mu \neq 1$$

then $F(y, \zeta)$, $y^p = \mu$, is normal of degree np over F. We have proved

THEOREM 3. Let λ range over all quantities of $F(\zeta)$ such that

(22)
$$y^p = \mu \equiv \prod_{k=1}^n \lambda(\zeta_k)^{\rho_k} \neq 1.$$

Then $F(y, \zeta)$ is a normal field of Theorem 1. Conversely every normal field of Theorem 1 is generated by a μ defined by (22).

We have now succeeded in giving a formal construction of all the fields of Theorem 1. In particular we have constructed all cyclic fields of prime degree over F. For this case we have $\rho t \equiv 1 \pmod{p}$, and may state

THEOREM 4. Let $\rho_k \equiv t^{p-k} \pmod{p}$ so that $t\rho_k \equiv t^{p-(k-1)} \equiv \rho_{k-1} \pmod{p}$ and let λ range over all quantities of $F(\zeta)$ such that

$$(23) a = \prod_{k=1}^{n} \lambda(\zeta_k)^{\rho_k}$$

is not the pth power of any quantity b of $F(\zeta)$. Then if

$$(24) z^p = a,$$

the field $F(z, \zeta)$ is cyclic of degree np over F and

$$F(z) = F(x) \times F(\zeta),$$

where F(x) is cyclic of degree p over F. Conversely every cyclic field F(x) of degree p over F is generated as the uniquely defined sub-field of such an $F(z, \zeta)$.

We have thus given a construction of all cyclic fields of prime degree over any non-modular field F where the condition $a \neq b^p$ is the irreducibility condition.

5. On normal division algebras of degree p. Let Z be a cyclic field of degree p over F so that every automorphism of Z is a power of an automorphism S given by $z \longleftrightarrow z^S$ for every z and corresponding z^S of Z. Define an algebra D whose quantities have the form

(25)
$$\sum_{i=0}^{p-1} z_i y^i \qquad (z_i \text{ in } Z),$$

such that

(26)
$$y^{i}z = z^{S^{i}}y^{i}, \quad y^{p} = \gamma \neq 0 \text{ in } F.$$

Then D is a cyclic algebra over F and is a normal division algebra if and only

if $\gamma \neq N(z)$ for any z in Z. Evidently D is uniquely defined by Z, S, γ and we write

(27)
$$D = (Z, S, \gamma) = (Z, S, \delta), \quad \delta = N(c)\gamma$$

for any c of Z. For γ is replaced by δ when we replace y by cy. Also*

(28)
$$(Z, S, \gamma) \times (Z, S, \delta) \sim (Z, S, \gamma \delta).$$

If D is a cyclic normal division algebra of degree p over F, then D has the above form and hence contains a sub-field F(y), $y^p = (\gamma)$ in F.

Conversely, let D be any normal division algebra of degree p over F with F(x), $x^p = \beta$ in F as sub-field. Let $K = F(\zeta)$ of degree n over F. The algebra

$$(29) M = (K, T, 1),$$

a cyclic algebra of degree n over F, is a total matric algebra. We form the direct product $M \times D$ which evidently contains $K \times D = D_0$ as sub-algebra. Algebra D_0 is a normal division algebra of degree p over K and has the cyclic sub-field Z = K(x). Moreover

$$(30) D_0 = (Z, S, \gamma),$$

where γ is in K and the automorphism S is given by the transformation

$$yx = \zeta xy, \quad x^S \equiv \zeta x.$$

Let *M* have a basis $(\epsilon^{ij^{k}})$ $(i, k=0, 1, \dots, n)$ such that $j^{n}=1$. Then in $D\times M$ we have

(32)
$$j(yx)j^{-1} = y_T x = j(\zeta xy)j^{-1} = \zeta^t xy_T,$$

where $y_T = jyj^{-1}$ is in $D \times M$. But y is commutative with ζ since y is in D_0 . Also $y\zeta = \zeta y$ implies that $y_T\zeta^i = \zeta^i y_T$ and hence y_T is also commutative with ζ . For $F(\zeta^i) = F(\zeta)$. The algebra of all quantities of $D \times M$ commutative with ζ is evidently D_0 so that y_T is in D_0 .

Since $y_T x = \zeta^t x y_T$ while $y^t x = \zeta^t x y^t$, we then have $y_T = dy^t$ where d is in Z. Then

$$(33) \qquad (y_T)^p = j\gamma j^{-1} = \gamma(\zeta^t) = N(d)\gamma^t,$$

where N(d) is the norm of the quantity d of the cyclic field Z. But

(34)
$$D_0^t \sim (Z, S, \gamma^t) = (Z, S, \gamma(\zeta^t)),$$

by (33), (27).

^{*} If A is any normal simple algebra, then $A = M \times D$, where the total matric algebra M and the normal division algebra D are uniquely determined in the sense of equivalence. If A and B are two normal simple algebras with the same D, we say that A and B are similar, and write $A \sim B$.

By applying (34) we have $D_0^{i^2} \sim (Z, S, \gamma(\zeta^{i^2}))$, and hence

$$D_0^{t_k} \sim (Z, S, \gamma(\zeta_k)),$$

from which, if $u = \sum \rho_k t_k = n + \lambda p$ by (25),

$$D_0^u \sim D_0^n \sim (Z, S, \alpha),$$

where

$$\alpha = \prod_{k=1}^n \gamma(\zeta_k)^{\rho_k}.$$

If D is any normal simple algebra of prime degree p over F, and K is a field of degree n not divisible by p, then D is a total matric algebra if and only if $D \times K$ over K is a total matric algebra. Moreover, if r is prime to p, then D^r is total matric if and only if D is total matric. Hence, if $D_0 = D \times K$ and D_0^r is a total matric algebra, then so is D.

Algebra D_0^n is a normal division algebra since D is a normal division algebra. Hence $\alpha \neq N(c)$ for any c of Z. In particular $\alpha \neq b^p$ for any b of K. Thus D_0 contains a cyclic field* W of prime degree p over F. But then $D_0^n \times W'$ over $W' \cong W_K$, the composite of W and K, is a total matric algebra. Hence $D_0 \times W'$ is a total matric algebra and so must be $D \times \overline{W}$ over \overline{W} , $\overline{W} \cong W$. But then D has a sub-field equivalent to W and is cyclic.

THEOREM 5. A normal division algebra D of prime degree p over F is cyclic if and only if D has a sub-field F(x), $x^p = \gamma$ in F.

^{*} The cyclic sub-field of $F(\alpha^{1/p})$ defined by Theorem 4.

THE INSTITUTE FOR ADVANCED STUDY, PRINCETON, N. J.