ON STRUCTURES OF INFINITE MODULES

BY R. E. JOHNSON

Much of the literature on the structures of modules applies to those modules which possess a finite basis. The present paper is the development of a structure theory for particular infinite modules with countable bases. Generality of results is not as much the aim of the paper as is the application to problems concerning infinite matrices.

For a commutative field P, Ξ is assumed to be a universal P-module which has a countable P-basis. A principal ideal ring Q which contains P is considered as an operator domain of Ξ . Then the main topic studied is under what conditions submodules of Ξ have proper Q-bases.

In the first place, a complete characterization is given for the proper Q-bases of any Q-submodule of Ξ . This is represented as an infinite matrix, and is called the characteristic matrix of the submodule.

The finite case is studied in the third section. The results obtained are comparable with those of Ingraham and Wolf [3](1) and Chevalley [1]. The principal theorem is that every Q-module which possesses a finite Q-basis has a proper Q-basis.

The concepts of primitivity—defined somewhat as Chevalley defines it—and index play an important role in determining conditions for a Q-module to have a proper Q-basis. In order to find these conditions, the non-regular elements H of Ξ are split from Ξ . The resulting Q-module Ξ/H is regular. Then necessary and sufficient conditions are found for both H and Ξ/H to have a proper Q-basis.

If the operator domain of Ξ be considered as Q/(m), m not a unit of Q, then in the fifth section it is seen that Ξ possesses a proper Q/(m)-basis.

As an application of these results, Ξ is taken to be the set of all vectors over P of order type ω which are finitely nonzero. The total operator domain of Ξ is a certain ring of infinite matrices, \mathfrak{M}_{ω} . Then any element A of \mathfrak{M}_{ω} can be transformed into a direct sum of finite matrices only if Ξ has a proper P[A]-basis.

The algebraic theory assumed herein can be found in almost any book on modern algebra—specific attention is called to MacDuffee [4] and Zassenhaus [5].

1. Introduction. Let P denote a commutative field, and Q a principal ideal

Presented to the Society, April 18, 1942; received by the editors April 28, 1942, and, in revised form, October 13, 1942.

⁽¹⁾ The numbers in brackets refer to the bibliography at the end of the paper.

ring which contains P(2). The universal P-module (linear set over P) of all modules discussed below will be labelled by Ξ . It is assumed to have Q as an operator domain. While Ξ will in general have an infinite number of elements, yet only finite sums are ever considered. Small Greek letters will always denote elements of Ξ , capital Greek letters will stand for subsets of Ξ , and small Latin letters will be used for elements of Q.

For subsets Ξ_1, Ξ_2, \cdots of $\Xi, \Xi_1 \vee \Xi_2 \vee \cdots$ is used to denote the least P-module in Ξ which contains all Ξ_i , while $\Xi_1 \wedge \Xi_2 \wedge \cdots$ denotes the settheoretic intersection of all Ξ_i . If the Ξ_i , $i=1, 2, \cdots$, are P-modules, and $\Xi' = \Xi_1 \vee \Xi_2 \vee \cdots$, then Ξ' is the supplementary sum of the Ξ_i , written

$$\Xi' = \Xi_1 + \Xi_2 + \cdots$$

in case the representation of every element of Ξ' by sums of elements in the Ξ_i is unique. This is equivalent to the condition

$$\Xi_k \wedge (\Xi_1 \vee \Xi_2 \vee \cdots \vee \Xi_{k-1}) = 0, \qquad k = 2, 3, \cdots$$

For $\Xi_2 \subset \Xi_1$, $\Xi_1 - \Xi_2$ is the set of all elements of Ξ_1 not in Ξ_2 .

The universal P-module Ξ is said to have the P-basis (ξ_1, ξ_2, \cdots) , finite or infinite, if

$$\Xi = P[\xi_1, \xi_2, \cdots],$$

this last being the set of all finite combinations $\sum a_i \xi_i$, $a_i \in P$. If the set (ξ_1, ξ_2, \cdots) is P-linearly independent—that is, for every finite sum $\sum a_i \xi_i = 0$, all $a_i = 0$ —this basis is called regular. In this case one has

$$\Xi = P\xi_1 + P\xi_2 + \cdots, P\xi_i = P[\xi_i].$$

The following axiom is assumed throughout the paper.

FUNDAMENTAL AXIOM. The universal module Ξ has a countable P-basis.

A consequence of this axiom (see Ingraham [2]) is

THEOREM 1.1. Every P-submodule Ξ_1 of Ξ has a proper P-basis.

The set (ξ_1, ξ_2, \cdots) is a Q-basis for Ξ_1 in case $\Xi_1 = Q[\xi_1, \xi_2, \cdots]$. The set Ξ_1 is a Q-module in case $Q \in \Xi_1$ for every $\xi \in \Xi_1$.

DEFINITION 1.2. A set of elements (ξ_1, ξ_2, \cdots) is a proper Q-basis of Ξ_1 , and is thus Q-linearly independent, if and only if

$$\xi_i \neq 0, \qquad i = 1, 2, \cdots,$$

and

$$\Xi_1 = Q\xi_1 + Q\xi_2 + \cdots.$$

⁽²⁾ As a particular instance of these concepts, we can consider P as the rational field and Q the ring P[x] of all polynomials in the indeterminate x with coefficients in P. The first part of S 6 might well be read first to give one a concrete example of the sets P and Z.

An element a of Q is an annihilator of ξ if $a\xi = 0$. If a_1 and a_2 are two annihilators of ξ , then $b_1a_1 + b_2a_2$ is an annihilator of ξ for any two elements b_1 and b_2 of Q. Thus the set of all annihilators of ξ form an ideal. Since Q is by assumption a principal ideal ring, this ideal is principal of the form (h). As h divides all annihilators of ξ , it will be called a minimum annihilator of ξ . It is unique up to a unit factor.

DEFINITION 1.3. If $a\xi = 0$ implies a = 0, then ξ is called regular. If every nonzero element of a Q-module Ξ_1 is regular, then Ξ_1 is called regular.

If ξ and η are two non-regular elements of Ξ with minimum annihilators a_1 and a_2 , respectively, then for any elements b_1 and b_2 of Q, $b_1\xi+b_2\eta$ is annihilated by a_1a_2 . Thus the set of all non-regular elements of Ξ forms a Q-module which we shall label H. Suppose (η_1, η_2, \cdots) is a P-basis for H, with h_i the minimum annihilator of η_i . Then we have defined a set (p_1, p_2, \cdots) of primes of Q, which are all the distinct prime factors of the h_i , $i=1,2,\cdots$ (p and q are not distinct if p=qc, c a unit). Now any element η of H is of the form $\eta = \sum_{i=1}^n a_i \eta_i$, $a_i \in P$, so η is annihilated by some product of the primes p_i . For any element p of Q, let H_p be the set of all elements of H annihilated by some power of p. Then H_p is a Q-module.

THEOREM 1.4.
$$H = H_{p_1} + H_{p_2} + \cdots$$
.

To prove this, let η be any element of H, and let $\prod_{i=1}^{n} p_i^{t_i}$ be its minimum annihilator. Then there exist elements s_i such that

$$\sum_{i=1}^{n} s_{i} \prod_{i=1, i \neq i}^{n} p_{i}^{t_{i}} = 1.$$

Ιf

$$\eta_j = s_j \prod_{i=1, i \neq j}^n p_i^{t_i} \eta,$$

then $\eta_i \in H_{p_i}$, $\eta = \eta_1 + \eta_2 + \cdots + \eta_n$.

As an immediate consequence of this theorem, we have that for any Q-module $H_1 \subset H$,

$$H_1 = H_1 \wedge H_{p_1} + H_1 \wedge H_{p_2} + \cdots$$

Any P-module Ξ_1 is fundamentally an abelian group, so that the quotient group Ξ_1/Ξ_2 is well defined for any P-submodule Ξ_2 of Ξ_1 , and is itself a P-module. Likewise, if Ξ_1 and Ξ_2 are Q-modules with $\Xi_2 \subset \Xi_1$, then Ξ_1/Ξ_2 is a Q-module.

If H_1 is the set of all non-regular elements of the Q-module Ξ_1 , then Ξ_1/H_1 has elements of the form $(\xi+H_1)$ (this should not be confused with the supplementary sum—it means the set of all elements of the form $\xi+\eta$, $\eta\in H_1$) for $\xi\in\Xi_1$. Suppose $a(\xi+H_1)=(H_1)$ for some element $a\in Q$, $\xi\in\Xi_1-H_1$. Then $a\xi\in H_1$ so that a=0. Thus Ξ_1/H_1 is a regular Q-module.

2. Invariants of proper Q-bases. Let Ξ_1 , a Q-module, have a proper Q-basis $(\eta_1, \eta_2, \dots, \xi_1, \xi_2, \dots)$, the ξ_i being regular elements, and η_i having minimum annihilator q_i , $i=1, 2, \dots$. If $H_1=Q[\eta_1, \eta_2, \dots]$, $\Omega_1=Q[\xi_1, \xi_2, \dots]$, then $\Xi_1=H_1+\Omega_1$, $H_1\subset H$.

DEFINITION 2.1. The infinite matrix $(n_{rs}; r=0, 1, 2, \cdots; s=1, 2, \cdots)$, in which n_{rs} is the number of the q_i , $j=1, 2, \cdots$, divisible by p_r^s but not by p_r^{s+1} for $r, s=1, 2, \cdots$, and n_{0s} is the cardinal number of the set (ξ_1, ξ_2, \cdots) , $s=1, 2, \cdots$, is called the characteristic matrix (3) of the proper Q-basis $(\eta_1, \eta_2, \cdots, \xi_1, \xi_2, \cdots)$. The elements of this matrix are integers or \aleph_0 .

THEOREM 2.2. The characteristic matrix is an invariant of the class of all proper Q-bases of Ξ_1 .

To prove this, let $(\eta_{j1}, \eta_{j2}, \dots, \xi_{j1}, \xi_{j2}, \dots)$, j=1, 2, be two proper Q-bases of Ξ_1 , with the ξ_{ji} regular and η_{ji} annihilated minimally by q_{ji} , $i=1, 2, \dots$. The number of elements of the set (q_{j1}, q_{j2}, \dots) divisible by p_r^s but not by p_r^{s+1} is denoted by n_{jrs} , r, $s=1, 2, \dots$. The cardinal number of the set $(\xi_{j1}, \xi_{j2}, \dots)$ is denoted by n_{j0s} , so that $n_{j01} = n_{j02} = \dots$. We shall first show that $n_{111} = n_{211}$.

Select r_{ij} from Q so that $q_{ij} = p_1^{t_{ij}} r_{ij}$ with the greatest common divisor of p_1 and r_{ij} , denoted (p_1, r_{ij}) , equal to 1. The nonzero elements of the set $(r_{i1}, r_{i2}, r_{i2}, r_{i2}, \cdots)$ are Q-linearly independent: let us relabel these nonzero elements $(\alpha_{i1}, \alpha_{i2}, \cdots)$. Then

$$(1) Q\alpha_{11} + Q\alpha_{12} + \cdots = Q\alpha_{21} + Q\alpha_{22} + \cdots,$$

this being the set H_{p_1} of all elements of H_1 annihilated by some power of p_1 . If $n_{111} = n_{211} = \aleph_0$, the first step of the proof is concluded. Thus assume $n_{111} = n < \aleph_0$. Let us separate the α_{ji} into the sets $(\beta_{j1}, \beta_{j2}, \cdots), (\gamma_{j1}, \gamma_{j2}, \cdots)$ with the first set being all the α_{ji} annihilated by p_1 , and the second set the remainder of the α_{ji} . It is observed that no member of the set $(\beta_{11}, \beta_{12}, \cdots, \beta_{1n})$ could be in the module $Q[\gamma_{21}, \gamma_{22}, \cdots]$. For if

$$\beta_{11} = \sum_{i=1}^t c_i \gamma_{2i},$$

then each c_i must be divisible by p_1 as p_1 annihilates β_{11} , but does not annihilate any γ_{ji} . Thus $\beta_{11} = p_1 \gamma$. However, $\gamma \in Q[\beta_{11}, \beta_{12}, \dots, \gamma_{11}, \gamma_{12}, \dots]$, say

$$\gamma = \sum_{i=1}^s d_i \beta_{1i} + \sum_{i=1}^r e_i \gamma_{1i},$$

so that $\beta_{11} = \sum_{i=1}^{r} p_i e_i \gamma_{1i}$, which is impossible. From (1), we have

⁽³⁾ This bears no relationship with the ordinary concept of characteristic matrix. The name was chosen because of the connection between this matrix and the characteristic divisors of certain infinite matrices.

$$\beta_{1i} = \sum_{j=1}^{m_i} b_{1ij}\beta_{2j} + p_1\delta_{1i}, \quad \delta_{1i} \in Q[\gamma_{21}, \gamma_{22}, \cdots],$$

$$\beta_{2i} = \sum_{j=1}^{n} b_{2ij}\beta_{1j} + p_1\delta_{2i}, \quad \delta_{2i} \in Q[\gamma_{11}, \gamma_{12}, \cdots].$$

A substitution yields, if we let m be the maximum m_i , and $b_{1ij} = 0$, $m_i < j \le m$,

(2)
$$\beta_{1i} = \sum_{j=1}^{m} \sum_{k=1}^{n} b_{1ij} b_{2jk} \beta_{1k} + p_{1} \delta_{1},$$
$$\beta_{2i} = \sum_{j=1}^{n} \sum_{k=1}^{m} b_{2ij} b_{1jk} \beta_{2k} + p_{1} \delta_{2}.$$

From the Q-linear independence of the sets $(\beta_{i1}, \beta_{i2}, \dots, \gamma_{i1}, \gamma_{i2}, \dots)$ one must have $\rho_1 \delta_1 = \rho_1 \delta_2 = 0$. If the matrices B_1 and B_2 are defined as

$$B_1 = (b_{1rs}; r = 1, \dots, n; s = 1, \dots, m),$$

 $B_2 = (b_{2rs}; r = 1, \dots, m; s = 1, \dots, n),$

then from (2) one can conclude (using I_k as the unit matrix of order k^2)

$$B_1B_2=I_n, \qquad B_2B_1=I_m.$$

However B_1 and B_2 have elements in the field $Q/(p_1)$, so that m and n must be equal. Also, from (2), for t > n,

$$\beta_{2i} = \sum_{i=1}^{n} \sum_{k=1}^{m} b_{2ij} b_{1jk} \beta_{2k}$$

which is impossible, as the set $(\beta_{21}, \beta_{22}, \cdots)$ is Q-linearly independent. The conclusion is that there are n elements in the set $(\beta_{21}, \beta_{22}, \cdots)$, so that $n_{111} = n_{211}$.

In order to show that $n_{11t} = n_{21t}$, consider the set $p_1^{t-1}H_{p_1}$, which has the two proper (if we exclude the zero elements) Q-bases $(p_1^{t-1}\alpha_{j1}, p_1^{t-1}\alpha_{j2}, \cdots)$, j=1, 2. From the paragraph above, the number of nonzero elements annihilated by p_1 in each basis is the same. This number must be the number of q_{ji} divisible exactly by p_1^t —so that $n_{11t} = n_{21t}$.

We need only to show that $n_{101} = n_{201}$ to complete the proof. Let

$$\xi_{1j} = \sum_{k} b_{1jk}\eta_{2k} + \sum_{k=1}^{m_{1j}} d_{1jk}\xi_{2k}, \qquad j = 1, 2, \cdots, n_{101},$$

$$\xi_{2j} = \sum_{k} b_{2jk}\eta_{1k} + \sum_{k=1}^{m_{2j}} d_{2jk}\xi_{1k}, \qquad j = 1, 2, \cdots, n_{201}.$$

Case 1. Let $n_{101} = \aleph_0$, n_{201} finite: if m be the maximum m_{2j} , $j = 1, 2, \dots, n_{201}$, then $\Xi_1 \subset Q[\eta_{11}, \eta_{12}, \dots, \xi_{11}, \xi_{12}, \dots, \xi_{1m}]$ which is impossible.

Case 2. Let n_{101} , n_{201} both be finite: then there exists an element $c \in Q$ such that

$$c\xi_{1j}=c\sum_{i=1}^{n_{201}}d_{1ji}\xi_{2i}, \qquad j=1, 2, \cdots, n_{101},$$

$$c\xi_{2j}=c\sum_{i=1}^{n_{101}}d_{2ji}\xi_{1i}, \qquad i=1, 2, \cdots, n_{201}.$$

If $D_k = (d_{krs})$, k = 1, 2, then by the method above

$$cD_1D_2 = cI_{n_{101}}, \quad cD_2D_1 = cI_{n_{201}}.$$

As Q can always be imbedded in a field, we can consider D_1 and D_2 as having elements in a field, so that $n_{101} = n_{201}$. Thus the characteristic matrices of the two bases must be equal.

Consider again the proper Q-basis for Ξ_1 given at the beginning of this section. If $q_1 = cp_{i_1}^{i_1} \cdots p_{i_n}^{i_n}$, c a unit and all $t_i \ge 1$, then let

$$\eta_{11} = p_{i_2}^{t_2} \cdots p_{i_n}^{t_n} \eta_1, \quad \eta_{12} = p_{i_1}^{t_1} p_{i_3}^{t_3} \cdots p_{i_n}^{t_n} \eta_1, \cdots, \quad \eta_{1n} = p_{i_1}^{t_1} \cdots p_{i_{n-1}}^{t_{n-1}} \eta_1.$$

We see that $Q\eta_1 = Q\eta_{11} + Q\eta_{12} + \cdots + Q\eta_{1n}$ where each η_{1i} is minimally annihilated by a power of a prime. Now this can be done for every η_i , so it is apparent that Ξ_1 has a proper Q-basis $(\beta_1, \beta_2, \cdots, \xi_1, \xi_2, \cdots)$, with the ξ_i regular and the β_i possessing powers of primes as minimum annihilators.

With the use of this basis, the completeness of the invariant characteristic matrix (n_{rs}) will be shown by the following

THEOREM 2.3. For any set (r_1, r_2, \cdots) of elements of Q such that the number of these elements divisible by p_r^s but not by p_r^{s+1} is n_{rs} , there exists a proper Q-basis $(\alpha_1, \alpha_2, \cdots, \xi_1, \xi_2, \cdots)$ of Ξ_1 , with r_i the minimum annihilator of α_i , and n_{01} the number of elements in the set (ξ_1, ξ_2, \cdots) .

If $r_1 = cp_{i_1}^{i_1} \cdots p_{i_k}^{i_k}$, all $t_i > 0$ and c a unit, then let j_1 be the minimum integer such that β_{i_1} has minimum annihilator $p_{i_1}^{i_1}$, and, in general, let j_s be the minimum integer such that β_{i_s} has minimum annihilator $p_{i_s}^{i_s}$. Now define $\alpha_1 = \beta_{i_1} + \beta_{i_2} + \cdots + \beta_{i_k}$, so that α_1 has minimum annihilator r_1 . Discard $\beta_{i_1}, \beta_{i_2}, \cdots, \beta_{i_k}$ from the set $(\beta_1, \beta_2, \cdots)$, and with the remaining set carry through a similar process for r_2 , obtaining α_2 . From Theorem 2.2, there will be precisely enough elements in the set $(\beta_1, \beta_2, \cdots)$ to carry this process to completion, using all the $r_i^{i_s}$. We can use the same regular elements in the new basis as in the old one. This completes the proof.

COROLLARY 2.4. If all the elements of H_p are annihilated by some power of the prime p, and H_p has a proper Q-basis, then the number of elements in any proper Q-basis of H_p is an invariant of H_p .

If a proper Q-basis has an infinite number of elements, obviously any Q-basis has an infinite number of elements. Suppose (η_1, \dots, η_n) is a proper Q-basis of H_p , and $(\alpha_1, \dots, \alpha_m)$ any Q-basis. Then

$$\eta_i = \sum_{j=1}^m a_{ij}\alpha_j, \qquad \alpha_j = \sum_{k=1}^n b_{jk}\eta_k,$$

so that

$$\sum_{j=1}^{m} a_{ij}b_{jk} \equiv 1 \mod p \quad \text{if} \quad j = k,$$

$$\equiv 0 \mod p \quad \text{otherwise,}$$

which is possible only if $m \ge n$. This leads to

THEOREM 2.5. If H_p has a proper Q-basis, then the number of elements in any Q-basis cannot be less than the number of elements in a proper Q-basis.

3. The finite case. Before the general case is studied, it is necessary to consider those submodules of Ξ which have finite Q-bases.

LEMMA 3.1. If Ξ_1 has a finite Q-basis, and $\Xi_2 \subset \Xi_1$, Ξ_2 a Q-module, then Ξ_2 has a finite Q-basis. The Q-basis for Ξ_2 can be chosen so as not to have more elements than the given Q-basis for Ξ_1 .

To prove this, let $(\xi_1, \xi_2, \dots, \xi_n)$ be a Q-basis of Ξ_1 . For any $m \le n$, there exists a maximum ideal $\mathfrak{a}_m \subset Q$ such that

$$a_m \xi_m \equiv 0 \mod \Xi_2 \bigvee Q[\xi_1, \xi_2, \cdots, \xi_{m-1}].$$

As Q is a principal ideal ring, $a_m = (s_m)$. Select $\eta_m \in \Xi_2$ so that

$$\eta_m \equiv s_m \xi_m \bmod Q[\xi_1, \xi_2, \cdots, \xi_{m-1}], \qquad \eta_m = 0 \quad \text{if} \quad s_m = 0.$$

Suppose $\eta \in \Xi_2$, so that $\eta = \sum_{i=1}^k a_i \xi_i$ with $a_k \xi_k \neq 0$. Then

$$a_k \xi_k \equiv \eta \mod Q[\xi_1, \xi_2, \cdots, \xi_{k-1}],$$

which implies

$$\eta \equiv b_k \eta_k \mod Q[\xi_1, \xi_2, \cdots, \xi_{k-1}].$$

Thus $\eta - b_k \eta_k \in Q[\xi_1, \xi_2, \dots, \xi_{k-1}]$, and by induction $\eta = \sum_{i=1}^k b_i \eta_i$. This shows that $(\eta_1, \eta_2, \dots, \eta_n)$ is a Q-basis for Ξ_2 , and establishes the lemma.

If $(\xi_1, \xi_2, \dots, \xi_n)$ is a P-basis for the Q-module Ξ_1 , then for any element $\xi \in \Xi_1$ and any element $b \in Q$, b not a unit, the set $(\xi, b\xi, \dots, b^n\xi)$ must be P-linearly dependent. Thus $\sum_{i=1}^n a_i b^i \xi = 0$ for some elements $a_i \in P$; we have

LEMMA 3.2. If Ξ_1 is a Q-module with a finite P-basis, then $\Xi_1 \subset H$.

LEMMA 3.3. If Ξ_1 is a Q-module with a finite Q-basis, and $\Xi_1 \subset H$, then Ξ_1 has a proper Q-basis.

To prove this, let $\Xi_1 = Q[\xi_1, \xi_2, \dots, \xi_n]$ with ξ_i annihilated minimally by r_i , so that $\prod_{i=1}^n r_i$ annihilates Ξ_1 . Let (p_1, p_2, \dots, p_m) be all the distinct prime factors of the r_i , $i=1, 2, \dots, n$. If H_i denotes the set of all elements of Ξ_1 annihilated by some power of p_i , then from Theorem 1.4,

$$\Xi_1 = H_1 + \dot{H}_2 + \cdots + H_m$$

We will prove that each H_i has a proper Q-basis, which will imply a proper Q-basis for Ξ_1 .

Denote by t_1 the minimum integer such that $p_1^{t_1}H_1=0$. Then there exists an element $\eta_1 \in H_1$ for which $p_1^{t_1}$ is the minimum annihilator. Recursively, if t_k is the minimum integer such that $p_1^{t_k}H_1\equiv 0 \mod Q[\eta_1, \eta_2, \cdots, \eta_{k-1}]$, then there exists an element $\eta_k\in H_1$ which has $p_1^{t_k}$ as minimum annihilator $\mod Q[\eta_1, \eta_2, \cdots, \eta_{k-1}]$. It follows that $t_1 \geq t_2 \geq \cdots \geq t_k$.

Assume that the set $(\eta_1, \eta_2, \dots, \eta_{k-1})$ is *Q*-linearly independent, and that $p_1^{t_k}\eta_k\neq 0$. From above, we must have

$$p_1^{i_k} \eta_k = \sum_{i=1}^{k-1} a_i \eta_i.$$

If this equation be multiplied by the $(t_{k-1}-t_k)$ th power of p_1 , it is apparent that $p_1^{t_k}|a_{k-1}$ ($p_1^{t_k}$ divides a_{k-1}). Similarly, it can be verified that $p_1^{t_k}|a_i$, $i=1, 2, \cdots, k-1$, so that $a_i=b_ip_1^{t_k}$. Then if

$$\bar{\eta}_k = \eta_k - \sum_{i=1}^{k-1} b_i \eta_i,$$

the set $(\eta_1, \eta_2, \dots, \eta_{k-1}, \bar{\eta}_k)$ is Q-linearly independent. If this process were not finite, we would have a submodule of Ξ_1 containing an infinite proper Q-basis. This is not possible in view of Theorem 2.5 and Lemma 3.1.

THEOREM 3.4. If Ξ_1 is a Q-module with a finite Q-basis, then Ξ_1 has a proper Q-basis.

This follows from Lemma 3.3 if all the elements of Ξ_1 are non-regular. Thus let $H_1 = \Xi_1 \wedge H \neq 0$, so that Ξ_1/H_1 is regular. As Ξ_1 has a finite Q-basis, so must Ξ_1/H_1 : denote this basis by $(\xi_1, \xi_2, \dots, \xi_n)$, all $\xi_i \neq 0$.

Assume every Q-module contained in Ξ_1/H_1 which is generated by k or fewer elements has a proper (finite) Q-basis. Also assume that the set $(\xi_1, \, \xi_2, \, \cdots, \, \xi_k)$ is Q-linearly independent, and that ξ_{k+1} has a nonzero minimum annihilator $q_{k+1} \mod Q[\xi_1, \, \xi_2, \, \cdots, \, \xi_k]$. Then there exist elements $q_1, \, \cdots, \, q_k \in Q$ such that

$$\sum_{i=1}^{k+1} q_i \xi_i = 0, \qquad (q_1, q_2, \cdots, q_{k+1}) = 1.$$

In the case under consideration, it is well known (see MacDuffee [4,

p. 227]) that there exists a matrix $C = (c_{rs})$ of $(k+1)^2$ elements with $c_{k+1j} = q_j$, $j = 1, 2, \dots, k+1$, such that |C| = 1 and C has a unique inverse $B = (b_{rs})$. Let

$$\alpha_i = \sum_{i=1}^{k+1} c_{ij} \xi_j, \qquad i = 1, 2, \cdots, k.$$

Remembering that $\sum_{i=1}^{k+1} c_{k+1i} \xi_i = 0$, we see that

$$\sum_{j=1}^{k} b_{ij}\alpha_{j} = \sum_{s,t=1}^{k+1} b_{is}c_{st}\xi_{t} = \xi_{i}, \qquad i = 1, 2, \cdots, k+1.$$

Thus $Q[\alpha_1, \alpha_2, \dots, \alpha_k] = Q[\xi_1, \xi_2, \dots, \xi_{k+1}]$. By assumption, this set has a proper Q-basis. An obvious induction leads to a proper Q-basis for Ξ_1/H_1 . If this basis is $(\beta_1+H_1, \beta_2+H_1, \dots, \beta_t+H_1)$, then

$$\Xi_1 = H_1 + Q\beta_1 + Q\beta_2 + \cdots + Q\beta_t,$$

and the theorem follows.

4. The general case. We now turn to the consideration of any Q-submodule of Ξ , and develop conditions under which it possesses a proper Q-basis.

DEFINITION 4.1. For the Q-modules Ξ_1 , Ξ_2 with $\Xi_2 \subset \Xi_1$, Ξ_2 is called primitive in Ξ_1 if, for every $\xi \in \Xi_1$ such that $p\xi \in \Xi_2$, $p\xi \neq 0$, there exists an element $\xi_1 \in \Xi_1$ for which $p\xi_1 = 0$, and $\xi + \xi_1 \in \Xi_2$.

DEFINITION 4.2. If Ξ_1 is a Q-module, then the index of an element $\xi \in \Xi_1$, written $i(\xi, \Xi_1)$, is defined as follows:

(1) For $\xi \in \Xi_1 \wedge H$, ξ minimally annihilated by $\prod_{j=1}^k p_j^{i_j}$, p_j a prime of Q and $t_j \ge 1$ for $j = 1, 2, \dots, k$, $i(\xi, \Xi_1)$ is the maximum integer s for which there exists an element $\eta \in \Xi_1$ such that

$$\prod_{j=1}^{k} p_{j}^{t_{j}-1} \xi = \prod_{j=1}^{k} p_{j}^{s_{j}+t_{j}-1} \eta, \qquad \sum_{j=1}^{k} s_{j} = s.$$

(2) For ξ regular, $i(\xi, \Xi_1)$ is the maximum integer s for which there exist primes q_1, q_2, \dots, q_n in Q and $\eta \in \Xi_1$ such that

$$\xi \equiv \prod_{i=1}^k q_i^{s_i} \eta \mod \Xi_1 \wedge H, \qquad \sum_{i=1}^k s_i = s.$$

If in either case this maximum does not exist, $i(\xi, \Xi_1) = \infty : i(0, \Xi_1) = 0$.

If Ξ_1 has non-regular component H_1 , and $\eta \in H_1$, then obviously $i(\eta, H_1) = i(\eta, \Xi_1)$. Also, for $\Xi_2 \subset \Xi_1$, $\eta \in \Xi_2$, $i(\eta, \Xi_2) \leq i(\eta, \Xi_1)$.

THEOREM 4.3. Let Ξ_1 be a Q-module, and $\Xi_1 \wedge H = H_1 + H_2 + \cdots$, $H_j = \Xi_1 \wedge H_{pj}$. Then for any $\eta \in \Xi_1 \wedge H$ so that $\eta = \eta_1 + \eta_2 + \cdots + \eta_n$, $\eta_j \in H_j$,

$$i(\eta, \Xi_1) = \sum_{j=1}^n i(\eta_j, \Xi_1).$$

To prove this, we first refer back to Theorem 1.4. If η has minimum annihilator $\prod_{i=1}^{n} p_i^{t_i}$, then there exist elements $a_i \in Q$ such that

(1)
$$\sum_{i=1}^{n} a_{i} \prod_{i=1, i \neq i}^{n} p_{i}^{t_{i}} = 1, \qquad \eta_{j} = a_{j} \prod_{i=1, i \neq i}^{n} p_{i}^{t_{i}} \eta.$$

If $i(\eta, \Xi_1) = s < \infty$, then there exists an $\alpha \in \Xi_1$ such that

(2)
$$\prod_{i=1}^{n} p_{i}^{t_{i}-1} \eta = \prod_{i=1}^{n} p_{i}^{t_{i}+s_{i}-1} \alpha, \qquad \sum_{i=1}^{n} s_{i} = s.$$

From (1) and (2) we derive

$$p_j^{t_j-1}\eta_j = p_j^{t_j+s_j-1} \left(a_j \prod_{i=1, i \neq j}^n p_i^{t_i+s_i} \alpha \right),$$

so that $i(\eta_i, \Xi_1) \geq s_i$. Thus

$$i(\eta, \Xi_1) \leq \sum_{i=1}^n i(\eta_i, \Xi_1).$$

On the other hand, let $i(\eta_i, \Xi_1) = r_i$, so that

$$p_j^{t_j} \eta_j = p_j^{r_j + t_j - 1} \alpha_j, \qquad j = 1, 2, \cdots, n.$$

From (1), this implies

(3)
$$a \prod_{i=1}^{n} p_{i}^{t_{i}-1} \eta = \sum_{i=1}^{n} p_{j}^{r_{j}+t_{j}-1} \alpha_{j}, \qquad a = \sum_{i=1}^{n} a_{j} \prod_{i=1}^{n} p_{i}.$$

As $(a, p_i) = 1, j = 1, 2, \dots, n, a\bar{a} + \bar{p}p_1p_2 \dots p_n = 1$ for some $\bar{a}, \bar{p} \in Q$. If we define c_i and $d_i, j = 1, 2, \dots, n$, as solutions of the equations

$$c_j \prod_{i=1,i\neq j}^n p_i^{r_i+t_i} + d_j p_j^{t_j} = 1,$$
 $j = 1, 2, \dots, n,$

then for $\beta_i = c_i \alpha_i$, $j = 1, 2, \dots, n$ it follows that

$$\alpha_j = \prod_{i=1, i \neq j}^n p_i^{r_i + t_i} \beta_j, \qquad j = 1, 2, \cdots, n.$$

A substitution of this in (3) yields

$$\prod_{i=1}^n p_i^{t_i-1} \eta = \prod_{i=1}^n p_i^{r_i+t_i-1} \left(\bar{a} \sum_{i=1}^n \prod_{i=1}^n p_i \alpha_i \right),$$

so that

$$i(\eta, \Xi_1) \geq \sum_{i=1}^n i(\eta_i, \Xi_1).$$

In case $i(\eta, \Xi_1) = \infty$, it will be possible to find an α in (2) for which s exceeds any given number. Thus it must be possible to find an α for which one of the s_i exceeds any given number. This implies $i(\eta_i, \Xi_1) = \infty$ for some value j. Thus the theorem is seen to hold in all cases.

If $\eta \in H_p$, p a prime, and η minimally annihilated by p^t , then for any $a \in Q$, $a = p^r a_1$ with $(a_1, p) = 1$,

$$i(a\eta, H_p) = i(\eta, H_p) + r$$

in case r < t. This immediately leads to the following

COROLLARY 4.4. For $\eta \in \Xi_1 \wedge H$, η minimally annihilated by $\prod_{i=1}^n p_i^{t_i}$, and $a = a_1 \prod_{i=1}^m p_i^{t_i}$, a_1 a unit, $m \ge n$, and $a_1 \ne 0$,

$$i(a\eta, \Xi_1) = i(\eta, \Xi_1) + \sum_{j=1,r_j < t_j}^n r_j.$$

For a regular element ξ of Ξ_1 ,

$$i(a\xi, \Xi_1) = i(\xi, \Xi_1) + \sum_{i=1}^m r_i.$$

The importance of the concepts of primitivity and index in connection with our problem is seen in the next theorem.

THEOREM 4.5. Let the Q-module Ξ_2 be primitive in the Q-module Ξ_1 , and either $\Xi_1 \subset H_p$ for some prime p or Ξ_1 be regular. Then, for any element ξ of $\Xi_1 - \Xi_2$ such that $i(\xi, \Xi_1/\Xi_2) = 0$ and ξ has the same minimum annihilator mod Ξ_2 and mod 0, $\Xi_2 + Q\xi$ is primitive in Ξ_1 .

In the first place, if $\Xi_1 \subset H_p$, then ξ will have some power of p, say p^t , as minimum annihilator. By assumption, $a\xi \equiv 0 \mod \Xi_2$ implies $a\xi = 0$, so that the sum $\Xi_2 + Q\xi$ is supplementary. Let p^s be the minimum annihilator $\mod (\Xi_2 + Q\xi)$ of an element $\eta \in \Xi_1$, with $p^s\eta \not\equiv 0 \mod \Xi_2$. Thus $p^s\eta \equiv a\xi \mod \Xi_2$ for some $a \in Q$, so that $i(a\xi, \Xi_1/\Xi_2) \ge s$. If $a = bp^r$, (b, p) = 1, then $i(a\xi, \Xi_1/\Xi_2) = r$ by Corollary 4.4. Thus $s \le r$, so that $p^s(\eta - p^{r-s}b\xi) \equiv 0 \mod \Xi_2$. As Ξ_2 is primitive in Ξ_1 , there must exist an element ξ_1 of Ξ_1 for which $p^s\xi_1 = 0$ and $\eta - p^{r-s}b\xi + \xi_1 \in \Xi_2$. This last can be written $\eta + \xi_1 \in \Xi_2 + Q\xi$, which establishes the primitivity of $\Xi_2 + Q\xi$ in Ξ_1 .

In case Ξ_1 is regular, let η be a nonzero element of Ξ_1 for which $a\eta \equiv 0 \mod \Xi_2 + Q\xi$, $a \neq 0$. This means that there exists an element $b \in Q$ such that $a\eta \equiv b\xi \mod \Xi_2$. If (a, b) = d = ra + sb, $b = db_1$, $a = da_1$, then let $\xi_2 = r\xi + s\eta$. We then see that $a\xi_2 \equiv d\xi \mod \Xi_2$, or, because of the primitivity of Ξ_2 in Ξ_1 ,

 $\xi \equiv a_1 \xi_2 \mod \Xi_2$. As $i(\xi, \Xi_1/\Xi_2) = 0$, a_1 must be a unit of Q so that $a \mid b$ and $\eta \equiv a_1^{-1}b_1 \xi \mod \Xi_2$. Thus $\eta \in \Xi_2 + Q\xi$ and the theorem is established.

Now suppose Ξ_1 is a Q-module, and Ξ_1/H_1 has a proper Q-basis, H_1 being the set of all non-regular elements of Ξ_1 . Let this basis be $(\xi_1+H_1, \xi_2+H_1, \cdots)$. If $\sum_{i=1}^n a_i \xi_i \equiv 0 \mod H_1$, then $a_i \xi_i \equiv 0 \mod H_1$, $i=1, 2, \cdots, n$, so that $\xi_i = 0$, $i=1, 2, \cdots, n$. Thus

$$\Xi_1 = H_1 + Q\xi_1 + Q\xi_2 + \cdots,$$

and the following theorem is seen to hold in view of Theorem 1.4.

THEOREM 4.6. If Ξ_1 is a Q-module, then Ξ_1 has a proper Q-basis if and only if

- (1) each nonzero $\Xi_1 \wedge H_{p_i}$ has a proper Q-basis, $i = 1, 2, \cdots$, and
- (2) $\Xi_1/\Xi_1 \wedge H$ has a proper Q-basis in case $\Xi_1 \neq \Xi_1 \wedge H$.

THEOREM 4.7. If Ξ_1 has a proper Q-basis, then all the elements of Ξ_1 have finite index in Ξ_1 .

To establish this, suppose first that $i(\eta, \Xi_1) = \infty$ for an element $\eta \in H \land \Xi_1$. From Theorem 4.3, we see that there must exist an integer r and an element $\alpha \in H_{p_r} \land \Xi_1$ such that $i(\alpha, H_{p_r} \land \Xi_1) = \infty$. Let $H_{p_r} \land \Xi_1 = Q\eta_1 + Q\eta_2 + \cdots$, and $\alpha = \sum_{i=1}^n a_i \eta_i$. By assumption, if α has minimum annihilator p_r^t , there exist elements $\alpha_i \in H_{p_r} \land \Xi_1$ and integers $t_1 < t_2 < \cdots$ such that

$$p_r^{t-1}\alpha = p_r^{t_j}\alpha_j, j = 1, 2, \cdots.$$

If $\alpha_i = \sum_{i=1}^{s_i} a_{ii} \eta_i$, then

$$p_r^{t-1}a_i\eta_i = p_r^{t_j}a_{ii}\eta_i, \qquad i = 1, 2, \dots, n; j = 1, 2, \dots,$$

However, each η_i is annihilated by some power of p_r : therefore this last equation implies that $p_r^{i-1}\alpha = 0$, which contradicts our assumptions. Thus no non-regular element of Ξ_1 can have infinite index.

Now assume $i(\xi, \Xi_1) = \infty$ for a regular element ξ of Ξ_1 . Let a proper Q-basis of Ξ_1 be $(\eta_1, \eta_2, \dots, \xi_1, \xi_2, \dots)$, with the $\eta_i \in H$ and the ξ_i regular. Thus $p\xi = p\sum_{i=1}^n a_i \xi_i$, $p \neq 0$. By assumption, there must exist nonzero elements q_j , $r_j \in Q$ and $\beta_j \in \Xi_1$ such that $r_j \xi = r_j q_j \beta_j$, $j = 1, 2, \dots$, with the number of prime factors of q_j increasing with j. If

$$r_j\beta_j=r_j\sum_{i=1}^{s_j}a_{ji}\xi_i,$$
 $j=1,2,\cdots,$

then

$$pr_j \sum_{i=1}^n a_i \xi_i = pq_j r_j \sum_{i=1}^{s_j} a_{ji} \xi_i,$$
 $i = 1, 2, \cdots.$

Thus

$$pr_i(a_i - q_i a_{ii})\xi_i = 0,$$
 $i = 1, 2, \dots, n; j = 1, 2, \dots,$

so that

$$a_i = q_i a_{ii}, i = 1, 2, \dots, n; j = 1, 2, \dots$$

If a_i has t_i prime factors, then j can be taken so large that q_i has more than t_i prime factors, $i = 1, 2, \dots, n$. This is impossible, so that no regular element of Ξ_1 can have infinite index. This establishes the theorem.

THEOREM 4.8. Let H_1 be a Q-module with the property that every element of H_1 is annihilated by some power of the prime p. Then H_1 has a proper Q-basis if and only if for every primitive set $H_2 \subset H_1$, H_2 having a finite Q-basis, all the elements of H_1/H_2 have finite index.

To prove the necessity of this condition, let $H_1 = Q\eta_1 + Q\eta_2 + \cdots$ and define $H_1^k = Q\eta_1 + Q\eta_2 + \cdots + Q\eta_k$. For any Q-submodule H_2 of H_1 which possesses a finite Q-basis, there exists an integer n such that $H_2 \subset H_1^n$. Thus

$$H_1^n/H_2 = Q\alpha_1 + Q\alpha_2 + \cdots + Q\alpha_m$$

by Theorem 3.4. This shows that

$$H_1/H_2 = Q\alpha_1 + Q\alpha_2 + \cdots + Q\alpha_m + Q\eta_{n+1} + Q\eta_{n+2} + \cdots$$

and thus all the elements of H_1/H_2 have finite index by Theorem 4.7.

To establish the converse, let (η_1, η_2, \cdots) be any Q-basis of H_1 . Assume that Γ^m is a Q-module primitive in H_1 , Γ^m has a proper Q-basis $(\alpha_1, \alpha_2, \cdots, \alpha_m)$, and $i(\alpha_j, H_1/\Gamma^{j-1}) = 0, j = 1, 2, \cdots, m$ with $\Gamma^0 = 0$. Also assume

$$Q[\eta_1, \eta_2, \cdots, \eta_{k-1}] \subset \Gamma^m \subset H_1.$$

If $i(\eta_k, H_1/\Gamma^m) = r > 0$, with p^{l_1} the minimum annihilator of $\eta_k \mod \Gamma^m$, then there exists an $\alpha_{m+1} \in H_1$ such that

$$p^{t_1-1}\eta_k \equiv p^{r+t_1-1}\alpha_{m+1} \bmod \Gamma^m, \qquad p^{r+t_1}\alpha_{m+1} = 0.$$

Thus $i(\alpha_{m+1}, H_1/\Gamma^m) = 0$, and by Theorem 4.5, $\Gamma^{m+1} = \Gamma^m + Q\alpha_{m+1}$ is primitive in H_1 . If p^{t_2} is the minimum annihilator of $\eta_k \mod \Gamma^{m+1}$, then $t_2 < t_1$. As above, there exists an $\alpha_{m+2} \in H_1$, $i(\alpha_{m+2}, H_1/\Gamma^{m+1}) = 0$, and $\Gamma^{m+1} + Q\alpha_{m+2}$ is primitive in H_1 . There will exist an integer n and elements α_{m+3} , α_{m+4} , \cdots , $\alpha_{m+n} \in H_1$, with $\Gamma^{m+n} = Q\alpha_1 + Q\alpha_2 + \cdots + Q\alpha_{m+n}$, $i(\alpha_j, H_1/\Gamma^{j-1}) = 0$, $j = 1, 2, \cdots, m+n$, and Γ^{m+n} primitive in H_1 , such that

$$Q[\eta_1, \eta_2, \cdots, \eta_k] \subset \Gamma^{m+n} \subset H_1.$$

Thus, by induction, there exist elements $\alpha_1, \alpha_2, \cdots \in H_1$ such that

$$H_1 = Q\alpha_1 + Q\alpha_2 + \cdots$$

COROLLARY 4.9. If the Q-module Ξ_1 is annihilated by a nonzero element $h \in O$, then Ξ_1 has a proper O-basis.

If $h = \prod_{i=1}^n p_i^{t_i}$, then

$$\Xi_1 = H_1 + H_2 + \cdots + H_n, \quad p_i^{t_i} H_i = 0, \quad i = 1, 2, \cdots, n.$$

Thus for any Q-module $H'_i \subset H_i$, all the elements of H_i/H'_i have finite index, and the corollary follows from Theorem 4.8.

THEOREM 4.10. If $\Xi_1 \neq \Xi_1 \wedge H$, then $\Xi_1/\Xi_1 \wedge H$ has a proper Q-basis if and only if, for every regular Q-module $K \subset \Xi_1$ such that K has a finite Q-basis and $H \wedge \Xi_1 + K$ is primitive in Ξ_1 , all elements of $\Xi_1/\Xi_1 \wedge H + K$ have finite index.

The proof of this theorem is similar to that of the last theorem. If $\Xi_1 \wedge H = H_1$, and Ξ_1 has a proper Q-basis, then $\Xi_1 = H_1 + \Omega_1$, Ω_1 a regular Q-module. Let (ξ_1, ξ_2, \cdots) be a proper Q-basis for Ω_1 . For any regular Q-module K which possesses a finite Q-basis there exists an integer n such that

$$H_1 + K \subset H_1 + Q\xi_1 + Q\xi_2 + \cdots + Q\xi_n$$

As in Theorem 4.8, we see that Ξ_1/H_1+K has a proper Q-basis, and thus all its elements have finite index.

Conversely, let $\Xi_1 = Q[\beta_1, \beta_2, \cdots] \vee H_1$, all β_i being regular. Assume that we have found regular elements $\xi_1, \xi_2, \cdots, \xi_m$ in Ξ_1 which are Q-linearly independent such that, if $\Gamma^n = Q\xi_1 + Q\xi_2 + \cdots + Q\xi_n + H_1$,

(1)
$$i(\xi_j, \Xi_1/\Gamma^{j-1}) = 0, \qquad j = 1, 2, \cdots, m,$$

and

(2)
$$Q[\beta_1, \beta_2, \cdots, \beta_{k-1}] \vee H_1 \subset \Gamma^m \subset \Xi_1.$$

Thus Γ^m is primitive in Ξ_1 . If $i(\beta_k, \Xi_1/\Gamma^m) \neq 0$, then there exists an element $\xi_{m+1} \in \Xi_1$ such that

$$\beta_k \equiv a\xi_{m+1} \mod \Gamma^m, \qquad i(\xi_{m+1}, \Xi_1/\Gamma^m) = 0.$$

Thus

$$Q[\beta_1, \beta_2, \cdots, \beta_k] \vee H_1 \subset \Gamma^{m+1} \subset \Xi_1,$$

and the theorem follows by induction.

It is always desirable to have the important properties of any set carry over to "admissible" subsets. In this case, the property of a module having a proper basis should carry over to submodules. This was seen to be the case for *P*-modules in Theorem 1.1. That such is also the case for *Q*-modules is demonstrated in the next theorem.

THEOREM 4.11. If Ξ_1 has a proper Q-basis, then any Q-submodule Ξ_2 of Ξ_1 also has a proper Q-basis.

This is a consequence of Theorems 4.8 and 4.10. Let $H_j = H_{p_1} \wedge \Xi_j$, j = 1, 2, and assume $H_2 \neq 0$. Then for any primitive set $H_3 \subset H_2$, H_3 having a finite Q-basis, and any element $\eta \in H_2$, $i(\eta, H_2/H_3) \leq i(\eta, H_1/H_3)$. Now, even though H_3 need not be primitive in H_1 , $i(\eta, H_1/H_3) < \infty$. Thus $i(\eta, H_2/H_3) < \infty$ so that H_2 has a proper Q-basis. A similar argument also shows that $\Xi_2/H \wedge \Xi_2$ has a proper Q-basis, so that Ξ_2 has a proper Q-basis by Theorem 4.6.

5. The modular case. The statement that Q is an operator domain of Ξ carries with it the assumption that $a\xi = b\xi$ for all $\xi \in \Xi$ implies a = b. We will now consider the case in which $a\xi = b\xi$ for all $\xi \in \Xi$ implies $a \equiv b \mod h$, h not a unit. This is equivalent to the statement that Q/(h) is an operator domain of Ξ . Let R = Q/(h) and $h = \prod_{i=1}^t p_i^{t_i}$, p_i primes of Q and $t_i \ge 1$, $i = 1, 2, \cdots, t$. As above, $P \subset R$, and the Fundamental Axiom will still be assumed.

If h is a prime, then R is a field and Ξ is a regular R-module. Otherwise, it is apparent that the minimum annihilators of the non-regular elements of Ξ are divisors of h. In this case, if ξ is regular, $p_1\xi$ is non-regular, so that in view of Theorem 1.4 we have

(1)
$$\Xi = H_{p_1} + H_{p_2} + \cdots + H_{p_s}.$$

THEOREM 5.1. The set Ξ has a proper R-basis.

If R is a field, this follows from Theorem 1.1. Otherwise, the proof will be to show that H_{p_1} has a proper R-basis, which will lead to a proper R-basis for Ξ in view of (1). For simplification, let $H_{p_1} = H$, $t_1 = n$, $p_1 = p$, and define H_i to be the maximum submodule of H annihilated by p^i , $0 \le i \le n$, $H_0 = 0$. Thus $H_0 \subset H_1 \subset \cdots \subset H_n = H$.

The R-module H_m/H_{m-1} , $0 < m \le n$, is annihilated by p. Let $(\xi_1, \xi_2, \cdots)(4)$ be a P-basis for this R-module. Now discard all $\xi_i \equiv 0 \mod R\left[\xi_1, \xi_2, \cdots, \xi_{i-1}\right] \lor H_{m-1}$. If we label the remaining set $(\bar{\xi}_1, \bar{\xi}_2, \cdots)$, then this set is a proper R-basis for H_m/H_{m-1} and is R-linearly independent in H_m . For, if

$$p^{m-1}\sum_{i=1}^k a_i\bar{\xi}_i = 0, \qquad a_k \not\equiv 0 \bmod p,$$

then $a_k \xi_k \equiv 0 \mod R[\bar{\xi}_1, \bar{\xi}_2, \cdots, \bar{\xi}_{k-1}] \bigvee H_{m-1}$. However, as a_k has an inverse mod p, this implies that $\bar{\xi}_k \equiv 0 \mod R[\bar{\xi}_1, \bar{\xi}_2, \cdots, \bar{\xi}_{k-1}] \bigvee H_{m-1}$, which is impossible in view of the method of selection of $\bar{\xi}_k$.

Assume that H/H_{m+1} has a proper R-basis $(\alpha_1, \alpha_2, \cdots)$ for some integer m, $0 \le m < n-1$, this basis being a R-linearly independent set in H. Let $(\beta_1, \beta_2, \cdots)$ be a proper R-basis for H_{m+1}/H_m . Now discard all β_i such that

$$\beta_j \equiv 0 \mod R[\alpha_1, \alpha_2, \cdots] \vee H_m \vee R[\beta_1, \beta_2, \cdots, \beta_{j-1}].$$

Denote those remaining by $(\gamma_1, \gamma_2, \cdots)$. From the way that the set

⁽⁴⁾ The basis is in reality $(\xi_1 + H_{m-1}, \xi_2 + H_{m-1}, \cdots)$ —see the last paragraph of §1.

 $(\alpha_1, \alpha_2, \dots, \gamma_1, \gamma_2, \dots)$ was chosen, it can be seen that it is a proper R-basis for H/H_m . To show that this set is R-linearly independent in H, suppose

$$p^{m+1}\sum_{i=1}^r a_i\alpha_i = p^m\sum_{i=1}^k c_i\gamma_i,$$

where c_k is not congruent to zero mod p. Then c_k has an inverse mod p, so that

$$\gamma_k \equiv 0 \mod R[\alpha_1, \alpha_2, \cdots] \vee H_m \vee R[\gamma_1, \gamma_2, \cdots, \gamma_{k-1}].$$

This contradicts the method of selection of γ_k . Thus, by induction, $H = H/H_0$ has a proper R-basis.

6. Applications to infinite matrices. The ordered set $(1, 2, \dots, n, \dots)$ of type ω will be denoted by Δ . In what is to follow, x will denote a commutative indeterminate over P, and P[x] will denote the polynomial domain in x over P. The P-module to be used as the Ξ above is defined as follows:

DEFINITION 6.1. Ξ is the P-module composed of all vectors $(a_i; i \in \Delta)$ with elements in P such that only a finite number of the elements in each vector are different from zero. Addition is ordinary vector addition.

The vector $(a_i; i \in \Delta)$ with $a_i = 1$, $a_i = 0$ for $i \neq j$ is denoted by δ_i . The set of vectors $(\delta_1, \delta_2, \cdots)$ is a proper *P*-basis for Ξ , and thus the Fundamental Axiom is satisfied.

The total matric algebra of order n^2 over P is denoted by \mathfrak{M}_n . If A is an element of \mathfrak{M}_n , and η is an element of the total vector space \mathfrak{B}_n of order n over P, then $A\eta$ (considering η as an $n\times 1$ matrix) is again an element of \mathfrak{B}_n . Thus A is an operator of \mathfrak{B}_n , and \mathfrak{M}_n is the total operator domain of \mathfrak{B}_n .

A total operator domain exists for Ξ , and is equivalent to the ring \mathfrak{M}_{ω} below.

DEFINITION 6.2. \mathfrak{M}_{ω} is the set of all matrices $(a_{rs}; r, s \in \Delta)$ over P with the property that the vectors $(a_{rs}; r \in \Delta)$ are in Ξ for all $s \in \Delta$.

For A, $B \in \mathfrak{M}_{\omega}$, $A = (a_{rs}; r, s \in \Delta)$, $B = (b_{rs}; r, s \in \Delta)$, the sum and product of these are defined as usual—that is,

$$AB = \left(\sum_{i} a_{ri}b_{is}; r, s \in \Delta\right), \quad A + B = (a_{rs} + b_{rs}; r, s \in \Delta).$$

Under these operations of (finite) sum and product, \mathfrak{M}_{ω} is a ring. The element $I=(a_{rs}; r, s \in \Delta)$, with $a_{rs}=0$ for $r \neq s$, and $a_{rr}=1$ is the unit element of \mathfrak{M}_{ω} . The notation above will be simplified by omitting the range of the indices when there is no chance of ambiguity. The notation \sum_{i} means that the summation is taken over Δ .

The matrices of \mathfrak{M}_{ω} are left operators of Ξ under the following definition:

for $A \in \mathfrak{M}_{\omega}$, $\eta \in \Xi$ with $A = (a_{rs})$, $\eta = (c_i)$,

$$A\eta = \bigg(\sum_{i} a_{ij}c_{j}; i \in \Delta\bigg).$$

One can think of \mathfrak{M}_{ω} also as a vector space with elements from Ξ . If $A \in \mathfrak{M}_{\omega}$, $A = (a_{is})$, then $A = (\alpha_i; i \in \Delta)$, where $\alpha_i = (a_{ij}; i \in \Delta)$.

An element A of \mathfrak{M}_{ω} is regular in case A possesses an inverse in \mathfrak{M}_{ω} . The ring \mathfrak{M}_{ω} possesses elements which are semi-regular—that is, elements which have a right inverse but not a left, or vice versa. Such an element is N defined below (Definition 6.10). The element A is algebraic in case there exists a nonzero $m(x) \in P[x]$ such that m(A) = 0. Thus, if A is algebraic, there exists a polynomial h(x) of minimal degree, called the minimal polynomial of A, such that h(A) = 0.

For any non-algebraic element A of \mathfrak{M}_{ω} , the polynomial domain P[A] is a principal ideal ring. In what is to follow, these principal ideal rings correspond to the ring Q used above. In case A is algebraic with minimal polynomial h(x), then P[A] is isomorphic to the ring P[x]/h(x), and the theory of §5 is applicable.

THEOREM 6.3. If (ξ_1, ξ_2, \cdots) is a proper P-basis for Ξ , then $C = (\xi_i; i \in \Delta)$ is a regular element of \mathfrak{M}_{ω} .

To prove this, we see that there must exist $a_{ij} \in P$ such that $\sum_i a_{ij} \xi_i = \delta_j$. Let $A = (a_{rs})$; then CA = I, so that A is a right inverse of C. Now CAC - C = 0, so C(AC - I) = 0. If $(AC - I) = (b_{rs}) \neq 0$, there exists an integer n such that $\eta = (b_{rn}; r \in \Delta) \neq 0$. Then $C\eta = \sum_i b_{in} \xi_i = 0$, which contradicts the hypothesis that (ξ_1, ξ_2, \cdots) is a proper P-basis for Ξ . Thus AC = I, and C is regular.

DEFINITION 6.4. An element A of \mathfrak{M}_{ω} is said to be reducible if and only if Ξ has a proper P[A]-basis.

The definition of direct sums of finite matrices (see [4, p. 237]) can be carried over to \mathfrak{M}_{ω} . Thus an element A of \mathfrak{M}_{ω} is the direct sum $(\dot{+})$ of the elements A_1 of \mathfrak{M}_n and A_2 of \mathfrak{M}_{ω} , $A = A_1 \dot{+} A_2$, if and only if, for $A = (a_{rs})$, $A_1 = (a_{1rs})$, $A_2 = (a_{2rs})$, $a_{rs} = a_{1rs}$ for $r, s \leq n$, $a_{r+n,s+n} = a_{2rs}$ for $r, s \in \Delta$ and otherwise $a_{rs} = 0$. By iteration, the direct sum of an infinite number of finite matrices can be defined.

DEFINITION 6.5. An element A of \mathfrak{M}_{ω} is in reduced form in case A is the direct sum of finite matrices.

As in the finite case, two elements A and B of \mathfrak{M}_{ω} are similar in case there exists a regular element T of \mathfrak{M}_{ω} such that $B = T^{-1}AT$.

THEOREM 6.6. If A is reducible, then any element B similar to A is also reducible.

Let $\Xi = P[A]\xi_1 + P[A]\xi_2 + \cdots$, $B = T^{-1}AT$. Now define $\eta_n = T^{-1}\xi_n$, $n = 1, 2, \cdots$. Then $\Xi = P[B]\eta_1 + P[B]\eta_2 + \cdots$, so that B is reducible.

THEOREM 6.7. If A is in reduced form, then A is reducible.

That this is true is a consequence of the fact that \mathfrak{V}_n has a proper P[B]-basis for any $B \in \mathfrak{M}_n$.

THEOREM 6.8. If A is reducible and all the elements of Ξ are non-regular with respect to P[A], then A is similar to an element B in reduced form.

Let $\Xi = P[A]\xi_1 + P[A]\xi_2 + \cdots$, with $h_i(A)$ the minimum annihilator of ξ_i . If t_i is the degree of $h_i(x)$, then

$$h_i(x) = x^{t_i} + \sum_{i=1}^{t_i-1} a_{ij} x^j.$$

Now define

$$T = (\xi_1, A\xi_1, \cdots, A^{t_1-1}\xi_1, \xi_2, A\xi_2, \cdots, A^{t_2-1}\xi_2, \cdots),$$

so that $T \in \mathfrak{M}_{\omega}$. By Theorem 6.3, T is regular in \mathfrak{M}_{ω} . If A_i is the companion matrix (5) of $h_i(x)$, so that $A_i \in \mathfrak{M}_i$, then

$$T^{-1}AT = A_1 \dotplus A_2 \dotplus \cdots$$

and the theorem is established.

This theorem does not include the important case of algebraic matrices. However, in view of Theorem 5.1, a similar proof leads to

THEOREM 6.9. If A is algebraic with minimal polynomial m(x), then A is similar to an element B in reduced form. If $B = B_1 \dotplus B_2 \dotplus \cdots$, then each B_i is the companion matrix of some divisor of m(x).

Definition 6.10. The elements N and N $^{\omega}$ of \mathfrak{M}_{ω} are defined as follows:

$$N = (\delta_2, \delta_3, \cdots), \qquad N^0 = 0,$$

 $N^{\omega} = (N\delta_1, N^2\delta_2, N^2\delta_3, N^3\delta_4, N^3\delta_5, N^3\delta_6, \cdots).$

That powers of N are of fundamental importance in the study of reducible matrices is seen in the following

THEOREM 6.11. If A is reducible, A not algebraic, and Ξ is a regular P[A]-module, then A is similar to some power of N.

To prove this, let

$$\Xi = P[A]\xi_1 + P[A]\xi_2 + \cdots + P[A]\xi_n.$$

If $n < \infty$, let

⁽⁶⁾ This is the $t_i \times t_i$ matrix with 1's directly below the main diagonal, $-a_{i0}$, $-a_{i1}$, \cdots , $-a_{ii-1}$ as the last column, and 0's elsewhere.

$$T = (\xi_1, \, \xi_2, \, \cdots, \, \xi_n, \, A \, \xi_1, \, A \, \xi_2, \, \cdots, \, A \, \xi_n, \, A^{\, 2} \, \xi_1, \, A^{\, 2} \, \xi_2, \, \cdots, \, A^{\, 2} \, \xi_n, \, \cdots).$$

Then $T^{-1}AT = N^n$. However, if $n = \infty$, let

$$T = (\xi_1, A\xi_1, \xi_2, A^2\xi_1, A\xi_2, \xi_3, \cdots).$$

Then $T^{-1}AT = N^{\omega}$, and the theorem follows.

The author intends to deal at greater length in a subsequent paper with matrix algebras of different order types. However, a matrix algebra of order type $\omega 2$ will be considered briefly here.

Denote the ordered set $(1, 2, \dots, \omega+1, \omega+2, \dots)$ of type $\omega 2$ by Δ_2 . Let Ξ_2 be the P-module composed of all vectors $(a_i; i \in \Delta_2)$ over P, with only a finite number of the elements of any vector being different from zero. \mathfrak{M}_{ω_2} is the ring of all matrices $(a_{rs}; r, s \in \Delta_2)$ over P with all $(a_{rs}; r \in \Delta_2)$ in Ξ_2 . Let δ_i' be the element of Ξ_2 which has 1 in the ith place and 0 elsewhere, $i \in \Delta_2$. Then $(\delta_i'; i \in \Delta_2)$ is a proper P-basis of Ξ_2 .

For $A \in \mathfrak{M}_{\omega}$, $A' \in \mathfrak{M}_{\omega^2}$, the correspondence

$$A \leftrightarrow \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} = A'$$

defines an isomorphism between \mathfrak{M}_{ω} and a subring of $\mathfrak{M}_{\omega 2}$. (Under a different correspondence, \mathfrak{M}_{ω} and $\mathfrak{M}_{\omega 2}$ can be shown to be actually isomorphic.) Using the notation of direct sum, $A \leftrightarrow A' = A \dotplus 0$.

If A is reducible so that $\Xi = P[A]\xi_1 + P[A]\xi_2 + \cdots$, then define $\xi'_i = (\xi_i, a_{\omega+i}; i \in \Delta)$, all $a_{\omega+i} = 0$: thus $\xi'_i \in \Xi_2$. Then

$$\Xi_2 = P[A']\xi_1' + P[A']\xi_2' + \cdots + P[A']\delta_{\omega+1}' + P[A']\delta_{\omega+2}' + \cdots$$

so that A' is also reducible.

THEOREM 6.12. If A is reducible, then A' is similar to $B \dotplus N^k$ where $B \in \mathfrak{M}_{\omega}$ is in reduced form and k is an integer or ω .

To prove this, let

$$\Xi_2 = P[A']\eta_1' + P[A']\eta_2' + \cdots + P[A']\xi_1' + P[A']\xi_2' + \cdots + P[A']\xi_k'$$

the ξ_i' being regular and the η_i' non-regular, with $h_i(x)$ the minimum annihilator of η_i' . The degree of $h_i(x)$ is labeled n_i . Then $T' \in \mathfrak{M}_{\omega 2}$ can be chosen (assuming k finite) as

$$T' = (\eta'_1, A'\eta'_1, \cdots, A'^{n_1-1}\eta'_1, \eta'_2, A'\eta'_2, \cdots, A'^{n_2-1}\eta'_2, \cdots, \xi'_1, \xi'_2, \cdots, \xi'_k, A'\xi'_1, A'\xi'_2, \cdots, A'\xi'_k, \cdots).$$

Theorem 6.3 is seen to carry over for Ξ_2 , and thus

$$T'^{-1}A'T' = B \dotplus N^k.$$

B reduced. If $k = \infty$, the ξ'_i in T' can be arranged as in Theorem 6.11.

From Theorem 2.2, we see that every reducible matrix A of \mathfrak{M}_{ω} has an associated characteristic matrix. The characteristic matrix of a reducible matrix is of importance in determining the similarity of matrices, as the following theorem shows.

THEOREM 6.13. Two reducible matrices A and B of \mathfrak{M}_{ω} are similar if and only if their characteristic matrices are equal.

To establish this, first assume that $\Xi = P[A]\xi_1 + P[A]\xi_2 + \cdots$ and $B = T^{-1}AT$. Then, by Theorem 6.6, $\Xi = P[B]\eta_1 + P[B]\eta_2 + \cdots$, where $\eta_i = T^{-1}\xi_i$. For any $m(x) \in P[x]$, $m(A)\xi_i = Tm(B)\eta_i$, so η_i is regular with respect to P[B] if ξ_i is regular with respect to P[A]. Also, if m(x) is the minimum annihilator of ξ_i with respect to P[A], m(x) is the minimum annihilator of η_i with respect to P[B]. Thus the characteristic matrix of A equals the characteristic matrix of B.

Now assume A and B have the same characteristic matrix. For any proper P[A]-basis $(\xi_1, \xi_2, \dots, \eta_1, \eta_2, \dots)$ of Ξ , ξ_i regular and η_i minimally annihilated by $m_i(x)$, n_i being the degree of m_i , there exists a proper P[B]-basis $(\xi_1, \xi_2, \dots, \bar{\eta}_1, \bar{\eta}_2, \dots)$ of Ξ with $\bar{\xi}_i$ regular and $\bar{\eta}_i$ minimally annihiated by $m_i(x)$. There is a 1-1 correspondence $\bar{\xi}_i \leftrightarrow \xi_i$, $\bar{\eta}_i \leftrightarrow \eta_i$ between these two bases. Then let

$$T = (\xi_1, \eta_1, A\eta_1, \cdots, A^{n_1-1}\eta_1, A\xi_1, \xi_2, \eta_2, A\eta_2, \cdots, A^{n_2-1}\eta_2, A^2\xi_1, A\xi_2, \xi_3, \cdots),$$

and S be the same as T with A replaced throughout by B. Then $T^{-1}AT = S^{-1}BS$, so A and B are similar, and the theorem is established.

THEOREM 6.14. If A is reducible and regular, then A is similar to a matrix in reduced form.

If Ξ possesses a regular vector with respect to P[A], then any proper P[A]-basis of Ξ must have a regular element ξ . Select T as in the proof of Theorem 6.13 with ξ the first vector of T. Then $T^{-1}AT$ has its first row (or column) composed of zeros. This implies $T^{-1}AT$ is not regular which means A is not regular. Thus Ξ can have only non-regular elements with respect to P[A], and the theorem follows from Theorem 6.7.

As an example of the reduction of an element of \mathfrak{M}_{ω} to reduced form, take

$$A = (\delta_1 + \delta_3, -\delta_3, \delta_2 - \delta_3, -\delta_3 + \delta_4, -\delta_3 + \delta_5, -\delta_3 + \delta_6, \cdots).$$

It can be verified that A is algebraic with minimal equation $x^3-1=0$. Then $\Xi=P[A]\delta_1+P[A](\delta_1+\delta_4)+P[A](\delta_1+\delta_5)+\cdots$, with A^3-1 the minimum annihilator of δ_1 and A-1 the minimum annihilator of $\delta_1+\delta_i$, i=4, $5, \cdots$. Then T can be chosen as

$$T = (\delta_1, \, \delta_1 + \delta_3, \, \delta_1 + \delta_2, \, \delta_1 + \delta_4, \, \delta_1 + \delta_5, \, \cdots)$$

$$T^{-1} = (\delta_1, \, -\delta_1 + \delta_3, \, -\delta_1 + \delta_2, \, -\delta_1 + \delta_4, \, -\delta_1 + \delta_5, \, \cdots)$$

so that

$$T^{-1}AT = (\delta_2, \delta_3, \delta_1, \delta_4, \delta_5, \delta_6, \cdots).$$

BIBLIOGRAPHY

- 1. C. Chevalley, L'arithmetique dans les algebres de matrices, Paris, 1936.
- 2. M. H. Ingraham, A general theory of linear sets, Trans. Amer. Math. Soc. vol. 27 (1925) pp. 163-196.
- 3. M. H. Ingraham and M. C. Wolf, Relative linear sets and similarity of matrices whose elements belong to a division algebra, ibid. vol. 42 (1937) pp. 16-31.
 - 4. C. C. MacDuffee, Introduction to abstract algebra, New York, 1940.
 - 5. H. Zassenhaus, Lehrbuch der Gruppentheorie, Leipzig, 1937.

University of Wisconsin, Madison, Wis.