DIFFERENTIABLE FUNCTIONS DEFINED IN ARBITRARY SUBSETS OF EUCLIDEAN SPACE*

BY HASSLER WHITNEY

- 1. Introduction. In a former paper† we studied the differentiability of a function defined in closed subsets of Euclidean n-space E. We consider here the differentiability "about" an arbitrary point of a function defined in an arbitrary subset of E. We show in Theorem 1 that any function defined in a subset A of E which is differentiable about a subset B of E may be extended over E so that it remains differentiable about E. This theorem is a generalization of AE Lemma 2. We show further that any function of class E about a set E is of class E about an open set E containing E. In the second part of the paper we consider some elementary properties of differentiable functions, such as: the sum or product of two such functions is such a function.‡ We end with the theorem that differentiability is a local property.§
- 2. Definitions and elementary properties. We use a one-dimensional notation as in AE. Thus $f_k(x) = f_{k_1 \dots k_n}(x_1, \dots, x_n), x^l = x_1^{l_1} \dots x_n^{l_n}, l! = l_1! \dots l_n!,$ $D_k f(x) = \partial^{k_1 + \dots + k_n} f(x) / \partial x_1^{k_1} \dots \partial x_n^{k_n}$, etc.; we set $\sigma_k = k_1 + \dots + k_n, r_{xy} = \text{distance from } x \text{ to } y$. We always set $f(x) = f_0(x)$. Suppose the functions $f_k(x)$ for $\sigma_k \leq m$ are defined in the subset A of Euclidean n-space E. Define $R_k(x'; x)$ for x, x' in A by

^{*} Presented to the Society, January 2, 1936; received by the editors October 26, 1935.

[†] Analytic extensions of differentiable functions defined in closed sets, these Transactions, vol. 36 (1934), pp. 63-89. We refer to this paper as AE. See also Functions differentiable on the boundaries of regions, Annals of Mathematics, vol. 35 (1934), pp. 482-485, and Differentiable functions defined in closed sets, I, these Transactions, vol. 36 (1934), pp. 369-387, which we refer to as F and D respectively.

P. Franklin in Theorem 1 of a paper Derivatives of higher order as single limits, Bulletin of the American Mathematical Society, vol. 41 (1935), pp. 573-582, has given a necessary and sufficient condition for the existence of a continuous mth derivative. We remark that this theorem is exactly the special case of Theorem I of D obtained by letting f(x) be defined in an interval. It is also a special case of Theorem 2 of the author's Derivatives, difference quotients, and Taylor's formula, Bulletin of the American Mathematical Society, vol. 40 (1934), pp. 89-94 (see also Errata, p. 894). For his assumption is easily seen to imply the needed uniformity condition; it also implies at once that f(x) is continuous, so that no considerations of measurability are necessary. His Theorem 2 should be compared with Theorems II and III of D.

 $[\]ddagger$ If the set is closed, these theorems may be proved by first extending the functions throughout E.

[§] For the case of one variable this follows from D, Theorem I.

(1)
$$f_k(x') = \sum_{\sigma_l \leq m - \sigma_k} \frac{f_{k+l}(x)}{l!} (x' - x)^l + R_k(x'; x).$$

Let x^0 be an arbitrary point of E. If for each k $(\sigma_k \leq m)$ and every $\epsilon > 0$ there is a $\delta > 0$ such that

(2)
$$\left| R_k(x'; x) \right| \leq r_{xx'}^{m-\sigma_k} \epsilon \text{ if } x, x' \text{ in } A, r_{xx^0} < \delta, r_{x'x^0} < \delta,$$

we shall say that f(x) is of class C^m in A about x^0 in terms of the $f_k(x)$, or, f(x) is $(C^m, A, x^0, f_k(x))$. If this is true for each x^0 in B, we say f(x) is $(C^m, A, B, f_k(x))$, and replace "about x^0 " by "about B." We say f(x) (defined in A) is of class C^m in A about B, or, f(x) is (C^m, A, B) , if there exist functions $f_k(x)$ ($\sigma_k \leq m$) defined in A such that f(x) is $(C^m, A, B, f_k(x))$. If B = A in the last two definitions, we leave out the words "about B"; this is in agreement with the previous definitions. We say f(x) is $(C^m, A, B, f_k(x))$ if f(x) is $(C^m, A, B, f_k(x))$ for each m. Any function defined in A is (C^{-1}, A, E) .

Remark. We might define in an obvious manner such relations as (C^m, A, x^0) , (C^∞, A, B) . To study them would require a study of the different possible definitions of the $f_k(x)$ if f(x) is (C^m, A, B) . The $f_k(x)$ are not in general determined by f(x). Thus if A = B is the x_1 -axis, only the $f_k(x)$ with $k_2 = \cdots = k_n = 0$ are determined by f(x). It is not obvious for what point sets A the $f_k(x)$ are all determined by f(x).

If f(x) is $(C^m, A, B, f_k(x))$ $(m \ge 0)$, then the $f_k(x)$ are continuous at each point of B;* that is, the $f_k(x)$ may be defined in $B - B \cdot A$ so that this will be true. To show this, take x^0 in B, set $\epsilon = 1$, and choose δ so that (2) holds for any k $(\sigma_k \le m)$. Take x in A within δ of x^0 (if there is such a point); then (1) and (2) show that $f_k(x')$ is bounded for x' in A within δ of x^0 $(\sigma_k \le m)$. Now let $\{x^i\}$ be any sequence of points of A, $x^i \rightarrow x^0$; (1) and (2) show that $\{f_k(x^i)\}$ is a regular sequence.

If A is open and f(x) is $(C^m, A, A, f_k(x))$, then $D_k f(x)$ exists and equals $f_k(x)$ in A ($\sigma_k \leq m$). (See AE.) If x^0 is an isolated point of A or is at a positive distance from A, then f(x) is $(C^m, A, x^0, f_k(x))$ for any $f_k(x)$. If f(x) is $(C^m, A, B, f_k(x))$ [or (C^m, A, B)], and A' is in A, B' is in B, then f(x) is $(C^m, A', B', f_k(x))$ [or (C^m, A', B')]. Also f(x) is (C^0, A, B) if and only if it is continuous at each point of B. If f(x) is $(C^m, A, B, f_k(x))$, then it is $(C^{m'}, A, B, f_k(x))$ for all m' < m; a stronger theorem is proved in Theorem 2. If f(x) is $(C^m, A, B, f_k(x))$, then $f_k(x)$ is $(C^{m-\sigma_k}, A, B, f_l(x))$.

3. Extension theorems. We prove here a theorem which gives the maximum range of differentiability of a function, and a theorem about the still larger range of differentiability of a function to an order one less.

^{*} Or better, "continuous in A about B."

THEOREM 1. If f(x) is $(C^m, A, B, f_k(x))^*$ (m finite or infinite), then the $f_k(x)$ may be extended throughout E so that f(x) is $(C^m, E, B, f_k(x))$.

We note, conversely, that if f(x) is not $(C^m, A, x^0, f_k(x))$, then no extension of f(x) will be so. We remark also that f(x) may be made analytic in $E - \overline{A}$ $(\overline{A} = A \text{ plus limit points})$.

To prove the theorem, we first extend the $f_k(x)$ through $\overline{A} - A$ as follows: Take any x^0 in $\overline{A} - A$. Let $f_k(x^0)$ be the upper limit of $f_k(x^i)$ for sequences $\{x^i\}$, $x^i \rightarrow x^0$, x^i in A, if this is finite; otherwise, set $f_k(x^0) = 0$. Next we extend the $f_k(x)$ throughout $E - \overline{A}$ by the method of AE Lemma 2. We shall assume in the proof that m is finite. If $m = \infty$, we prove $C^{m'}$ for every integer m'. The only alteration needed in the proof is that AE §12 should be used; but this makes no essential change.

As $E-\overline{A}$ is open, f(x) is $(C^m, E, E-\overline{A}, f_k(x))$; we must show that f(x) is $(C^m, E, B \cdot \overline{A}, f_k(x))$. Take a fixed point x^0 in $B \cdot \overline{A}$. Let us say (k, ϵ, A_1, A_2) holds if there is a $\delta > 0$ such that (2) holds whenever x is in A_1 , x' is in A_2 , and $r_{xx^0} < \delta$, $r_{x'x^0} < \delta$. We must prove (k, ϵ, E, E) for each k $(\sigma_k \leq m)$ and each $\epsilon > 0$.

First we prove $(k, \epsilon, \overline{A}, \overline{A})$. Set $\epsilon' = \epsilon/[2(m+1)^n]$, and let δ be the smallest of the δ 's given by (l, ϵ', A, A) for $\sigma_l \leq m$. Let U be the spherical neighborhood of x^0 of radius δ ; then $f_l(x)$ is bounded in $U \cdot A$ ($\sigma_l \leq m$). Given x, x' in $U \cdot \overline{A}$, choose sequences $\{x^i\}$, $\{x'^i\}$ of points of $U \cdot A$, with $x^i \rightarrow x$, $x'^i \rightarrow x'$. Suppose first $\sigma_k = m$. Then we may take these sequences so that $f_k(x^i) \rightarrow f_k(x)$, $f_k(x'^i) \rightarrow f_k(x')$, and the desired inequality for $R_k(x'; x)$ follows from that for $R_k(x'^i; x^i)$. Suppose now that $\sigma_k < m$. Relations (1) and (2) with k, x', x replaced by l, x^i, x^j show that for any such $\{x^i\}$, $\{f_l(x^i)\}$ is a regular sequence $(\sigma_l < m)$; hence $f_l(x^i) \rightarrow f_l(x)$, and similarly $f_l(x'^i) \rightarrow f_l(x')$ ($\sigma_l < m$). Relation (1) now shows that for i large enough, $\Delta = R_k(x'; x) - R_k(x'^i; x^i)$ differs as little as we please from

$$-\sum_{\sigma_{l}=m-\sigma_{k}}\frac{\dot{f}_{k+l}(x)-f_{k+l}(x^{i})}{l!}(x'-x)^{l}.$$

As $|f_i(x) - f_i(x^i)| \le \epsilon'$ $(\sigma_i = m)$ and $|(x' - x)^l| \le r_{xx'}^{\sigma_l}$, $|\Delta| \le (m+1)^n \epsilon' r_{xx'}^{m-\sigma_k}$ for i large enough; the inequality again follows.

Next we prove $(k, \epsilon, \overline{A}, E-\overline{A})$. Set $\epsilon' = \epsilon/[2 \cdot 4^m (m+1)^n]$, and define η in terms of ϵ' and then δ as in AE §11, using $(k, \eta, \overline{A}, \overline{A})$. Take x in \overline{A} and x' in $E-\overline{A}$, each within $\delta/4$ of x^0 . By AE (6.3) and the equation following (11.6),

^{*} Or merely locally (C^m, A, B) ; see Theorem 6.

 $[\]dagger$ If A=B is closed, then B may be replaced by E; the present proof then gives a proof of AE Lemma 2 which makes no use of AE Lemma 1.

$$R_{k}(x'; x) = D_{k}f(x') - \psi_{k}(x'; x)$$

$$= \sum_{l} \frac{R_{k+l}(x^{*}; x)}{l!} (x' - x^{*})^{l} + \sum_{s=1}^{t} \sum_{l} {k \choose l} D_{l}\phi_{\lambda_{s}}(x')\zeta_{\lambda_{s};k-l}(x'),$$

where x^* is a point of \overline{A} distant $\delta_*/4$ from x', $\delta_*/4$ being the distance from x' to \overline{A} . As $r_{x^*x} \leq 2r_{xx'}$, $r_{x'x^*} \leq 2r_{xx'}$, and $\delta_* \leq 4r_{xx'}$, we find with the help of AE (11.8)

$$|R_k(x';x)| \le (m+1)^n (2r_{xx'})^{m-\sigma_k} \eta + (4r_{xx'})^{m-\sigma_k} \epsilon'/2 < r_{xx'}^{m-\sigma_k} \epsilon.$$

Next we prove $(k, \epsilon, E - \overline{A}, \overline{A})$. As is easily seen from AE (6.3) or by F (6) with x^{i-1} , x^i replaced by x, x',

$$R_k(x'; x) = \sum_{l} \frac{R_{k+l}(x; x')}{l!} (x' - x)^l.$$

Set $\epsilon' = \epsilon/(m+1)^n$, and take the smallest δ given by $(k+l, \epsilon', \overline{A}, E-\overline{A})$ for $\sigma_l \leq m - \sigma_k$. The required inequality now follows at once.

Finally we must show $(k, \epsilon, E-\overline{A}, E-\overline{A})$. Set $\epsilon' = \epsilon/[2n(m+1)^n]$, and take δ smaller than the $\delta/4$ given by AE §11 with ϵ replaced by ϵ' and smaller than the δ 's given by $(k+l, \epsilon', \overline{A}, E-\overline{A})$ and $(k+l, \epsilon', E-\overline{A}, \overline{A})$ for $\sigma_l \leq m - \sigma_k$. Now take x and x' in $E-\overline{A}$ within δ of x^0 ; we must consider two cases. Case I: The line segment S = xx' lies wholly in $E-\overline{A}$. By AE (11.2), $|f_l(y) - f_l(x')| < 2\epsilon'$ for y on $S(\sigma_l \leq m)$; the desired inequality now follows from F, Lemma 3. Case II: There is a point x^* of \overline{A} on S. From AE (6.3), or F (6) with x^{i-1} , x^i replaced by x, x^* , we find

$$R_k(x'; x) = R_k(x'; x^*) + \sum_{l} \frac{R_{k+l}(x^*; x)}{l!} (x' - x^*)^l,$$

and the inequality again follows.

THEOREM 2. If f(x) is $(C^m, A, B, f_k(x))$ (m finite), then there is an open set B' containing B such that f(x) is $(C^{m-1}, A, B', f_k(x))$.

For each x in B, let $\delta(x)$ be the largest of the numbers δ for which (2) holds for all k ($\sigma_k \leq m$) with ϵ replaced by 1. Let U(x) be the set of all points x' within $\delta(x)$ of x; then B' is the sum of all U(x). The set B' is open. To prove $(C^{m-1}, A, B', f_k(x))$, take any x^0 in B' and any $\epsilon > 0$. For some x^* in B, $r_{x^*x^0} < \delta(x^*)$. There is an M such that $|f_k(y)| < M$ for y in $A \cdot U(x^*)$ ($\sigma_k \leq m$).† Let δ be the smaller of $\delta(x^*) - r_{x^*x^0}$ and $\epsilon / [2(m+1)^n M + 2]$. Now take any x and x' in A within δ of x^0 . We are interested in the remainders

[†] For the proof, see the paragraph following the remark.

$$R_k'(x'; x) = \sum_{\sigma_l = m - \sigma_k} \frac{f_{k+l}(x)}{l!} (x' - x)^l + R_k(x'; x)$$

with $\sigma_k < m$. As $r_{xx'} < 2\delta$,

$$|R_{k}'(x';x)| \leq (m+1)^{n} M r_{xx'}^{m-\sigma_{k}} + r_{xx'}^{m-\sigma_{k}} < r_{xx'}^{m-1-\sigma_{k}} \epsilon.$$

COROLLARY. If f(x) is of class C^m in any given point set about B, then it may be extended through an open set B' containing B so that it is of class C^{m-1} in B' and of class C^m in B' about B.

4. Composite functions, etc. We prove here three theorems.

THEOREM 3. If f and g are of class C^m in A about B, then so are f+g and f-g, with

$$(3) (f \pm g)_k = f_k \pm g_k.$$

This is obvious.

THEOREM 4. If f and g are of class C^m in A about B, then so is fg, and f/g if $g \neq 0$. The derivatives are given by the ordinary formulas. Thus

$$(4) (fg)_k = \sum_{l} {k \choose l} f_l g_{k-l}.$$

We might prove this theorem directly, but it follows from Theorem 5: fg and f/g are functions (of two variables) of class C^{∞} of the functions f and g. (The condition B in A is obtained by using Theorem 1.)

THEOREM 5. Let A and B be subsets of n-space E_n , and let A' and B' be subsets of v-space E_v . Let $f^i(x)$ be $(C^m, A, B, f_k^i(x))$ $(i=1, \dots, \nu)$, and let g(y) be $(C^m, A', B', g_k(y))$ (m finite or infinite). Suppose B is in A, x in A implies

$$y = (y_1, \dots, y_r) = (f^1(x), \dots, f^r(x)) = f(x)$$

in A', and x in B implies f(x) in B'. Then the function

$$h(x) = g(f^{1}(x), \cdots, f^{\nu}(x)) = g(f(x))$$

is $(C^m, A, B, h_k(x))$; the $h_k(x)$ are given by the ordinary formulas (9) for derivatives.

As a consequence of this theorem, the definition of being of class C^m is independent of the coordinate system chosen. If the condition x in A [or B] does not imply f(x) in A' [or B'], we may apply the theorem to any subset A_1 [or B_1] of A [or B] for which it does. We shall suppose m is finite; if $m = \infty$, we merely apply the reasoning below for each positive integer.

Suppose first $u^1(x)$, \cdots , $u^{\nu}(x)$ are functions of class C^m in an open set Γ of E_n , suppose v(y) is of class C^m in an open set Γ' of E_{ν} , and suppose x in Γ implies u(x) in Γ' . Letting R'^i , S' denote remainders for u^i , v, Taylor's formula gives

(5)
$$u_k^i(x') = D_k u^i(x') = \sum_{\sigma_l \leq m - \sigma_k} \frac{u_{k+1}^i(x)}{l!} (x' - x)^l + R_k'^i(x'; x),$$

(6)
$$v_k(y') = D_k v(y') = \sum_{\sigma'_l \leq m - \sigma'_k} \frac{v_{k+l}(y)}{l!} (y' - y)^l + S'_k(y'; y),$$

certain inequalities on the $R_k'^i$ and S_k' being satisfied. We have set $\sigma_k' = k_1 + \cdots + k_r$. Set w(x) = v(u(x)); then (5) and (6) with k = 0 give

(7)
$$w(x') = \sum_{t} \frac{v_t(u(x))}{t!} \left\{ \sum_{\sigma_j \ge 1} \frac{u_j(x)}{j!} (x' - x)^j + R'(x'; x) \right\}^t + S'(u(x'); u(x)),$$

where $S' = S_0'$. Also, by Taylor's formula,

(8)
$$w_k(x') = \sum_{l} \frac{w_{k+l}(x)}{l!} (x'-x)^l + T_k'(x';x).$$

Subtract (8) with k=0 from (7); then as R'^i , S', and T' all approach 0 to the *m*th order as $x' \rightarrow x$, \dagger we may equate coefficients of $(x'-x)^k$ for $\sigma_k \leq m$. \ddagger Thus we find polynomials

$$P_k(u_p^i, v_q)$$
 $(\sigma_p \leq \sigma_k, \sigma_q' \leq \sigma_k; \sigma_k \leq m)$

such that, for any x in Γ ,

(9)
$$w_k(x) = P_k(u_p^i(x), v_q(u(x))).$$

Using (8) gives for $w_k(x')$

(10)
$$w_k(x') = \sum_{l} \frac{P_{k+l}(u_p^i(x), v_q(u(x)))}{l!} (x'-x)^l + T_k'(x'; x).$$

We may also evaluate it by replacing x by x' in (9) and using (5) and (6). (In (6) we replace y' by u(x') and use (5) again.) Each variable in the resulting polynomial P_k consists of a polynomial in quantities R', S', and other quantities; if we multiply out and collect all terms with an R' or an S' as a factor, we obtain

[†] This is clear for S' if m=0; if m>0, then $S'/r_{xx'}^m = \left[S'/\left|u(x')-u(x)\right|^m\right] \cdot \left[\left|u(x')-u(x)\right|/r_{xx'}\right]^m,$ where $|y'-y| = r_{yy'}$, and the last factor is bounded in $U \cdot A$.

[‡] This is easily proved in succession for $\sigma_k = 0, 1, \cdots$ on letting $x' \rightarrow x$.

(11)
$$w_{k}(x') = P_{k} \left[\sum_{s} \frac{u_{p+s}(x)}{s!} (x'-x)^{s}, \\ \sum_{t} \frac{v_{q+t}(u(x))}{t!} \left\{ \sum_{s \geq 1} \frac{u_{j}(x)}{j!} (x'-x)^{j} \right\}^{t} \right] + Q_{k},$$

where Q_k is a polynomial containing an R' or an S' as a factor in each term. It must be understood that $\sum u_{p+s}^i(x)(x'-x)^s/s!$ appears as the variable in the position of u_p^i , etc., in $P_k(u_p^i, v_q)$.

We now prove: If u_k^i $(\sigma_k \leq m; i=1, \dots, \nu)$, v_k $(\sigma'_k \leq m)$ are any numbers, then

(12)
$$P_{k}^{*}(x; u_{p}^{i}, v_{q}) = P_{k} \left[\sum_{s} \frac{u_{p+s}^{i}}{s!} x^{s}, \sum_{t} \frac{v_{q+t}}{t!} \left\{ \sum_{\sigma_{j} \geq 1} \frac{u_{j}}{j!} x^{j} \right\}^{t} \right] - \sum_{l} \frac{P_{k+l}(u_{p}^{i}, v_{q})}{l!} x^{l},$$

considered as a polynomial in x, contains no terms of degree $\leq m - \sigma_k$. To prove this, define the polynomials

(13)
$$u^{i}(x) = \sum_{\sigma_{l} \leq m} \frac{u_{l}^{i}}{l!} x^{l}, \qquad v(y) = \sum_{\sigma'_{l} \leq m} \frac{v_{l}}{l!} (y - u_{0})^{l};$$

then $u_k^i(0) = D_k u^i(0) = u_k^i$, $v_k(u_0) = D_k v(u_0) = v_k$. Set w(x) = v(u(x)). Replacing x', x by x, 0 in (10) and (11) and putting in (12) gives, as $Q_k = 0$ in this case,

(14)
$$P_{k}^{*}(x; u_{p}^{i}, v_{q}) = T_{k}'(x; 0).$$

As $T_k' \to 0$ to the $(m - \sigma_k)$ th order as $x \to 0$, P_k^* cannot contain any terms of degree $\leq m - \sigma_k$.

We return now to the functions $f^i(x)$, g(y), h(x). Set $h_k(x) = P_k(f_p^i(x))$, $g_q(f(x))$. The formulas (10) and (11) hold equally well for the f^i , g, h. Hence using (10), (11), and (12), we find for the remainder for $h_k(x)$

(15)
$$T_k(x'; x) = P_k^*(x' - x; f_p^i(x), g_q(f(x))) + Q_k.$$

To show that h(x) is $(C^m, A, B, h_k(x))$, take any x^0 in B, and set $y^0 = f(x^0)$. As f(x) is continuous in A about B, for each neighborhood V of y^0 there is a neighborhood U(V) of x^0 such that x in $U(V) \cdot A$ implies f(x) in $V \cdot A'$. As y^0 is in B', we may take V so that the $g_k(y)$ are bounded in $V \cdot A'$. We may take U in U(V) so small that the $f_k(x)$ are bounded in $U \cdot A$. Because of the property of P_k^* , we may obviously take δ small enough so that P_k^* satisfies an inequality of the nature of (2). Moreover each term in Q_k contains an $R_p(x'; x)$ or an $S_q(u(x'); u(x))$ with $\sigma_p \leq \sigma_k$ or $\sigma'_q \leq \sigma_k$; as each such remainder satisfies

an inequality (2) (see a recent footnote) and all other quantities entering into Q_k are bounded, we may take δ small enough so that Q_k also satisfies an inequality (2). Hence the same is true of T_k , and the theorem is proved.

5. Differentiability a local property. Our object is to prove

THEOREM 6. Let f(x) be locally (C^m, A, B) (m finite or infinite). For each point x^0 of B there is a neighborhood U of x^0 and functions $f_k^{(x^0)}(x)$ defined in $U \cdot A$ such that f(x) is $(C^m, U \cdot A, U \cdot B, f_k^{(x^0)}(x))$.† Then f(x) is (C^m, A, B) . If the $f_k^{(x^0)}(x)$ for $\sigma_k \leq p$ are independent (at any x for which they are defined) of x^0 , then these functions may be included among the $f_k(x)$ $(\sigma_k \leq m)$.

We may take each neighborhood U as an open n-cube, so small that the $f_k^{(x^0)}(x)$ are bounded in U. A finite or denumerable number of them, C_1, C_2, \cdots , cover B; we may take them so that any one touches at most a finite number of the others, and so that any boundary point of any C_i is interior to some C_i . By hypothesis, to each i there correspond functions $f_k^i(x)$, $\sigma_k \leq m$, such that f(x) is $(C^m, C_i \cdot A, C_i \cdot B, f_k^i(x))$. In each C_i we define the function $\pi_i(x)$ as it was defined in I_i in AE §9; set

(16)
$$\phi_i(x) = \pi_i(x) / \sum_i \pi_i(x)$$

in $C_1+C_2+\cdots$. Set $g^i(x)=\phi_i(x)f(x)$ in $C_i\cdot A$. By Theorem 4, $g^i(x)$ is $(C^m, C_i\cdot A, C_i\cdot B)$, and

(17)
$$g_k^i(x) = \sum_l {k \choose l} D_l \phi_i(x) f_{k-l}^i(x).$$

As the $f_k^i(x)$ are bounded in $C_i \cdot A$ and the $D_i \phi_i(x) \to 0$ to infinite order as x approaches the boundary of C_i (see AE §9), the latter statement is true also of the $g_k^i(x)$. Hence, evidently, if we set $g_k^i(x) = 0$ in $A - C_i \cdot A$, $g^i(x)$ is $(C^m, A, B, g_k^i(x))$. Set

(18)
$$f_k(x) = g_k^{-1}(x) + g_k^{-2}(x) + \cdots,$$

which in any $C_i \cdot A$ is a finite sum; this reduces to f(x) for k = 0. Theorem 3 shows at once that f(x) is $(C^m, A, B, f_k(x))$. (Given x^0 in B, to apply Theorem

[†] Note that "f(x) is locally (C^{∞}, \cdots) " is not the same statement as "f(x) is locally (C^{m}, \cdots) for each m."

[‡] Let C^1, C^2, \cdots be a denumerable set of the cubes which cover B. Express each C^i as the sum of a denumerable number of cubes C_j^i with the following properties: Each C_j^i is, with its boundary, interior to C^i ; the diameter of C_j^i , $\delta(C_j^i)$, is <1/i; $\delta(C_j^i)\to 0$ as $j\to\infty$; the cubes C_j^i approach the boundary of C^i as $j\to\infty$. Now drop out all cubes C_j^i which are interior to larger cubes C_i^i ; the remaining cubes C_1, C_2, \cdots still cover B. To each cube C_j^i corresponds a number $\eta>0$ such that any point set of diameter $<\eta$ having points in common with C_j^i lies interior to some C_k^i , using this fact, it is easily seen that any C_i has points in common with but a finite number of the C_j .

3, we choose δ so small that the points within δ of x^0 lie in but a finite number of the C_{i} .)

To prove the second statement, let $f'_{i}(x)$ denote the common value of $f_i(x)$ for $\sigma_i \leq p$. Differentiating $\sum \phi_i = 1$ gives

(19)
$$\sum_{i} D_{i} \phi_{i}(x) = \begin{cases} 1 & \text{if } l = 0, \\ 0 & \text{if } \sigma_{l} > 0. \end{cases}$$

Define the $f_k(x)$ as before. Take any k with $\sigma_k \leq p$; then (17) and (18) give

$$f_k(x) = \sum_{l} {k \choose l} f'_{k-l}(x) \sum_{i} D_l \phi_i(x) = f'_k(x)$$

in $C_1 + C_2 + \cdots$. It does not matter how $f_k(x)$ is defined outside this set.

The second statement in the theorem does not hold for an arbitrary set of $f_k(x)$, at least using the above method. To see this, take n=m=2, A=B= the interval (-1, 1) of the x_1 -axis, $C_1 = C_2$ = the square with corners $(\pm 1, \pm 1)$; set f = 0,

$$f_{10}^1 = f_{20}^1 = f_{11}^1 = f_{02}^1 = 0, \qquad f_{01}^1 = 1,$$

and $f_{ij}^2 = -f_{ij}^1$ on A. Also set

$$\phi_1(x, y) = \frac{1}{2} + \frac{3}{4}x - \frac{1}{4}x^3, \qquad \phi_2(x, y) = \frac{1}{2} - \frac{3}{4}x + \frac{1}{4}x^3.$$

(Though ϕ_1 and ϕ_2 are not the functions defined above, they have the necessary properties.) We find on A

$$g_{11}^1(x, y) = g_{11}^2(x, y) = \frac{3}{4} - \frac{3}{4}x^2, \qquad f_{11}(x, y) = \frac{3}{2} - \frac{3}{2}x^2 \neq 0.$$

HARVARD UNIVERSITY.

CAMBRIDGE, MASS.