ON THE EXTENSION OF INTERVAL FUNCTIONS

LAWRENCE A. RINGENBERG

Introduction. The problem of extending the range of definition of a function defined on a class of elementary figures—intervals, rectangles—has been treated in various ways in the literature. In the theory of Lebesgue measure a particular function—length of interval (area of rectangle)—is extended in a completely additive way to an additive class of sets. In the general extension problem we start, say, with a function (real, single-valued, and finite) of intervals $\phi(I)$ and extend the range of definition to an additive class of sets obtaining a function $\Phi(E)$ which is completely additive and which has the property that $\Phi(E) = \phi(I)$ whenever "E is the set I." But what is the interval I? A priori $\phi(I)$ is defined on a class of intervals I, where I is considered neither open nor closed but merely as an interval. From the viewpoint of $\Phi(E)$ an interval I must be considered as a definite point set—a closed interval, an open interval, a semi-open interval, and so on. Corresponding to open intervals and to closed intervals, $\Phi(E)$ gives rise to two interval functions: $\phi_1(I) = \Phi(I')$, $\phi_2(I) = \Phi(I^0)$ where I' is understood to be closed and I^0 open. If $\phi(I) = \phi_1(I)$ identically, then $\Phi(E)$ is an extension of $\phi(I)$ considered as a function of closed intervals; if $\phi(I) = \phi_2(I)$ identically, then $\Phi(E)$ is an extension of $\phi(I)$ considered as a function of open intervals. As a starting point in the general extension problem, the function $\phi(I)$ has been considered, somewhat artificially and arbitrarily perhaps, a function either of closed intervals or of open intervals (see, for example, [10])(1). Extensions $\Phi(E)$ which have the property that $\Phi(I') = \Phi(I^0)$ identically are of particular interest since then $\Phi(E)$ is an extension of $\phi(I)$ whether I be considered open or closed.

The main results of the paper concern the existence of B-extensions, a precise definition of which is given in §1.6. Suffice it to say here that if $\Phi(E)$ is a B-extension of $\phi(I)$ then $\Phi(I') = \Phi(I^0) = \phi(I)$. The idea of a B-extension was suggested by a result of Burkill [2] which we shall review in §1.5. Burkill's theorem on extension is stated in terms of a sufficient condition while our results on B-extensions are stated in terms of necessary and sufficient conditions.

In Part 1 we explain notation, define terms, and summarize results. In Part 2 we present a proof of a theorem (Theorem 1) which states a necessary and sufficient condition that a non-negative function of closed intervals

Presented to the Society, April 27, 1946; received by the editors August 6, 1941, and, in revised form, March 13, 1946.

⁽¹⁾ Numbers in brackets indicate references in the bibliography at the end of the paper.

admit a non-negative completely additive extension. This theorem was proved in [10] using the results of Radon [9]. The present proof makes use of the theory of outer measure in the sense of Carathéodory. Theorem 2 extends the result of Theorem 1 to the case of a function of arbitrary sign. Theorem 3 concerns the uniqueness and characterization of an extension of a function of intervals. Part 3 contains proofs of our results (Theorems 4, 5, and 6) on the *B*-extension. We present necessary and sufficient conditions that a non-negative function of intervals, a function of intervals of arbitrary sign, and an indefinite integral of a function of intervals, respectively, admit *B*-extensions.

1. Preliminaries and summary.

- 1.1. In modern literature intervals are considered as k-dimensional where k is a positive integer. We shall consider functions of intervals in the xy-plane, that is, our intervals are two-dimensional. The word interval is used in the sequel only in the accepted point set sense: Given two points $(x_1, y_1), (x_2, y_2)$ an interval is the set of points (x, y) such that $x_1 \le x \le x_2$, $y_1 \le y \le y_2$; an open interval is the set of points (x, y) such that $x_1 < x < x_2, y_1 < y < y_2$ (Saks [12, p. 57]). Let R_0 be the interval $0 \le x \le 1$, $0 \le y \le 1$. All sets considered in this paper are subsets of R_0 unless otherwise stated. We use the letters I, J, R to denote intervals. The symbol I⁰ denotes the open interval which corresponds to I, that is, I^0 is the interior of the set I. The letter C is used to denote a class of intervals. A capital script letter, as \mathcal{E} , is used to denote an elementary system of intervals, that is, a finite set of intervals I_1, I_2, \dots, I_k such that $I_i^0 \cdot I_j^0 = 0$ whenever $i \neq j$. A capital script letter is also used as an operator in the sense that $\mathcal{E}I$ denotes an elementary system of intervals I_1, I_2, \cdots, I_k which constitutes a subdivision of I, that is, $\sum_{i=1}^{k} I_i = I$. The parameter of regularity of an interval I, denoted by p(I), is the ratio of the length of the shorter side of I to the length of the longer side of I. The norm of an interval I, denoted by ||I||, is the length of the diameter of I; the symbol $\|\mathcal{E}\|$ is defined as the largest of the numbers ||I|| where $I \in \mathcal{E}$. The measure of an interval I is denoted by |I|; the symbol $|\mathcal{E}|$ is defined as the number $\sum |I|$ where the sum is taken over $I \in \mathcal{E}$. The boundary of an interval I, denoted by b(I), is the set $I - I^{\circ}$.
- 1.2. A class of sets in R_0 is said to be *closed* (relative to R_0)—and is generically denoted by K—if the following conditions are satisfied:
 - (i) Every set open relative to R_0 (denoted generically by 0) is in K.
- (ii) If a set E is in K, then the complement of E relative to R_0 (denoted by CE) is also in K.
 - (iii) If $\{E_n\}$ is a sequence of sets in K, then $\sum_n E_n$ is also a set in K.

Clearly every closed class K contains all Borel sets $E \subset R_0$. In fact, the class of all Borel sets in R_0 , which we denote by B, is identical with the product of all closed classes in R_0 .

Let λ be a fixed number satisfying the relation $0 \le \lambda < 1$, and let C_{λ} denote the class of all intervals I such that $p(I) \ge \lambda$. A subscript λ as in I_{λ} and \mathcal{E}_{λ}

indicates that $I_{\lambda} \in C_{\lambda}$ and that $I \in C_{\lambda}$ for every $I \in \mathcal{E}_{\lambda}$. The symbol C_0 will denote the class of all intervals I such that $I \subset R_0$. Let $\phi(I)$ denote a real, finite, single-valued function which is defined for every $I \in C_{\lambda}$. This function is denoted briefly by the symbol $[\phi, C_{\lambda}]$ in which the first letter denotes the function and the second letter denotes the range of definition of the function.

A function $\Phi(E)$ which is defined on a closed class K, that is, the function $[\Phi, K]$, is a *completely additive extension* of the function $[\phi, C_{\lambda}]$ if the following conditions are satisfied:

- (i) $[\Phi, K]$ is a completely additive set function.
- (ii) $\Phi(I) = \phi(I)$ for every $I \in C_{\lambda}$.

In Part 2 we shall prove the following theorems:

THEOREM 1. (See [10, Theorem 3].) A necessary and sufficient condition that a non-negative function of intervals $[\phi, C_{\lambda}]$ have a non-negative completely additive extension is that it satisfy the following condition \mathfrak{C} : If $\{I_n\}$ is any sequence of intervals in C_{λ} such that $I_i \cdot I_j = 0$ when $i \neq j$ and if $\{J_m\}$ is any sequence of intervals in C_{λ} such that $\sum_m J_m \supset \sum_n I_n$ then $\sum_m \phi(J_m) \ge \sum_n \phi(I_n)$.

THEOREM 2. A necessary and sufficient condition that a function of intervals $[\phi, C_{\lambda}]$, of arbitrary sign, have a completely additive extension is that it be the difference of two non-negative functions each of which satisfies condition \mathfrak{C} .

THEOREM 3. If $[\Phi, K]$ is a completely additive extension of a function of intervals $[\phi, C_{\lambda}]$, then the value of the number $\Phi(E)$, where E is any Borel set, is uniquely determined by the function $[\phi, C_{\lambda}]$. If $[\phi, C_{\lambda}]$ is non-negative, then $[\Phi, K]$ is also non-negative and for every Borel set E we have the characterization: $\Phi(E) = g.1.b. \sum_{n} \phi(I_{n})$ for all sequences $\{I_{n}\}$ such that $\sum_{n} I_{n} \supset E$ and $I_{n} \in C_{\lambda}$, $n = 1, 2, \cdots$.

- 1.3. Given a function of intervals $[\phi, C_{\lambda}]$, we extend the range of definition of $[\phi, C_{\lambda}]$ to include all elementary systems of intervals \mathcal{E}_{λ} as follows: $\phi(\mathcal{E}_{\lambda}) = \sum \phi(I)$ where the sum is taken over $I \in \mathcal{E}_{\lambda}$. The function $[\phi, C_{\lambda}]$ is additive if for every I_{λ} and every $\mathcal{E}_{\lambda}I_{\lambda}$ it is true that $\phi(E_{\lambda}I_{\lambda}) = \phi(I_{\lambda})$. If we replace $\phi(\mathcal{E}_{\lambda}I_{\lambda}) = \phi(I_{\lambda})$ by $\phi(\mathcal{E}_{\lambda}I_{\lambda}) \geq \phi(I_{\lambda})$ and then by $\phi(\mathcal{E}_{\lambda}I_{\lambda}) \leq \phi(I_{\lambda})$ we obtain the definitions of a function which increases by subdivision and decreases by subdivision respectively. The function $[\phi, C_{\lambda}]$ is continuous if for every number $\epsilon > 0$ there exists a number $\delta > 0$ such that (i) $|I_{\lambda}| < \delta$ implies $|\phi(I_{\lambda})| < \epsilon$ and (ii) $I_{\lambda 1} \subset I_{\lambda 2}$, $|I_{\lambda 2} I_{\lambda 1}| < \delta$ imply $|\phi(I_{\lambda 1}) \phi(I_{\lambda 2})| < \epsilon$. It is observed that condition (ii) in this definition is a consequence of condition (i) if the function is additive and $\lambda = 0$. The function $[\phi, C_{\lambda}]$ is absolutely continuous if for every number $\epsilon > 0$ there exists a number $\delta > 0$ such that $|\mathcal{E}_{\lambda}| < \delta$ implies $|\phi(\mathcal{E}_{\lambda})| < \epsilon$.
- 1.4. Given a function of intervals $[\phi, C_{\lambda}]$, we define for every interval I the following two numbers:

- (i) $L(\phi, I) = \lim \inf \phi(\mathcal{E}_{\lambda}I)$ as $||\mathcal{E}_{\lambda}I|| \to 0$,
- (ii) $U(\phi, I) = \limsup \phi(\mathcal{E}_{\lambda}I)$ as $||\mathcal{E}_{\lambda}I|| \to 0$,

and call these numbers, which are finite or infinite, the lower and upper integrals of $[\phi, C_{\lambda}]$ over the interval I respectively. Given any interval I, any number λ such that $0 \le \lambda < 1$, and any number $\delta > 0$, it is easily shown that there exists an $\mathcal{E}_{\lambda}I$ such that $||\mathcal{E}_{\lambda}I|| < \delta$. Consequently the lower and upper integrals are defined for every $I \in C_0$. In our bracket notation these functions (not necessarily finite) may be denoted by $[L(\phi), C_0]$ and $[U(\phi), C_0]$ respectively. In case $L(\phi, I) = U(\phi, I)$ is a finite number, we denote the common value by $F(\phi, I)$ and call it the integral of ϕ over I. Defining the integral in this manner, that is, for a function of intervals defined on a class C_{λ} , makes it sufficiently flexible to include the integral in the extended sense of Burkill, the strong integral of Saks, and the regular integral of Kempisty, by suitably choosing $\lambda(2)$. If $[\phi, C_{\lambda}]$ is integrable over R_0 then it is integrable over every $I \in C_0$. The indefinite integral, which we may denote by $[F(\phi), C_0]$, is an additive function of intervals.

A function of intervals $[\phi, C_0]$ is said to be absolutely continuous in the restricted sense, briefly RAC, if the function $[U(|\phi|), C_0]$ is continuous.

1.5. The following theorem was stated and proved by Burkill [2, p. 289] for an integral which, under the stated assumptions, reduces to the integral as defined in 1.4 if $\lambda = 0$.

THEOREM. If a function of intervals $[\phi, C_{\lambda}]$ is absolutely continuous and integrable, if E is a measurable set, and if ϵ_n , $n=1, 2, \cdots$, is any decreasing sequence of positive numbers approaching 0, and corresponding to each n, E is decomposed into $\mathcal{E}_n + e_n' - e_n'$ where e_n' and e_n' are measurable sets such that $|e_n'|$ and $|e_n''|$ are each less than ϵ_n , and \mathcal{E}_n is an elementary system of intervals, then as $n \to \infty$, $F(\phi, \mathcal{E}_n)$ approaches a limit which we call F(E) and which is independent of the particular decomposition of E for any n.

Burkill showed that the function F(E), which is defined for all measurable subsets of R_0 , is an absolutely continuous, completely additive function of measurable sets, which for intervals reduces to the integral. This is a strong type of extension in the sense that if any interval I is given, and if E is any set satisfying the relation $I^0 \subset E \subset I$, then $F(E) = F(\phi, I)$. This property is a direct implication of the absolute continuity and additivity of the function $[F(\phi), C_0]$.

1.6. Burkill's result suggested the following type of extension. A completely additive set function $[\Phi, B]$ defined for all Borel sets in R_0 (briefly, an additive function of Borel sets) is a *B-extension* of a function $[\phi, C_{\lambda}]$ if $\Phi(E) = \phi(I)$ for every $I \in C_{\lambda}$ and for every Borel set E such that $I^0 \subset E \subset I$. In Part 3 we shall establish the following theorems:

⁽²⁾ For Burkill's definition, see [2, p. 279]; for Saks's definition, see [11, p. 212]; for Kempisty's definition, see [6, p. 212].

THEOREM 4. A necessary and sufficient condition that a non-negative function of intervals $[\phi, C_{\lambda}]$ admit a non-negative B-extension is that it be an additive, continuous function.

THEOREM 5. A necessary and sufficient condition that a function of intervals $[\phi, C_{\lambda}]$ admit a B-extension is that it be additive and RAC.

THEOREM 6. A necessary and sufficient condition that the indefinite integral of an integrable function of intervals $[\phi, C_{\lambda}]$ admit a B-extension is that $[\phi, C_{\lambda}]$ be RAC.

2. Completely additive extensions of functions of intervals.

- 2.1. The necessity of condition \mathbb{C} in Theorem 1 is an immediate consequence of the following property of a completely additive set function: If $[\Phi, K]$ is any non-negative completely additive set function, if $\{e_n\}$ is any sequence of mutually exclusive sets in K, and if $\{E_m\}$ is any sequence of sets in K such that $\sum_m E_m \supset \sum_n e_n$ then $\sum_m \Phi(E_m) \ge \sum_n \Phi(e_n)$.
- 2.2. Let $[\phi, C_{\lambda}]$ be a non-negative function of intervals which satisfies condition \mathfrak{C} . For every set $E \subset R_0$ we define

$$\bar{\phi}(E) = \text{g.l.b.} \sum_{n} \phi(I_{\lambda n})$$

for all sequences $\{I_{\lambda n}\}$ such that $\sum_{n}I_{\lambda n}\supset E$. Obviously $\phi(E)$ is a non-negative function. We shall show that it is an outer measure in the sense of Carathéodory (see [12, p. 43]), that is, we shall show that it satisfies the following conditions:

- (i) $\phi(E_1) \leq \phi(E_2)$ whenever $E_1 \subset E_2$.
- (ii) $\bar{\phi}(\sum_{n}E_{n}) \leq \sum_{n}\bar{\phi}(E_{n})$ for every sequence $\{E_{n}\}$ of sets.
- (iii) $\phi(E_1+E_2) = \phi(E_1) + \phi(E_2)$ whenever the distance from E_1 to E_2 , which we denote by $d(E_1, E_2)$, is greater than 0. Conditions (i) and (ii) follow directly from the definition of $\phi(E)$ and from condition \mathfrak{C} . We proceed to establish condition (iii).

A transversal of R_0 , denoted generically by t, is a closed line segment which is parallel to either the x-axis (a horizontal transversal) or to the y-axis (a vertical transversal), and which satisfies the following two conditions: (i) the end points of t lie on the boundary of R_0 , (ii) the set which consists of t less its end points—denoted by t^0 —is contained in R_0^0 .

Given any interval $I \in C_0$ we say that a subdivision $\mathcal{E}_{\lambda}I$ is a ϕ' -subdivision of I if the set of intervals in $\mathcal{E}_{\lambda}I$ can be segregated into two sets, say I_1, I_2, \dots, I_n and J_1, J_2, \dots, J_m , such that $I_i \cdot I_j = 0$ for $i \neq j$ and $J_i \cdot J_j = 0$ for $i \neq j$. Given a transversal t, it may be verified that there exist intervals I such that $I \supset t$, $I^0 \supset t^0$, and such that I has a ϕ' -subdivision. A ϕ' -subdivision of an interval I, where $I \supset t$, $I^0 \supset t^0$, is called a ϕ' -covering of t. For every transversal t we define $\phi'(t) = g.l.b.$ $\phi(\mathcal{E}_{\lambda}I)$ for all elementary systems $\mathcal{E}_{\lambda}I$

which are ϕ' -coverings of t. It follows from condition \mathfrak{C} that there are at most a denumerable number of transversals t for which $\phi'(t) > 0$.

Let I_0 be any interval in C_{λ} ; let t_1, t_2, \dots, t_n be a finite number of horizontal transversals and t_{n+1}, \dots, t_m a finite number of vertical transversals such that $t_i \cdot I_0^0 \neq 0$ for $i=1, \dots, m$. These transversals determine a subdivision of I_0 into (n+1)(m+1) intervals, say I_1, I_2, \dots, I_k . We shall say that this elementary system is a regular subdivision of I_0 if $\phi'(t_i) = 0$ for $i=1, 2, \dots, m$, and $I_i \in C_{\lambda}$ for $i=1, 2, \dots, k$. Given a number $\delta > 0$ it may be shown that there exists a regular subdivision of I_0 —say $\mathcal{E}I_0$ —such that $\|\mathcal{E}I_0\| < \delta$.

Let I be one of the intervals in a regular subdivision of an interval $I_0 \in C_\lambda$. Let I^* denote the set $I^0 + b(I_0) \cdot I$. The set $I - I^*$ is the sum of k, $1 \le k \le 4$, line segments. Let t_1 , t_2 , \cdots , t_k be the set of transversals such that t_i , $i = 1, \dots, k$, contains one of the line segments in $I - I^*$. Given $\epsilon > 0$ let $\mathcal{E}_{\lambda_i} J_i$ be a ϕ' -covering of t_i such that $\phi(\mathcal{E}_{\lambda_i} J_i) < \epsilon/4$. Let $J \in C_\lambda$ be an interval such that $I^* \supset J$ and $I \subset J + J_1 + \cdots + J_k$. It follows from condition \mathfrak{C} that $\phi(I) \le \phi(J) + \phi(\mathcal{E}_{\lambda_1} J_1) + \cdots + \phi(\mathcal{E}_{\lambda_k} J_k) < \phi(J) + \epsilon$.

Let I_1, I_2, \dots, I_k be the intervals in a regular subdivision of $I_0 \in C_{\lambda}$. Given $\epsilon > 0$, let J_i , $i = 1, \dots, k$, be an interval in C_{λ} such that $I_i^* \supset J_i$ and $\phi(I_i) < \phi(J_i) + \epsilon/k$. From condition \mathfrak{C} it follows that

$$\phi(I_0) \leq \sum_{i=1}^k \phi(I_i) < \sum_{i=1}^k \phi(J_i) + \epsilon \leq \phi(I_0) + \epsilon.$$

Since $\epsilon > 0$ is arbitrary it follows that $\phi(I_0) = \phi(I_1) + \cdots + \phi(I_k)$. Thus $[\phi, C_{\lambda}]$ is additive over regular subdivisions.

Let E be any set in R_0 and, given $\epsilon > 0$, let $\{I_n\}$ be a sequence of intervals in C_λ such that $\sum_n I_n \supset E$ and $\delta(E) > \sum_n \phi(I_n) - \epsilon$. Given $\delta > 0$ let $\mathcal{E}_{\lambda n} I_n$, $n = 1, 2, \cdots$, be a regular subdivision of I_n such that $\|\mathcal{E}_{\lambda n} I_n\| < \delta$. Arrange the set of intervals J such that $J \in \mathcal{E}_{\lambda n} I_n$ for some integer n into a sequence $\{J_m\}$. Then $\sum_m J_m \supset E$; $\delta(E) > \sum_m \phi(J) - \epsilon$; and $\|J_m\| < \delta$ for $m = 1, 2, \cdots$.

Let E_1 and E_2 be any two sets such that $d(E_1, E_2) = \delta > 0$, and let there be given a number $\epsilon > 0$. Let $\{I_n\}$ be a sequence of intervals in C_λ such that $\sum_n I_n \supset E_1 + E_2$, $||I_n|| < \delta$, $n = 1, 2, \cdots$, and $\phi(E_1 + E_2) > \sum_n \phi(I_n) - \epsilon$. Let I_{1i} , $i = 1, 2, \cdots$, be the intervals in $\{I_n\}$ such that $I_{1i} \cdot E_1 \neq 0$. Let I_{2i} , $j = 1, 2, \cdots$, be the remainder of the intervals in $\{I_n\}$. Then $\sum_i I_{1i} \supset E_1$; $\sum_j I_{2j} \supset E_2$ and $\phi(E_1) + \phi(E_2) \leq \sum_i \phi(I_{1i}) + \sum_j \phi(I_{2j}) = \sum_n \phi(I_n) < \phi(E_1 + E_2) + \epsilon$. Since $\epsilon > 0$ is arbitrary it follows that $\phi(E_1) + \phi(E_2) \leq \phi(E_1 + E_2)$. This result together with condition (ii) establishes condition (iii) in the definition of outer Carathéodory measure.

Applying the theory of outer Carathéodory measure (see [12, chap. 2]) we may now complete our proof of Theorem 1. A set E is ϕ -measurable if $\overline{\phi}(P+Q) = \overline{\phi}(P) + \overline{\phi}(Q)$ for every pair of sets P and Q contained, respectively, in the set E and in its complement CE. The class of all sets which are ϕ -meas-

urable—we denote it by K_{ϕ} —is an additive class in the sense of Saks, that is, (i) it contains the empty set, (ii) if $E \in K_{\phi}$ then $CE \in K_{\phi}$, and (iii) if $\{E_n\}$ is a sequence of sets in K_{ϕ} , then $\sum_n E_n$ is a set in K_{ϕ} . Furthermore, the class K_{ϕ} contains all sets which are open relative to R_0 . Thus K_{ϕ} is a closed class of sets (1.2). The function $[\bar{\phi}, K_{\phi}]$ is a completely additive set function; it is non-negative; and it follows from condition \mathfrak{C} that $\bar{\phi}(I) = \phi(I)$ for every $I \in C_{\lambda}$. Thus $[\bar{\phi}, K_{\phi}]$ is a non-negative completely additive extension of the function $[\phi, C_{\lambda}]$. This completes a proof of Theorem 1; we proceed to outline a proof of Theorem 2.

2.3. Let $[\phi, C_{\lambda}]$ be a function of intervals and let $[\Phi, K]$ be a completely additive extension of $[\phi, C_{\lambda}]$. Then $[\Phi, K]$ is the difference of two non-negative completely additive set functions (see [13, p. 90]), call them $[\Phi_1, K]$ and $[\Phi_2, K]$. We suppose that $\Phi(E) = \Phi_1(E) - \Phi_2(E)$ for every set $E \in K$. Each of the functions $[\Phi_i, K]$, i=1, 2, satisfies the condition stated in 2.1; in particular, each of the functions $[\Phi_i, C_{\lambda}]$ satisfies condition \mathfrak{C} . But $\phi(I_{\lambda}) = \Phi_1(I_{\lambda}) = \Phi_1(I_{\lambda}) - \Phi_2(I_{\lambda})$; thus the condition in Theorem 2 is necessary.

Let $[\phi, C_{\lambda}]$, $[\phi_1, C_{\lambda}]$, $[\phi_2, C_{\lambda}]$ be finite, single-valued functions of intervals. We assume that $[\phi_1, C_{\lambda}]$ and $[\phi_2, C_{\lambda}]$ are non-negative functions each of which satisfies condition \mathfrak{C} and that $\phi(I) = \phi_1(I) - \phi_2(I)$ for every $I \in C_{\lambda}$. Let $[\Phi_1, K_1]$ and $[\Phi_2, K_2]$ be non-negative completely additive extensions of $[\phi_1, C_{\lambda}]$ and $[\phi_2, C_{\lambda}]$ respectively. Let K denote the closed class $K_1 \cdot K_2$. For every set $E \in K$ we define $\Phi(E) = \Phi_1(E) - \Phi_2(E)$. The function $[\Phi, K]$ is completely additive, and furthermore, the relation

$$\phi(I) = \phi_1(I) - \phi_2(I) = \Phi_1(I) - \Phi_2(I) = \Phi(I)$$

holds for every $I \in C_{\lambda}$. Thus $[\Phi, K]$ is a completely additive extension of $[\phi, C_{\lambda}]$. This establishes the sufficiency of the condition in Theorem 2.

2.4(*). Let $[\Phi, B]$ be a non-negative additive function of Borel sets (1.6). For every set $E \in B$ define $\phi(E) = g.l.b. \sum_n \Phi(I_n)$ for all sequences $\{I_n\}$ of intervals in C_λ such that $\sum_n I_n \supset E$. The function $[\Phi, B]$ is a non-negative completely additive extension of the function $[\Phi, C_\lambda]$. Therefore $[\Phi, C_\lambda]$ satisfies condition $\mathbb S$ and the function $\phi(E)$ is completely additive on the class of all Borel sets. It follows from the definition of $\phi(E)$ and from condition $\mathbb S$ that $\phi(R_0) = \Phi(R_0)$ and that $\phi(E) \supseteq \Phi(E)$ for every $E \subseteq B$. Thus, for $E \subseteq B$, we have $\phi(E) \supseteq \Phi(E)$, $\phi(CE) \supseteq \Phi(CE)$, and $\phi(E) + \phi(CE) = \phi(R_0) = \Phi(R_0) = \Phi(E) + \Phi(CE)$. Obviously then, $\phi(E) = \Phi(E)$.

2.5. Let $[\Phi_1, B]$ and $[\Phi_2, B]$ be any two non-negative additive functions of Borel sets and suppose that $\Phi_1(I) \ge \Phi_2(I)$ for every $I \in C_\lambda$. For $E \in B$ and for i = 1, 2, define $\phi_i(E) = g.l.b.$ $\sum_n \Phi_i(I_n)$ for all sequences $\{I_n\}$ such that $\sum_n I_n \supset E$. From 2.4 it follows that $\phi_i(E) = \Phi_i(E)$ for every $E \in B$. But $\phi_1(E) \ge \phi_2(E)$, and hence $\Phi_1(E) \ge \Phi_2(E)$.

⁽³⁾ The proof of Theorem 3 as presented here in §§2.4-2.7 was suggested by Professor Earl Mickle. For another treatment of the uniqueness of a completely additive extension, see [9].

2.6. Let $[\Phi_1, B]$ and $[\Phi_2, B]$ be any two additive functions of Borel sets such that $\Phi_1(I_{\lambda}) \geq \Phi_2(I_{\lambda})$ for every $I_{\lambda} \in C_{\lambda}$. We express each of the functions Φ_1 , Φ_2 as the difference of two non-negative additive functions of Borel sets:

$$\Phi_1(E) = \Phi_{11}(E) - \Phi_{12}(E); \qquad \Phi_2(E) = \Phi_{21}(E) - \Phi_{22}(E).$$

Then for $I \in C_{\lambda}$ we have $\Phi_{11}(I) - \Phi_{12}(I) = \Phi_{1}(I) \ge \Phi_{2}(I) = \Phi_{21}(I) - \Phi_{22}(I)$ and $\Phi_{11}(I) + \Phi_{22}(I) \ge \Phi_{12}(I) + \Phi_{21}(I)$. From 2.5 it follows that if $E \in B$ then $\Phi_{11}(E) + \Phi_{22}(E) \ge \Phi_{12}(E) + \Phi_{21}(E)$. From this it follows immediately that $\Phi_{1}(E) \ge \Phi_{2}(E)$.

- 2.7. Let $[\Phi_1, K]$ and $[\Phi_2, K]$ be two completely additive extensions of a function $[\phi, C_{\lambda}]$. Then $\Phi_1(I) = \Phi_2(I) = \phi(I)$ for every $I \in C_{\lambda}$. It follows from 2.6 that $\Phi_1(E) = \Phi_2(E)$ for every $E \in B$. In other words, if $[\Phi, K]$ is a completely additive extension of a function $[\phi, C_{\lambda}]$, and if $E \in B$, then the value of $\Phi(E)$ is uniquely determined by the function $[\phi, C_{\lambda}]$. If $[\phi, C_{\lambda}]$ is nonnegative, the number $\Phi(E)$ has the characterization as defined in 2.2. Thus we have established Theorem 3.
- 3. **B-extensions.** This part contains our results on the B-extension as stated in $\S1.6$. In $\S\S3.1$ and 3.2 we state and prove two lemmas which are used in the proofs of the main theorems.
- 3.1. Let $[\Phi, B]$ be a completely additive extension of a function of intervals $[\phi, C_{\lambda}]$. A necessary and sufficient condition that $[\Phi, B]$ be a B-extension of $[\phi, C_{\lambda}]$ is that $\Phi(I) = \Phi(I^{0})$ for every $I \in C_{0}$.

Proof. Let $[\Phi, B]$ be a B-extension of $[\phi, C_{\lambda}]$. Then $\Phi(I) = \Phi(I^{0})$ for every $I \in C_{\lambda}$. Let $I \in C_{0}$ and let \mathcal{E}_{λ} be a subdivision of I into the intervals I_{1}, \dots, I_{n} . Express the set $I - I^{0}$ as the sum of mutually exclusive Borel sets $E_{1} + E_{2} + \dots + E_{n}$ where $E_{i} \subset I_{i} - I_{i}^{0}$; $i = 1, \dots, n$. Since $\Phi(E_{i}) = 0$ it follows that $\Phi(I - I^{0}) = 0$ and that $\Phi(I) = \Phi(I^{0})$.

Let $[\Phi, K]$ be a completely additive extension of $[\phi, C_{\lambda}]$ and assume that $\Phi(I) = \Phi(I^0)$ for every $I \in C_0$. Let $i, i \subset R_0$, be any closed linear interval which is parallel to either the x- or the y-axis. Let $I_1 \supset I_2 \supset \cdots$ be a descending sequence of intervals in C_0 such that $\prod_n I_n = i$ and $\prod_n I_n^0$ is the empty set. It follows from the additivity of $[\Phi, B]$ that

$$0 = \lim_{n} \Phi(I_n^0) = \lim_{n} \Phi(I_n) = \Phi(i).$$

Let t be a transversal or a boundary segment of R_0 . The function $\Phi(E)$ where $E \in B$, $E \subset t$ is a completely additive extension of the function of linear intervals $\Phi(i)$ where $i \subset t$. But such an extension is unique on Borel sets. Therefore, since $\Phi(i) = 0$, it follows that $\Phi(E) = 0$ for $E \in B$, $E \subset t$. Let I be any interval in C_{λ} and let $E \in B$ be any set such that $I^0 \subset E \subset I$. Then $\Phi(I - E) = 0$ and it follows that

$$\phi(I) = \Phi(I) = \Phi(I - E) + \Phi(E) = \Phi(E).$$

Thus $[\Phi, B]$ is a B-extension of $[\phi, C_{\lambda}]$.

3.2. If a function of intervals $[\phi, C_{\lambda}]$ admits a *B*-extension, then $[\phi, C_{\lambda}]$ is additive.

Proof. Let $[\Phi, B]$ be a *B*-extension of $[\phi, C_{\lambda}]$. Let I_{λ} and $\mathcal{E}_{\lambda}I_{\lambda}$ be given. Denote the intervals in $\mathcal{E}_{\lambda}I_{\lambda}$ by $I_{1}, I_{2}, \dots, I_{n}$. Then

$$\phi(I_{\lambda}) = \Phi(I_{\lambda}^{0}) \geq \sum_{i=1}^{n} \Phi(I_{i}^{0}) = \sum_{i=1}^{n} \phi(I_{i}).$$

But $\sum_{i=1}^{n} I_i \supset I_{\lambda}$. It follows from condition \mathfrak{C} that $\phi(I_{\lambda}) \leq \sum_{i=1}^{n} \phi(I_i)$. Thus $[\phi, C_{\lambda}]$ is additive. If we extend the range of definition of $[\phi, C_{\lambda}]$ from C_{λ} to C_{0} by defining $\phi(I) = \Phi(I)$, then the function $[\phi, C_{0}]$ is also additive.

3.3. We proceed to a proof of Theorem 4. Let $[\phi, C_{\lambda}]$ be a non-negative function of intervals and let $[\Phi, B]$ be a non-negative B-extension of $[\phi, C_{\lambda}]$. Extend the range of definition of $[\phi, C_{\lambda}]$ from C_{λ} to C_{0} by defining $\phi(I) = \Phi(I)$ for all $I \subset C_{0}$. Let R_{*} be a fixed interval such that $R_{*}^{0} \supset R_{0}$. Let C_{*} denote the class of all intervals $I \subset R_{*}$. Define the function $[\phi_{*}, C_{*}]$ by the relation $\phi_{*}(I) = \phi(I \cdot R_{0})$ if $I \cdot R_{0}$ is an interval in C_{0} ; by the relation $\phi_{*}(I) = 0$ for all other $I \subset C_{*}$. Let B_{*} denote the class of all Borel sets $E \subset R_{*}$ and define the function $[\Phi_{*}, B_{*}]$ by the relation $\Phi_{*}(E) = \Phi(E \cdot R_{0})$ for every $E \subset B_{*}$. Then $[\Phi_{*}, B_{*}]$ is a non-negative B-extension of $[\phi_{*}, C_{*}]$. Let t be any transversal of R_{0} or a closed boundary segment of R_{0} . Let $\{I_{n}\}$ be a sequence of intervals in C_{*} such that $\prod_{n=1}^{\infty} I_{n}^{0} = t$. Then

$$\lim_{n} \phi_{*}(I_{n}) = \lim_{n} \Phi_{*}(I_{n}) = \lim_{n} \Phi_{*}(I_{n}^{0}) = \Phi_{*}(t) = \Phi(t) = 0.$$

Given $\epsilon > 0$ let each vertical transversal of R_0 and each of the two vertical sides of R_0 be covered by an open interval I^0 such that $I \in C_*$ and $\phi_*(I) < \epsilon$. Then the closed set R_0 is covered by this class of open intervals. A finite number of these open intervals, say $I_1^0, I_2^0, \cdots, I_n^0$, suffice to cover R_0 . Let t_1 , t_2 denote the vertical boundary segments of R_0 and let t_3 , t_4 , \cdots , t_m be the set of vertical transversals of Ro which lie on the boundaries of the intervals I_i , $i=1, \dots, n$. Let δ_1 be the minimum of the numbers $d(t_i \cdot t_j)$ where $i \neq j$ and $i, j = 1, 2, \dots, m$. Let $I \in C_0$ be any interval whose horizontal dimension is less than δ_1 . Then $I \subset I_i$ for some integer $i, i = 1, \dots, n$, and it follows that $\phi(I) = \phi_*(I) \leq \phi_*(I_i) < \epsilon$. Similarly we may show that there exists a number $\delta_2 > 0$ such that if $I \in C_0$ is an interval whose vertical dimension is less than δ_2 then $\phi(I) < \epsilon$. Let $\delta_3 = \min (\delta_1, \delta_2)$, let δ be a number such that $0 < \delta < \delta_3^2$, and let $I \in C_0$ be any interval such that $|I| < \delta$. Then at least one dimension of I is less than δ_3 and it follows that $\phi(I) < \epsilon$. Condition (ii) in the definition of continuity follows from the additivity of $[\phi, C_{\lambda}]$ which was established in 3.2. Thus the condition in Theorem 4 is necessary.

3.4. Let $[\phi, C_{\lambda}]$ be a non-negative, additive, continuous function of intervals. Let I be any interval in C_0 and let $\mathcal{E}_{\lambda}I$ and $\mathcal{J}_{\lambda}I$ be any two subdivisions

of I. Complete the elementary system $\mathcal{E}_{\lambda}I$ with an elementary system of intervals G_{λ} to a subdivision of R_0 . The system $\mathcal{J}_{\lambda} + G_{\lambda}$ also forms a subdivision of R_0 and we have that $\phi(\mathcal{E}_{\lambda}) + \phi(G_{\lambda}) = \phi(R_0) = \phi(\mathcal{J}_{\lambda}) + \phi(G_{\lambda})$. Thus $\phi(\mathcal{E}_{\lambda}) = \phi(\mathcal{J}_{\lambda})$. We extend the range of definition of $[\phi, C_{\lambda}]$ from C_{λ} to C_0 by defining $\phi(I) = \phi(\mathcal{E}_{\lambda}I)$, where $\mathcal{E}_{\lambda}I$ is any subdivision of $I \in C_0$. The function $[\phi, C_0]$ is non-negative and additive. Using the definitional properties of continuity on the class C_{λ} , the additivity on the class C_0 , and a technique similar to that employed in 3.3, it may be proved that $[\phi, C_0]$ is a continuous function.

From the non-negative and additive properties of $[\phi, C_0]$ it follows that $[\phi, C_0]$ satisfies the following condition \mathfrak{C}' : If I_1, I_2, \dots, I_n is a finite set of intervals in C_0 such that $I_i \cdot I_j = 0$ when $i \neq j$, and if J_1, J_2, \dots, J_m is a finite set of intervals in C_0 such that $\sum_{j=1}^{m} J_j \supset \sum_{i=1}^{n} I_i$, then $\sum_{j=1}^{m} \phi(J_j) \ge \sum_{i=1}^{n} \phi(I_i)$.

We shall show that $[\phi, C_0]$ satisfies condition $\mathfrak E$ as stated in Theorem 1. Let R_* be a fixed interval such that $R_*^0 \supset R_0$. Let the class C_* and the function $[\phi_*, C_*]$ be defined as in 3.3. Then $[\phi_*, C_*]$ is a continuous, additive function. Let I_1, I_2, \cdots, I_n be a finite set of mutually exclusive intervals in C_0 and let J_1, J_2, \cdots be an infinite sequence of intervals in C_0 such that $\sum_{j=1}^n J_j \supset \sum_{i=1}^n I_i$. Given $\epsilon > 0$, let $R_i, i=1, 2, \cdots$, be an interval in C_* such that $R_i^0 \supset J_i$ and $\phi_*(R_i) < \phi_*(J_i) + \epsilon/2^i$. Then $\sum_{j=1}^n R_j^0 \supset \sum_{i=1}^n I_i$. Since the set $\sum_{i=1}^n I_i$ is closed it follows that there is an integer m such that $\sum_{j=1}^m R_j^0 \supset \sum_{i=1}^n I_i$. Thus we have

$$\sum_{i=1}^{n} \phi(I_i) = \sum_{i=1}^{n} \phi_*(I_i) \leq \sum_{i=1}^{m} \phi_*(R_i) < \sum_{i=1}^{\infty} \phi_*(J_i) + \epsilon = \sum_{i=1}^{\infty} \phi(J_i) + \epsilon.$$

$$\Phi(I) = \phi(I) < \phi(J) + \epsilon = \Phi(J) + \epsilon = \Phi(I^0) + \epsilon.$$

Since $\epsilon > 0$ is arbitrary, it follows that $\Phi(I) = \Phi(I^0)$ and from 3.1 it follows that $[\Phi, B]$ is a B-extension of $[\phi, C_0]$; obviously it is also a B-extension of the function $[\phi, C_{\lambda}]$. Thus the condition in Theorem 4 is sufficient.

3.5. Given a function of intervals $[\phi, C_{\lambda}]$ and a transversal t of R_0 we define (4):

 $A(t) = \lim \sup \left[\phi(\mathcal{E}_{\lambda}) - \phi(\mathcal{I}_{\lambda}) \right]$ for all \mathcal{E}_{λ} and \mathcal{I}_{λ} such that $\|\mathcal{E}_{\lambda}\| \to 0$,

⁽⁴⁾ This definition is an extension of the concept of ecart as employed by Saks for functions of linear intervals. See [11, p. 211].

 $\|\mathcal{J}_{\lambda}\| \to 0$, and $I \cdot t \neq 0$ for all $I \in \mathcal{E}_{\lambda}$ and $I \in \mathcal{J}_{\lambda}$.

 $a(t) = \liminf \left[\phi(\mathcal{E}_{\lambda}) - \phi(\mathcal{I}_{\lambda})\right]$ for all \mathcal{E}_{λ} and \mathcal{I}_{λ} as in the definition of A(t). The numbers $\Omega(t) = 2^{-1}[A(t) + |A(t)|] \ge 0$ and $\omega(t) = 2^{-1}[a(t) - |a(t)|] \le 0$ are called the non-negative and non-positive *ecarts* of $[\phi, C_{\lambda}]$ on t. If both $\Omega(t) = 0$ and $\omega(t) = 0$, then t is a transversal of zero ecart; otherwise t is a transversal of nonzero ecart.

Let $[\phi, C_{\lambda}]$ be a function of intervals which is RAC, that is, the function $[U(|\phi|), C_0]$ is continuous. Let t be a transversal of R_0 . Given $\epsilon > 0$, let I be an interval in C_0 such that $I^0 \supset t^0$, $I \supset t$, and $U(|\phi|, I) < \epsilon/4$. Let $\eta > 0$ be a number such that $||\mathcal{E}_{\lambda}I|| < \eta$ implies $|\phi| (\mathcal{E}_{\lambda}I) < U(|\phi|, I) + \epsilon/4$. Then if $\mathcal{I}_{\lambda 1}$ and $\mathcal{I}_{\lambda 2}$ are any two elementary systems such that $||\mathcal{I}_{\lambda i}|| < \eta$, i = 1, 2, and $I \subset I$ for every interval $I \subset \mathcal{I}_{\lambda i}$, we have

$$|\phi|(\mathcal{J}_{\lambda i}) < U(|\phi|, I) + \epsilon/4 < \epsilon/2.$$

Thus $|\phi(\mathcal{J}_{\lambda 1}) - \phi(\mathcal{J}_{\lambda 2})| \leq |\phi|(\mathcal{J}_{\lambda 1}) + |\phi|(\mathcal{J}_{\lambda 2}) < \epsilon$. Since $\epsilon > 0$ is arbitrary, it follows that A(t) = a(t) = 0 and R_0 has no transversals of nonzero exart.

3.6. If $[\phi, C_{\lambda}]$ increases (decreases) by subdivision and is RAC, then $U(\phi, I)$ ($L(\phi, I)$) is finite and additive.

Proof. Since $[\phi, C_{\lambda}]$ increases by subdivision, it follows from a theorem of Kempisty that $U(\phi, I) > -\infty$ for all $I \in C_0$ and that $U(\phi, I)$ is additive. It follows from the continuity of $U(|\phi|, I)$ that $U(\phi, I)$ is also a continuous function. Let $\delta > 0$ be a number such that $|I| < \delta$ implies $U(\phi, I) < 1$. Let $\mathcal{E}I_0$ be a subdivision of a fixed interval I_0 into intervals I such that $|I| < \delta$. It follows that $U(\phi, I_0)$ is less than the number of intervals in $\mathcal{E}I_0$.

If $[\phi, C_{\lambda}]$ decreases by subdivision, the result follows as a corollary if we consider the function $[-\phi, C_{\lambda}]$.

3.7. If $[\phi, C_{\lambda}]$ is RAC and increases (decreases) by subdivision, then $[\phi, C_{\lambda}]$ is integrable.

Proof. Let $[\phi, C_{\lambda}]$ be an RAC function which increases by subdivision. Then by 3.6, $U(\phi, R_0)$ is a finite number. Given $\epsilon > 0$, let $\mathcal{E}_{\lambda}R_0$ be a subdivision of R_0 such that $\phi(\mathcal{E}_{\lambda}R_0) > U(\phi, R_0) - \epsilon$. Let $\{\mathcal{E}_{\lambda m}R_0\}$ be a sequence of subdivisions of R_0 such that $\|\mathcal{E}_{\lambda m}R_0\| \to_m 0$ and $\phi(\mathcal{E}_{\lambda m}R_0) \to_m L(\phi, R_0)$. Let t_1, t_2, \dots, t_k be the set of all transversals of R_0 such that $t_i, i=1, \dots, k$, contains at least one boundary segment of an interval $I \in \mathcal{E}_{\lambda}R_0$. Let \mathcal{I}_m , $m=1, 2, \dots, k$, and all of the boundary segments of intervals $I \in \mathcal{E}_{\lambda m}$. Let $T = \sum_{i=1}^k t_i$ and let $\mathcal{E}_{\lambda m}^T$ be the elementary system consisting of all the intervals I such that $I \in \mathcal{E}_{\lambda m}$ and $I \cdot T \neq 0$. Each interval I in \mathcal{I}_m which is in the class $C_0 - C_\lambda$ is contained in an interval $I \in \mathcal{E}_{\lambda m}^T$. We replace each such interval $I \in \mathcal{I}_m$ by a subdivision $\mathfrak{R}_{\lambda}I$ and denote the resulting elementary system by $\mathcal{I}_{\lambda m}$. Let $\mathcal{I}_{\lambda m}^T$ denote the elementary system of intervals I such that $I \in \mathcal{I}_{\lambda m}$ and I is contained in some interval $I \in \mathcal{E}_{m \lambda}^T$. The elementary systems $\mathcal{E}_{\lambda m} - \mathcal{E}_{\lambda m}^T$ and $\mathcal{I}_{\lambda m} - \mathcal{I}_{\lambda m}^T$ are identical. Therefore $\phi(\mathcal{E}_{\lambda m}) - \phi(\mathcal{I}_{\lambda m})$

 $=\phi(\mathcal{E}_{\lambda m}^T)-\phi(\mathcal{J}_{\lambda m}^T)$. It follows from 3.5 that $\lim_m \left[\phi(\mathcal{E}_{\lambda m}^T)-\phi(\mathcal{J}_{\lambda m}^T)\right]=0$. Thus $\lim_m \phi(\mathcal{J}_{\lambda m})=\lim_m \phi(\mathcal{E}_{\lambda m})=L(\phi,\,R_0)$. Since $[\phi,\,C_\lambda]$ increases by subdivision we have

$$\phi(\mathcal{J}_{\lambda m}) \geq \phi(\mathcal{E}_{\lambda}) > U(R_0) - \epsilon, \qquad m = 1, 2, \cdots.$$

Therefore $L(\phi, R_0) = \lim_m \phi(\mathcal{J}_{\lambda m}) > U(\phi, R_0) - \epsilon$ and it follows that $[\phi, C_{\lambda}]$ is integrable. The case in which $[\phi, C_{\lambda}]$ decreases by subdivision follows as an immediate corollary since the function $[-\phi, C_{\lambda}]$ increases by subdivision.

3.8. We proceed to the proof of Theorem 5. Let $[\Phi, B]$ be a B-extension of the function of intervals $[\phi, C_{\lambda}]$. Express the function $[\Phi, B]$ as the difference of two non-negative additive functions of Borel sets, say $[\Phi_1, B]$ and $[\Phi_2, B]$, where $\Phi(E) = \Phi_1(E) - \Phi_2(E)$, $E \in B$. For i = 1, 2 and $I \in C_0$ define $\phi_i(I) = \Phi_i(I)$. Then $[\phi_1, C_0]$ and $[\phi_2, C_0]$ are non-negative additive functions of intervals, and $[\Phi_1, B]$, $[\Phi_2, B]$ are non-negative B-extensions of $[\phi_1, C_0]$, $[\phi_2, C_0]$ respectively. It follows from Theorem 4 that $[\phi_1, C_0]$, $[\phi_2, C_0]$ are continuous functions. Since $|\phi(I_{\lambda})| \leq \phi_1(I_{\lambda}) + \phi_2(I_{\lambda})$ for every $I \in C_{\lambda}$ it follows that $U(|\phi|, I) \leq U(\phi_1, I) + U(\phi_2, I) = \phi_1(I) + \phi_2(I)$ for every $I \in C_0$. Thus $U(|\phi|, I)$ is a continuous function, that is, the function $[\phi, C_{\lambda}]$ is RAC. The necessity of the condition in Theorem 5 follows from this result and 3.2.

Let $[\phi, C_{\lambda}]$ be an additive, RAC function of intervals. For every $I \in C_{\lambda}$ define $\phi_1(I) = 2^{-1} [\phi(I) + |\phi(I)|]$, $\phi_2(I) = 2^{-1} [|\phi(I)| - \phi(I)]$. Then $[\phi_1, C_{\lambda}]$, $[\phi_2, C_{\lambda}]$ are non-negative functions and $\phi(I_{\lambda}) = \phi_1(I_{\lambda}) - \phi_2(I_{\lambda})$ for every $I \in C_{\lambda}$. It is readily proved that $[\phi_1, C_{\lambda}]$, $[\phi_2, C_{\lambda}]$ are RAC and increase by subdivision. It follows from 3.7 that they are integrable. Their indefinite integrals, denoted by $[F_1, C_0]$ and $[F_2, C_0]$ respectively, are continuous, additive functions. Let $[\Phi_1, B]$ and $[\Phi_2, B]$ denote the B-extensions of $[F_1, C_0]$ and $[F_2, C_0]$ respectively. For every $E \in B$ define $\Phi(E) = \Phi_1(E) - \Phi_2(E)$. For $I \in C_{\lambda}$ we have $\phi(I) = \phi_1(I) - \phi_2(I) = \Phi_1(I) - \Phi_2(I) = \Phi(I)$. For $I \in C_0$ we have $\Phi(I) = \Phi_1(I) - \Phi_2(I) = \Phi_1(I) - \Phi_2(I) = \Phi(I^0)$. It follows from 3.1 that $[\Phi, B]$ is a B-extension of $[\phi, C_{\lambda}]$.

3.9. If $[\phi, C_{\lambda}]$ is integrable, then $U(|\phi|, I) = U(|F(\phi)|, I)$ for every $I \in C_0$.

Proof. Given a number $\epsilon > 0$ let $\delta > 0$ be a number such that $\|\mathcal{E}_{\lambda}\| < \delta$ implies $|\phi(\mathcal{E}_{\lambda}) - F(\phi, \mathcal{E}_{\lambda})| < \epsilon/2$ (see [6, Theorem 3]). Given an interval $I_0 \in C_0$ let $\mathcal{E}_{\lambda}I_0$ be a subdivision of I_0 which consists of the intervals I_1, \dots, I_n , and which is such that $\|\mathcal{E}_{\lambda}I_0\| < \delta$. Let \mathcal{E}_1 consist of the intervals $I \in \mathcal{E}_{\lambda}I_0$ which satisfy the relation $\phi(I) - F(\phi, I) \ge 0$ and let \mathcal{E}_2 consist of the intervals $I \in \mathcal{E}_{\lambda}I_0$ which satisfy the relation $\phi(I) - F(\phi, I) < 0$. Then $|\phi(\mathcal{E}_i) - F(\phi, \mathcal{E}_i)| < \epsilon/2$, i = 1, 2, and $\sum_{i=1}^n |\phi(I_i) - F(\phi, I_i)| < \epsilon$. But $|F(\phi, I_i)| \le |\phi(I_i)| + |F(\phi, I_i) - \phi(I_i)|$;

$$|\phi(I_i)| \leq |F(\phi, I_i)| + |F(\phi, I_i) - \phi(I_i)|.$$

Therefore $||F(\phi, I_i)| - |\phi(I_i)|| \le |F(\phi, I_i) - \phi(I_i)|$, and $\sum_{i=1}^{n} |F(\phi, I_i)|$

- $-|\phi(I_i)|| < \epsilon$. It follows that $U(|\phi|, I_0) = U(|F(\phi)|, I_0)$.
- 3.10. Since the integral of a function of intervals is additive, it follows from Theorem 5 that: A necessary and sufficient condition that the integral of a function of intervals admit a B-extension is that the integral be RAC. Theorem 6 follows immediately from 3.9.

BIBLIOGRAPHY

- 1. S. Banach, Sur une classe de fonctions d'ensemble, Fund. Math. vol. 6 (1924) pp. 170-188.
- 2. J. C. Burkill, Functions of intervals, Proc. London Math. Soc. (2) vol. 22 (1923) pp. 275-310.
 - 3. E. W. Hobson, Theory of functions of a real variable, vol. 1, Cambridge, 1927.
 - 4. E. Kamke, Das Lebesguesche Integral, Berlin, 1925.
- 5. S. Kempisty, Fonctions d'intervalle non additives, Actualités Scientifiques et Industrielles, no. 824, Paris, 1939.
- 6. ——, Sur les fonctions absolument continues d'intervalle, Fund. Math. vol. 27 (1936) pp. 10-37.
 - 7. H. Kestelman, Modern theories of integration, Oxford, 1937.
- 8. A. J. Maria, Functions of plurisegments, Trans. Amer. Math. Soc. vol. 28 (1926) pp. 448-471.
- 9. J. Radon, Theorie und Anwendungen der absolut-additiven Mengenfunktionen, Sitzungsberichte der mathematisch-naturwissenschaftlichen Klasse der Kaiserlichen Akademie der Wissenschaften vol. 122 (1913) pp. 1295–1438.
- 10. P. Reichelderfer and L. Ringenberg, The extension of rectangle functions, Duke Math, J. vol. 8 (1941) pp. 231-242.
 - 11. S. Saks, Sur les fonctions d'intervalle, Fund. Math. vol. 10.(1927) pp. 211-224.
 - 12. ——, Theory of the integral, Warsaw, 1937.
- 13. C. de la Vallée-Poussin, Integrales de Lesbesgue, Fonctions d'Ensemble, Classes de Baire, 2d ed., Paris, 1934.

University of Maryland, College Park, Md.